Teoria dei modelli della doppia appartenenza

Rosario Mennuni
in collaborazione con Bea Adam-Day e John Howe

Università di Pisa
Seminario di Logica
6 ottobre 2022

In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

Main point

In models of Anti-Foundation, the relation $x \in y \in x$ encodes plenty of information.

In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

Main point

In models of Anti-Foundation, the relation $x \in y \in x$ encodes plenty of information.

Plan of the talk:

- Set-up: double-membership graphs; Anti-Foundation.
- Untameness: why these graphs are (very) wild.
- Games: how ideas from finite model theory help.

Membership graphs

A model M of set theory is a digraph.

Membership graphs

A model M of set theory is a digraph. Let M_{S} be its symmetrisation.

Membership graphs

A model M of set theory is a digraph. Let M_{S} be its symmetrisation.

Fact (Folklore (Gaifman?))

If $M \vDash$ ZFC is countable, then M_{S} is the Random Graph.
Proof.
Show that M_{S} satisfies the Random Graph axioms.

Membership graphs

A model M of set theory is a digraph. Let M_{S} be its symmetrisation.

Fact (Folklore (Gaifman?))

If $M \vDash$ ZFC is countable, then M_{S} is the Random Graph.

Proof.

Show that M_{S} satisfies the Random Graph axioms.
How much set theory does M need? Emptyset, Pairing, Union, and Foundation.
Foundation: no infinite descending \in-sequences. In particular, no $x \in x$, no $x \in y \in x$.
What happens without Foundation?

Double-membership

Definition

Let M be an $\{\in\}$-structure. $S(x, y):=x \in y \vee y \in x \quad D(x, y):=x \in y \wedge y \in x$. Double-membership graph M_{D} : reduct of M to $\{D\}$. Similarly for $M_{S D}$.

Double-membership

Definition

Let M be an $\{\in\}$-structure. $\quad S(x, y):=x \in y \vee y \in x \quad D(x, y):=x \in y \wedge y \in x$. Double-membership graph M_{D} : reduct of M to $\{D\}$. Similarly for $M_{S D}$.

\emptyset

Double-membership

Definition

Let M be an $\{\in\}$-structure. $\quad S(x, y):=x \in y \vee y \in x \quad D(x, y):=x \in y \wedge y \in x$. Double-membership graph M_{D} : reduct of M to $\{D\}$. Similarly for $M_{S D}$.

From now on graph=loopy graph: points are allowed to have an edge to themselves.

Double-membership

Definition

Let M be an $\{\in\}$-structure. $\quad S(x, y):=x \in y \vee y \in x \quad D(x, y):=x \in y \wedge y \in x$. Double-membership graph M_{D} : reduct of M to $\{D\}$. Similarly for $M_{S D}$.

$\emptyset \quad\{\emptyset\}$
M_{D}

From now on graph=loopy graph: points are allowed to have an edge to themselves.
Proposition (Adam-Day, Howe, M.)
Let G be a graph in $M \vDash$ ZFC. There is $N \vDash$ ZFC $\backslash\left\{\right.$ Foundation such that N_{D} is isomorphic to G plus infinitely many isolated points. In particular M_{S} can have an arbitrary number of points with loops.

Anti-Foundation Axiom

So we need structure. AFA: allow non-well-founded sets, but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all binary relations'.

Anti-Foundation Axiom

So we need structure. AFA: allow non-well-founded sets, but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all binary relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x=S_{x}$, where $S_{x} \subseteq X \cup A$. Solution: what you expect.

Anti-Foundation Axiom

So we need structure. AFA: allow non-well-founded sets, but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all binary relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x=S_{x}$, where $S_{x} \subseteq X \cup A$. Solution: what you expect.

Example

$X=\{x, y\}, A=\{\emptyset,\{\emptyset\}\}$, equations $x=\{x, y, \emptyset\}$ and $y=\{x,\{\emptyset\}\}$.

Anti-Foundation Axiom

So we need structure. AFA: allow non-well-founded sets, but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all binary relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x=S_{x}$, where $S_{x} \subseteq X \cup A$. Solution: what you expect.

