There is no stationary cyclically monotone Poisson matching in 2D

Francesco Mattesini
WWU Münster \& MPI Leipzig

Optimal Transport and Uncertainty
Pisa, 26 November 2021

Joint with M. Huesmann (WWU Münster)
and F. Otto (MPI Leipzig)

The random Euclidean bipartite matching problem

Let X_{i}, Y_{i} be i. i. d. uniformly distributed points $\left(X_{i}\right)_{i=1}^{n},\left(Y_{i}\right)_{i=1}^{n}$ on $(0,1)^{d}$ and consider the optimization problem

$$
\min _{\sigma \in S_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\gamma}
$$

Define the empirical measures

$$
\mu_{n}=\sum_{i=1}^{n} \delta_{X_{i}}, \quad \nu_{n}=\sum_{i=1}^{n} \delta_{Y_{i}} .
$$

Recall the Wasserstein distance:

$$
W_{\gamma}^{\gamma}\left(\mu_{n}, \nu_{n}\right)=\inf _{\pi \in \mathrm{Cpl}} \int|x-y|^{\gamma} d \pi(x, y)
$$

where Cpl is the set of coupling between μ_{n} and ν_{n}, namely the set of measures on the product space with first marginal equals to μ_{n} and second marginal equals to ν_{n}.

By Birkhoff's theorem

$$
W_{\gamma}^{\gamma}\left(\mu_{n}, \nu_{n}\right)=\min _{\sigma \in S_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\gamma}
$$

Macroscopic Behaviour

Idea: The typical distance is $n^{-\frac{1}{d}}$ (points are spread as in a regular grid)

$$
\min _{\sigma \in S_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\gamma} \approx n \cdot n^{-\frac{\gamma}{d}}
$$

Achtung: There are fluctuations! (CLT)
The asymptotic behaviour of $W_{\gamma}\left(\mu_{n}, \nu_{n}\right)$ depends on the dimension d :

$$
W_{\gamma}^{\gamma}\left(\mu_{n}, \nu_{n}\right) \sim \begin{cases}n \cdot n^{-\frac{\gamma}{2}} & \text { for } d=1 \\ n \cdot\left(\frac{\log n}{n}\right)^{\frac{\gamma}{2}} & \text { for } d=2 \\ n \cdot n^{-\frac{\gamma}{d}} & \text { for } d \geq 3\end{cases}
$$

The critical dimension $d=2$ has been firstly understood in the seminal paper by Ajtai, Komlós and Tusnády (1983).

Topics

Question: Convergence of the rescaled cost.
Ambrosio-Stra-Trevisan (2016 $d=2, \gamma=2$)
Goldman-Trevisan (2020 $d \geq 3, \gamma \geq 1$)
Ambrosio-Goldman-Trevisan (2021 Lipschitz domain $d=2, \gamma=2$)
Bobkov-Ledoux (2019 d=1)
Question: Mesoscopic behaviour. del Barrio-Giné-Utzet (2005)
Ledoux (2019)
Goldman-Huesmann (2021)
Question: Thermodynamic limit.
Huesmann-Sturm (2013 $d \geq 3$)
Holroyd-Janson-Wästlund (2020)
\rightarrow Today

The Poisson Point Process

The Poisson point process on \mathbb{R}^{d} can be defined as a random variable taking values on locally finite atomic measures

$$
\mu=\sum_{i} \delta_{X_{i}}
$$

such that for every $k \geq 1$, for any disjoint Borel sets $A_{1}, \ldots, A_{k} \subseteq \mathbb{R}^{d}$,
\rightsquigarrow the random variables $\mu\left(A_{1}\right), \ldots, \mu\left(A_{k}\right)$ are independent,
\rightsquigarrow the random variable $\mu\left(A_{i}\right)$ has a Poisson distribution of parameter $\left|A_{i}\right|$ for every $i=1, \ldots, k$.

Existence: Superposition argument. On $\Omega \subseteq \mathbb{R}^{d}$ bounded, conditionally on $\mu(\Omega)=n$, the measure $\mu L \Omega$ has the same law as the random measure

$$
\sum_{i=1}^{n} \delta_{X_{i}}
$$

where $\left(X_{i}\right)_{i=1}^{n}$ are i. i. d. with uniform law on Ω.
Notation: I will often make use of the notation $\{X\}$ to denote a Poisson point process.