Example

$X=\{x, y\}, A=\{\emptyset,\{\emptyset\}\}$, equations $x=\{x, y, \emptyset\}$ and $y=\{x,\{\emptyset\}\}$.
A solution is $x \mapsto a, y \mapsto b$ as in:

Anti-Foundation Axiom

So we need structure. AFA: allow non-well-founded sets, but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all binary relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x=S_{x}$, where $S_{x} \subseteq X \cup A$. Solution: what you expect.

Example

$X=\{x, y\}, A=\{\emptyset,\{\emptyset\}\}$, equations $x=\{x, y, \emptyset\}$ and $y=\{x,\{\emptyset\}\}$.
A solution is $x \mapsto a, y \mapsto b$ as in:

Anti-Foundation Axiom: 'every flat system has a unique solution'. ZFA is ZFC with Foundation replaced by Anti-Foundation.

Anti-Foundation Axiom

So we need structure. AFA: allow non-well-founded sets, but in a way controlled by the well-founded ones. Allow 'Mostowski collapse for all binary relations'.

Definition

Let X be set of 'indeterminates', A a set of sets. A flat system of equations is a set of equations of the form $x=S_{x}$, where $S_{x} \subseteq X \cup A$. Solution: what you expect.

Example

$X=\{x, y\}, A=\{\emptyset,\{\emptyset\}\}$, equations $x=\{x, y, \emptyset\}$ and $y=\{x,\{\emptyset\}\}$.
A solution is $x \mapsto a, y \mapsto b$ as in:

Anti-Foundation Axiom: 'every flat system has a unique solution'. ZFA is ZFC with Foundation replaced by Anti-Foundation.
Fact (Forti, Honsell; Aczel)
ZFA is biinterpretable with (hence equiconsistent to) ZFC.

Summary of results

Starting point:
Theorem (Adam-Day, Cameron)
If $M \vDash$ ZFA is countable, then M_{S} is the Fraïssé limit of finite loopy graphs. $M_{S D}$ and M_{D} are not ω-categorical: every finite graph embeds as a union of connected components in M_{D}.

Summary of results

Starting point:
Theorem (Adam-Day, Cameron)
If $M \vDash$ ZFA is countable, then M_{S} is the Fraïssé limit of finite loopy graphs. $M_{S D}$ and M_{D} are not ω-categorical: every finite graph embeds as a union of connected components in M_{D}.
Questions that were asked:

1. Are there infinitely many countable models of $\operatorname{Th}\left(M_{S D}\right)$? Of $\operatorname{Th}\left(M_{D}\right)$?
2. Are there infinitely many countable $M_{S D}$? M_{D} ?
3. Infinite connected components of M_{D} ?
4. ZFA with Infinity replaced by its negation?
5. $M_{S D} \equiv N$, both countable. Is N an SD-graph? Same for M_{D}.

Summary of results

Starting point:
Theorem (Adam-Day, Cameron)
If $M \vDash$ ZFA is countable, then M_{S} is the Fraïssé limit of finite loopy graphs. $M_{S D}$ and M_{D} are not ω-categorical: every finite graph embeds as a union of connected components in M_{D}.
Questions that we study:

1. Are there infinitely many countable models of $\operatorname{Th}\left(M_{S D}\right)$? Of $\operatorname{Th}\left(M_{D}\right)$?
2. Are there infinitely many countable $M_{S D}$? M_{D} ?
3. Infinite connected components of M_{D} ?
4. $M_{S D} \equiv N$, both countable. Is N an SD-graph? Same for M_{D}.
5. Is $\operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$ complete?

Summary of results

Starting point:
Theorem (Adam-Day, Cameron)
If $M \vDash$ ZFA is countable, then M_{S} is the Fraïssé limit of finite loopy graphs. $M_{S D}$ and M_{D} are not ω-categorical: every finite graph embeds as a union of connected components in M_{D}.
Questions that we study:

1. Are there infinitely many countable models of $\operatorname{Th}\left(M_{S D}\right)$? Of $\operatorname{Th}\left(M_{D}\right)$? Yes.
2. Are there infinitely many countable $M_{S D}$? M_{D} ? Yes.
3. Infinite connected components of M_{D} ? Basically arbitrary.
4. $M_{S D} \equiv N$, both countable. Is N an SD-graph? Same for M_{D}. No.
5. Is $\operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$ complete? No. Completions characterised.

Summary of results

Starting point:
Theorem (Adam-Day, Cameron)
If $M \vDash$ ZFA is countable, then M_{S} is the Fraïssé limit of finite loopy graphs. $M_{S D}$ and M_{D} are not ω-categorical: every finite graph embeds as a union of connected components in M_{D}.
Questions that we study:

1. Are there infinitely many countable models of $\operatorname{Th}\left(M_{S D}\right)$? Of $\operatorname{Th}\left(M_{D}\right)$? Yes.
2. Are there infinitely many countable $M_{S D}$? M_{D} ? Yes.
3. Infinite connected components of M_{D} ? Basically arbitrary.
4. $M_{S D} \equiv N$, both countable. Is N an SD-graph? Same for M_{D}. No.
5. Is $\operatorname{Th}\left(\left\{M_{D} \mid M \vDash Z F A\right\}\right)$ complete? No. Completions characterised.
[^0]
Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.

Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.
Proof.
Wlog $\operatorname{dom} G=\kappa$. Take a solution to $x_{i}=\left\{i, x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}(i \in \kappa)$.

Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.
Proof.
Wlog dom $G=\kappa$. Take a solution to $x_{i}=\left\{i, x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}(i \in \kappa)$.

Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.
Proof.
Wlog dom $G=\kappa$. Take a solution to $x_{i}=\left\{i, x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}(i \in \kappa)$.

Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.
Proof.
Wlog dom $G=\kappa$. Take a solution to $x_{i}=\left\{i, x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}(i \in \kappa)$.

Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.
Proof.
Wlog dom $G=\kappa$. Take a solution to $x_{i}=\left\{i, x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}(i \in \kappa)$.

Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.
Proof.
Wlog dom $G=\kappa$. Take a solution to $x_{i}=\left\{i, x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}(i \in \kappa)$.

Why not just $x_{i}=\left\{x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}$?
Solutions need not be injective: if $x \mapsto a$ solves $x=\{x\}$

Connected components and non-smallness

Theorem (Adam-Day, Howe, M.)

Any graph of $M \vDash$ ZFA is isomorphic to a union of connected components of M_{D}.
Proof.
Wlog $\operatorname{dom} G=\kappa$. Take a solution to $x_{i}=\left\{i, x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}(i \in \kappa)$.

Why not just $x_{i}=\left\{x_{j} \mid j \in \kappa, G \vDash R(i, j)\right\}$?
Solutions need not be injective: if $x \mapsto a$ solves $x=\{x\}$

Corollary (Adam-Day, Howe, M.)

$$
\left\{a_{5}, 3\right\}
$$

There are $2^{\aleph_{0}}$ countable M_{D}. Each of their theories has $2^{\aleph_{0}}$ countable models.
Proof.
For every $A \subseteq \omega \backslash\{0\}$, consider ' I have a neighbour of degree n iff $n \in A$ '.

The root of all evil

It turns out that M_{D} is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$-sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to $D(x, y)$ and call the result $\chi(x)$. Define $\mu(\varphi):=\exists x(\neg D(x, x) \wedge \chi(x))$.

The root of all evil

It turns out that M_{D} is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$-sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to $D(x, y)$ and call the result $\chi(x)$. Define $\mu(\varphi):=\exists x(\neg D(x, x) \wedge \chi(x))$.
Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.

Example:

The root of all evil

It turns out that M_{D} is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$-sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to $D(x, y)$ and call the result $\chi(x)$. Define $\mu(\varphi):=\exists x(\neg D(x, x) \wedge \chi(x))$.
Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.

Example:

- $\vDash \mu$ ('the universe is a triangle')

Lemma (Adam-Day, Howe, M.)
$M_{D} \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$

The root of all evil

It turns out that M_{D} is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$-sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to $D(x, y)$ and call the result $\chi(x)$. Define $\mu(\varphi):=\exists x(\neg D(x, x) \wedge \chi(x))$.
Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.

Example:

- $\vDash \mu$ ('the universe is a triangle')

Lemma (Adam-Day, Howe, M.)
$M_{D} \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi) \Rightarrow$ A union of connected components of M_{D} satisfies φ.

The root of all evil

It turns out that M_{D} is horribly complicated. This is the main reason.