Motivation

Definition: Consider two Poisson point process $\{X\},\{Y\}$ in \mathbb{R}^{d} and let T be a bijection from $\{X\}$ to $\{Y\}$. We call matching the triple $(\{X\},\{Y\}, T)$.

Definition: A matching $(\{X\},\{Y\}, T)$ is γ-minimal if for any finite subset $\left\{X_{i}\right\}_{i=1}^{n} \subset\{X\},\left\{Y_{i}\right\}_{i=1}^{n} \subset\{Y\}$

$$
\sum_{i=1}^{n}\left|T\left(X_{i}\right)-X_{i}\right|^{\gamma}=\min _{\sigma \in S_{n}} \sum_{i=1}^{n}\left|X_{i}-Y_{\sigma(i)}\right|^{\gamma}
$$

Question: (Peres 2002) For $\{X\},\{Y\}$ independent Poisson processes of intensity 1 in \mathbb{R}^{2}, does there exist a stationary planar matching?

Question: (Holroyd 2009) For $\{X\},\{Y\}$ independent Poisson processes of intensity 1 in \mathbb{R}^{2}, does there exist a stationary γ-minimal matching?

Theorem (Holroyd-Janson-Wästlund 2020)
There exists a stationary γ-minimal matching if

$$
\begin{aligned}
& \rightsquigarrow d=2, \gamma<1 ; \\
& \rightsquigarrow d \geq 3, \gamma<\infty .
\end{aligned}
$$

Simulations

Figure: Uniformly random red and blue points in equal numbers on a square, together with γ-minimal matchings for $\gamma=\infty$ (top-left), $\gamma=1$ (top-right), and $\gamma=-\infty$ (bottom).
Credits to Holroyd-Janson-Wästlund 2020.

Our result

We are interested in the case $\gamma=2, d=2$.
Theorem (Huesmann-M.-Otto)
There exists no stationary, ergodic and 2-minimal matching $(\{X\},\{Y\}, T)$ in $d=2$.

Idea of the proof: Contradiction argument. We argue by showing that 2 -minimality together with stationarity will imply the following contradiction:

$$
O\left(\ln ^{\frac{1}{2}} R\right) \leq \frac{1}{R^{d}} \sum_{X \in B_{R}} \text { or } T(X) \in B_{R} \text { }|T(X)-X| \leq o\left(\ln ^{\frac{1}{2}} R\right) .
$$

Proof in a nutshell

Step 1: Ergodic estimate

$$
\#\left\{X \in(-R, R)^{d}:|T(X)-X| \gg 1\right\} \leq o\left(R^{d}\right) .
$$

Step 2: L^{∞}-estimate

$$
|T(X)-X| \leq o(R) \text { provided that } X \in(-R, R)^{d},
$$

Step 3: Harmonic approximation

$$
\frac{1}{R^{d}} \sum_{X \in B_{R}} \text { or } T(X) \in B_{R}|T(X)-X|^{2} \leq O(\ln R) .
$$

Step 4: Trading integrability against asymptotics.

$$
\frac{1}{R^{d}} \sum_{X \in B_{R}} \text { or } T(X) \in B_{R}|T(X)-X| \leq o\left(\ln ^{\frac{1}{2}} R\right) .
$$

Step 5: Lower bound

$$
\frac{1}{R^{d}} \sum_{X \in B_{R}} \sum_{T(X) \in B_{R}}|T(X)-X| \geq O\left(\ln ^{\frac{1}{2}} R\right) .
$$

Step 1: Ergodic estimate

Definition: a matching $(\{X\},\{Y\}, T)$ is said to be stationary if the joint law of $(\{X\},\{Y\}, T)$ is invariant under the action of the additive group \mathbb{Z}^{d}

$$
(\{X\},\{Y\}, T) \mapsto(\{x+X\},\{x+Y\}, T(\cdot-x)+x) \quad x \in \mathbb{Z}^{d}
$$

Lemma

For any $\varepsilon>0$ there exists a deterministic L and a random radius $r_{*}<\infty$ a.s. such that for all $R \geq r_{*}$

$$
\#\left\{X \in(-R, R)^{2}| | T(X)-X \mid>L\right\} \leq(\varepsilon R)^{2}
$$

Idea of the proof: Use stationarity and ergodicity to apply Birkhoff-von Neumann's theorem to get

$$
\begin{aligned}
& \frac{1}{R^{d}} \#\left\{X \in(-R, R)^{2}| | T(X)-X \mid>L\right\} \\
& \rightarrow \mathbb{E}\left[\#\left\{X \in(-1,1)^{2}| | T(X)-X \mid>L\right\}\right]
\end{aligned}
$$

as $R \rightarrow \infty$.

Step 2: L^{∞}-estimate

Lemma

For every $\varepsilon>0$ there exists a random radius $r_{*}<\infty$ a. s. such that for every $R \geq r_{*}$

$$
|T(X)-X| \leq \varepsilon R \quad \text { provided that } X \in(-R, R)^{2}
$$

Key ingredient: Minimality implies that T is cyclically monotone, and in particular monotone, thus for $\left\{X_{i}\right\}_{i=1}^{3}$ we have

$$
\left(T\left(X_{i}\right)-T(X)\right) \cdot\left(X_{i}-X\right) \geq 0
$$

In particular,

$$
\begin{aligned}
(T(X)-X) \cdot\left(X_{i}-X\right) & \leq\left(T\left(X_{i}\right)-X_{i}\right) \cdot\left(X_{i}-X\right)+\left|X_{i}-X\right|^{2} \\
& \lesssim\left|T\left(X_{i}\right)-X_{i}\right|^{2}+\left|X_{i}-X\right|^{2}
\end{aligned}
$$

Sketch of the proof

Idea: There are enough "good" points around X.

$$
(T(X)-X) \cdot \frac{\left(X_{i}-X\right)}{\left|X_{i}-X\right|} \lesssim \frac{\left|T\left(X_{i}\right)-X_{i}\right|^{2}}{\left|X_{i}-X\right|}+\left|X_{i}-X\right| \lesssim \varepsilon R
$$

Step 3: Harmonic approximation

Aim: Improve the L^{∞}-estimate to the L^{2}-estimate of the local energy $E(R) \leq O(\ln R)$.

Lemma

There exist a constant C and a random radius $r_{*}<\infty$ a. s. such that for every $R \geq r_{*}$ we have

$$
E(R)=\frac{1}{R^{d}} \sum_{X \in B_{R}} \operatorname{or}_{T(X) \in B_{R}}|T(X)-X|^{2} \leq C \ln R
$$

Harmonic Approximation Theorem
Define the local energy

$$
E(R):=\frac{1}{R^{d}} \sum_{X \in B_{R}} \sum_{T(X) \in B_{R}}|T(X)-X|^{2} .
$$

Call $\mu=\sum_{X \in(-R, R)^{2}} \delta_{X}$ and $\mu=\sum_{Y \in(-R, R)^{2}} \delta_{Y}$ define the data term
$D(R):=\frac{1}{R^{d}} W_{(-R, R)^{2}}^{2}\left(\mu, n_{\mu}\right)+\frac{R^{2}}{n_{\mu}}\left(n_{\mu}-1\right)^{2}+\frac{1}{R^{d}} W_{(-R, R)^{2}}^{2}\left(\nu, n_{\nu}\right)+\frac{R^{2}}{n_{\nu}}\left(n_{\nu}-1\right)^{2}$,
where $n_{\mu}=\frac{\#\left\{X \in(-R, R)^{2}\right\}}{4 R^{2}}, n_{\nu}=\frac{\#\left\{Y \in(-R, R)^{2}\right\}}{4 R^{2}}$.
Theorem (Goldman-Huesmann-Otto)
For any $0<\tau \ll 1$, there exists an $\varepsilon:=\varepsilon(\tau)>0$ and a $C_{\tau}<\infty$ such that provided for some R

$$
\frac{1}{R^{2}} E(6 R)+\frac{1}{R^{2}} D(6 R) \leq \varepsilon
$$

there exists a harmonic gradient field Φ such that

$$
\begin{aligned}
& \frac{1}{R^{d}} \sum_{X \in B_{R}} \sum_{T(X) \in B_{R}}|T(X)-X-\nabla \Phi(X)|^{2} \leq \tau E(6 R)+C_{\tau} D(6 R), \\
& \sup _{B_{2 R}}|\nabla \Phi|^{2} \leq C_{\tau}(E(6 R)+D(6 R))
\end{aligned}
$$