Definition

Let φ be a $\{D\}$-sentence implying D is symmetric. Relativise $\exists y$ and $\forall y$ to $D(x, y)$ and call the result $\chi(x)$. Define $\mu(\varphi):=\exists x(\neg D(x, x) \wedge \chi(x))$.
Intuitively, $\mu(\varphi)$ says 'there is a point whose neighbours form a model of φ '.

Example:

- $\vDash \mu$ ('the universe is a triangle')

Lemma (Adam-Day, Howe, M.)
$M_{D} \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi) \Rightarrow$ A union of connected components of M_{D} satisfies φ. Proof.
Add/remove a point to/from a graph and use the previous theorem.

The evil that graphs do

Corollary (Adam-Day, Howe, M.)
$\mathrm{Th}\left(M_{D}\right)$ interprets with parameters arbitrary finite fragments of ZFC. In particular it has $\mathrm{SOP}, \mathrm{TP}_{2}, \mathrm{IP}_{k}$ for all k, you name it.

Corollary (Adam-Day, Howe, M.)
$\operatorname{Th}\left(\left\{M_{D} \mid M \vDash\right.\right.$ ZFA $\left.\}\right)$ is not complete.

The evil that graphs do

Corollary (Adam-Day, Howe, M.)

$\operatorname{Th}\left(M_{D}\right)$ interprets with parameters arbitrary finite fragments of ZFC.
In particular it has $\mathrm{SOP}, \mathrm{TP}_{2}, \mathrm{IP}_{k}$ for all k, you name it.
Corollary (Adam-Day, Howe, M.)
$\operatorname{Th}\left(\left\{M_{D} \mid M \vDash\right.\right.$ ZFA $\left.\}\right)$ is not complete.

Proof.

1. Rosser: there is a Π_{1}^{0} arithmetical statement independent of ZFC/ZFA.

Rosser's Theorem=Refined version of Gödel Incompleteness.
2. Friedman-Harrington: every Π_{1}^{0} statement is equivalent to some $\operatorname{Con}(\theta)$.
3. Translate θ into a formula φ of graphs (graphs interpret anything!).
4. Consider $\mu(\varphi)$.

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix relational structures M, N and length n of the game.

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix relational structures M, N and length n of the game.
- Turn i : Spoiler plays $a_{i} \in M$ or $b_{i} \in N$, Duplicator plays in the other structure.

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix relational structures M, N and length n of the game.
- Turn i : Spoiler plays $a_{i} \in M$ or $b_{i} \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\left\langle a_{1}, \ldots, a_{n}\right\rangle \cong\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix relational structures M, N and length n of the game.
- Turn i : Spoiler plays $a_{i} \in M$ or $b_{i} \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\left\langle a_{1}, \ldots, a_{n}\right\rangle \cong\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Example

but not for the game of length 3 .

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix relational structures M, N and length n of the game.
- Turn i : Spoiler plays $a_{i} \in M$ or $b_{i} \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\left\langle a_{1}, \ldots, a_{n}\right\rangle \cong\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Example

but not for the game of length 3 . Same for $(\mathbb{Z},<)$ and $(\mathbb{Q},<)$.

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix relational structures M, N and length n of the game.
- Turn i : Spoiler plays $a_{i} \in M$ or $b_{i} \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\left\langle a_{1}, \ldots, a_{n}\right\rangle \cong\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Example

but not for the game of length 3 . Same for $(\mathbb{Z},<)$ and $(\mathbb{Q},<)$.
Theorem (Ehrenfeucht)
Duplicator has a winning strategy iff $M \equiv{ }_{n} N$ (formulas of quantifier depth n).

Reminder: Ehrenfeucht-Fraïssé games

- Two players: Spoiler and Duplicator.
- Fix relational structures M, N and length n of the game.
- Turn i : Spoiler plays $a_{i} \in M$ or $b_{i} \in N$, Duplicator plays in the other structure.
- Duplicator wins iff $\left\langle a_{1}, \ldots, a_{n}\right\rangle \cong\left\langle b_{1}, \ldots, b_{n}\right\rangle$.

Example

but not for the game of length 3 . Same for $(\mathbb{Z},<)$ and $(\mathbb{Q},<)$.
Theorem (Ehrenfeucht)
Duplicator has a winning strategy iff $M \equiv_{n} N$ (formulas of quantifier depth n).