Application of the harmonic approximation

Idea: Splitting the sum.
Consider the contribution given by the points which are transported by large distance

$$
\begin{aligned}
& \frac{1}{R^{d}} \sum_{\left(X \in B_{R} \text { or } T(X) \in B_{R}\right) \text { and }|T(X)-X|>L_{\tau}}|T(X)-X|^{2} \\
& \leq \frac{2}{R^{d}} \sum_{X \in B_{R} \text { or } T(X) \in B_{R}}|T(X)-X-\nabla \Phi(X)|^{2} \\
& +\frac{2}{R^{d}} \sum_{\left(X \in B_{R} \text { or } T(X) \in B_{R}\right) \text { and }|T(X)-X|>L_{\tau}}|\nabla \Phi(X)|^{2} \\
& \leq 2 \tau\left(1+C_{\tau}\right) E(6 R)+2 C_{\tau}(1+\tau) \underbrace{D(6 R)}_{\lesssim \ln R} .
\end{aligned}
$$

This combines to

$$
E(R) \leq \tau E(6 R)+C_{\tau} \ln R .
$$

Iteration:

$$
E(R) \leq \tau^{k} E\left(6^{k} R\right)+C_{\tau} \sum_{l=0}^{k-1} \tau^{l} \ln R \leq \varepsilon(36 \tau)^{k} R^{2}+C_{\tau} \sum_{l=0}^{k-1} \tau^{l} \ln R
$$

Step 4: Upper bound

Lemma
For every $\varepsilon>0$ there exists a random radius $r_{*}<\infty$ a. s. such that

$$
\frac{1}{R^{d}} \sum_{X \in B_{R}} \operatorname{or}_{T(X) \in B_{R}}|T(X)-X| \leq \varepsilon \ln ^{\frac{1}{2}} R
$$

Proof: We split again the sum into moderate and large transportation distance and apply Cauchy-Schwarz:

$$
\begin{aligned}
& \frac{1}{R^{d}} \sum_{X \in B_{R} \text { or } T(X) \in B_{R}}|T(X)-X| \\
& \leq \frac{1}{R^{d}} \sum_{\left(X \in B_{R} \text { or } T(X) \in B_{R}\right) \text { and }|T(X)-X| \leq L}|T(X)-X| \\
& +\frac{1}{R^{d}} \sum_{\left(X \in B_{R} \text { or } T(X) \in B_{R}\right) \text { and }|T(X)-X|>L}|T(X)-X| \\
& \leq C L+\varepsilon^{\frac{1}{2}} E(R)^{\frac{1}{2}} \leq C \varepsilon^{\frac{1}{2}} \ln ^{\frac{1}{2}} R .
\end{aligned}
$$

Conclusions

For $\gamma=2, d=2$ we proved the following:
Theorem
There exists no stationary, ergodic and 2-minimal matching $(\{X\},\{Y\}, T)$ in $d=2$.

Our proof relies on the Harmonic Approximation Theorem that requires $\gamma=2$.
Question: What if $\gamma \geq 1$?
\rightsquigarrow Hope: for $\gamma>1$ a similar argument might work.
\rightsquigarrow Problem: $\gamma=1$ requires a different argument.

The Ansatz by Caracciolo-Lucibello-Parisi-Sicuro (2014)

Write $\mu_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}, \nu_{n}=\sum_{i=1}^{n} \frac{1}{n} \delta_{Y_{i}}$. The optimal coupling for $W_{2}^{2}\left(\mu_{n}, \nu_{n}\right)^{n}$ is given by $(\nabla \psi, \text { Id })_{\#} \nu_{n}$.

A formal change of variable yields $\mu_{n} \operatorname{det} \nabla^{2} \psi=\nu_{n}$.
Since $\mu_{n} \approx 1$ we expect $\nabla \psi(x)=x+\nabla \varphi(x)$ so that $\nabla^{2} \psi=\mathbf{I d}+\nabla^{2} \varphi$.
Substitution and linearization yields

$$
\mu_{n}(1+\Delta \varphi)=\nu_{n} \quad \text { s. t. with } \mu_{n} \approx 1 \quad \Delta \varphi=\nu_{n}-\mu_{n}
$$

This ansatz leads to $\nabla \varphi(x)=\nabla \psi(x)-x$ thus

$$
\int|\nabla \varphi|^{2} d \nu_{n} \approx W_{2}^{2}\left(\mu_{n}, \nu_{n}\right)
$$

which gives several explicit description.
\rightsquigarrow Ambrosio-Stra-Trevisa (2019), Ambrosio-Glaudo-Trevisan (2019): true on macroscopic level for cost and transport map.
\rightsquigarrow Goldman-Huesmann-Otto (2021): Harmonic Approximation results. For $\nu_{n}=$ Leb quantitative version from macro down to micro scale.

Thank you for the attention!