Fact

\equiv_{n}-classes are characterised by a single formula. (The language is finite relational!)

Completions

Theorem (Adam-Day, Howe, M.)
$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

Completions

Theorem (Adam-Day, Howe, M.)
$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash\right.\right.$ ZFA $\left.\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.
Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.

Completions

Theorem (Adam-Day, Howe, M.)
$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.
Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.

Completions

Theorem (Adam-Day, Howe, M.)
$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.
Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
- Take the union of the connected components of a_{1}, \ldots, a_{i-1} in M.

Completions

Theorem (Adam-Day, Howe, M.)
$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.
Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
- Take the union of the connected components of a_{1}, \ldots, a_{i-1} in M.
- Inductively, they are \equiv_{n-i+2}-equivalent to those of b_{1}, \ldots, b_{i-1} in N.

Completions

Theorem (Adam-Day, Howe, M.)

$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
- Take the union of the connected components of a_{1}, \ldots, a_{i-1} in M.
- Inductively, they are \equiv_{n-i+2}-equivalent to those of b_{1}, \ldots, b_{i-1} in N.
- If the Spoiler plays in an already considered connected component, fine.

Completions

Theorem (Adam-Day, Howe, M.)

$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
- Take the union of the connected components of a_{1}, \ldots, a_{i-1} in M.
- Inductively, they are \equiv_{n-i+2}-equivalent to those of b_{1}, \ldots, b_{i-1} in N.
- If the Spoiler plays in an already considered connected component, fine.
- Otherwise, recall the lemma: $M_{D} \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$.

Completions

Theorem (Adam-Day, Howe, M.)

$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
- Take the union of the connected components of a_{1}, \ldots, a_{i-1} in M.
- Inductively, they are \equiv_{n-i+2}-equivalent to those of b_{1}, \ldots, b_{i-1} in N.
- If the Spoiler plays in an already considered connected component, fine.
- Otherwise, recall the lemma: $M_{D} \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$.
- Use the lemma to copy the \equiv_{n-i+1}-class of the component of the new point. Since M_{D}, N_{D} are actual reducts, one is free to remove the witness of \exists from $\mu(\varphi)$.

Completions

Theorem (Adam-Day, Howe, M.)

$A, B \vDash \operatorname{Th}\left(\left\{M_{D} \mid M \vDash \mathrm{ZFA}\right\}\right)$. Then $A \equiv B$ iff they satisfy the same $\mu(\varphi)$'s.

Proof strategy.

- As the class is pseudoelementary, it is enough to work with M_{D}, N_{D}.
- Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.
- Take the union of the connected components of a_{1}, \ldots, a_{i-1} in M.
- Inductively, they are \equiv_{n-i+2}-equivalent to those of b_{1}, \ldots, b_{i-1} in N.
- If the Spoiler plays in an already considered connected component, fine.
- Otherwise, recall the lemma: $M_{D} \vDash \mu(\varphi) \Leftrightarrow M \vDash \operatorname{Con}(\varphi)$.
- Use the lemma to copy the \equiv_{n-i+1}-class of the component of the new point. Since M_{D}, N_{D} are actual reducts, one is free to remove the witness of \exists from $\mu(\varphi)$.
- Works if natural numbers are standard. Otherwise more care is needed. Essentially, replace 'connected component' with 'what the model thinks is a connected component'.

Countable nonelementarity

Question
$M_{S D} \equiv N$, both countable. Is N an SD-graph? Similar question for M_{D}.

Countable nonelementarity

Question
$M_{S D} \equiv N$, both countable. Is N an SD-graph? Similar question for M_{D}.
Theorem (Adam-Day, Howe, M.)
No. No.

Countable nonelementarity

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph? Similar question for M_{D}.
Theorem (Adam-Day, Howe, M.)
No. No.
Recall:

- Gaifman graph: join two points of a structure iff they are in relation.

Countable nonelementarity

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph? Similar question for M_{D}.
Theorem (Adam-Day, Howe, M.)
No. No.
Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.

Countable nonelementarity

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph? Similar question for M_{D}.
Theorem (Adam-Day, Howe, M.)
No. No.
Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.
- $\psi[n, r]:={ }^{‘} \exists \geq n$ pointed r-balls, far apart, satisfying the relativisation of $\psi(x)$ ’.

Countable nonelementarity

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph? Similar question for M_{D}.
Theorem (Adam-Day, Howe, M.)
No. No.
Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.
- $\psi[n, r]:={ }^{‘} \exists \geq n$ pointed r-balls, far apart, satisfying the relativisation of $\psi(x)$ ’.
- Gaifman's Theorem: $M \equiv N$ iff they satisfy the same $\psi[n, r]$'s.

Countable nonelementarity

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph? Similar question for M_{D}.
Theorem (Adam-Day, Howe, M.)
No. No.
Recall:

- Gaifman graph: join two points of a structure iff they are in relation.
- Gaifman balls: balls in this graph.
- $\psi[n, r]:={ }^{`} \exists \geq n$ pointed r-balls, far apart, satisfying the relativisation of $\psi(x)$ ’.
- Gaifman's Theorem: $M \equiv N$ iff they satisfy the same $\psi[n, r]^{\prime}$'s.

Proof for M_{D}.
M_{D} has a connected component of infinite diameter. Build N as disconnected pieces satisfying the correct $\psi[1, r]^{\prime}$ s. Each has finite diameter.

Countable nonelementarity: the difficult case

Question
$M_{S D} \equiv N$, both countable. Is N an SD-graph?
The same trick won't work: $M_{S D}$ is one ball of diameter 2 .
You cannot add a generic Random Graph to the previous N : no elimination of \exists^{∞}, Chatzidakis-Pillay does not apply.

Countable nonelementarity: the difficult case

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph?
The same trick won't work: $M_{S D}$ is one ball of diameter 2 .
You cannot add a generic Random Graph to the previous N : no elimination of \exists^{∞}, Chatzidakis-Pillay does not apply.
Theorem (Hanf)
$M \equiv_{n} N$ by counting 3^{n}-balls provided their size is uniformly bounded.

Countable nonelementarity: the difficult case

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph?
The same trick won't work: $M_{S D}$ is one ball of diameter 2 .
You cannot add a generic Random Graph to the previous N : no elimination of \exists^{∞}, Chatzidakis-Pillay does not apply.

Theorem (Hanf)

$M \equiv{ }_{n} N$ by counting 3^{n}-balls provided their size is uniformly bounded.

$$
\text { proof of Hanf's Theorem: back-and-forth system } I_{n}, \ldots, I_{0}
$$

$$
I_{j}:=\left\{a_{1}, \ldots, a_{k} \mapsto b_{1}, \ldots, b_{k} \mid k \leq n-j, B\left(\left(3^{j}-1\right) / 2, \bar{a}\right) \cong B\left(\left(3^{j}-1\right) / 2, \bar{b}\right)\right\}
$$

Countable nonelementarity: the difficult case

Question

$M_{S D} \equiv N$, both countable. Is N an SD-graph?
The same trick won't work: $M_{S D}$ is one ball of diameter 2 .
You cannot add a generic Random Graph to the previous N : no elimination of \exists^{∞}, Chatzidakis-Pillay does not apply.

Theorem (Hanf)

$M \equiv_{n} N$ by counting 3^{n}-balls provided their size is uniformly bounded.

Answer.

Let N be $M_{S D}$ without the connected components of infinite diameter. Add a twist to the proof of Hanf's Theorem: back-and-forth system I_{n}, \ldots, I_{0}

$$
I_{j}:=\left\{a_{1}, \ldots, a_{k} \mapsto b_{1}, \ldots, b_{k} \mid k \leq n-j, B\left(\left(3^{j}-1\right) / 2, \bar{a}\right) \cong B\left(\left(3^{j}-1\right) / 2, \bar{b}\right)\right\}
$$

where the isomorphisms are in $L_{S D}$ but the balls are with respect to L_{D}. To show back-and-forth, write suitable flat systems in M.

Concluding remarks

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Concluding remarks

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

1. Axiomatise the theory of the M_{D} 's.

Concluding remarks

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

1. Axiomatise the theory of the M_{D} 's.
2. Axiomatise the theory of the $M_{S D}$'s.

Concluding remarks

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

1. Axiomatise the theory of the M_{D} 's.
2. Axiomatise the theory of the $M_{S D}$'s.
3. Characterise the completions of the latter.

Concluding remarks

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

1. Axiomatise the theory of the M_{D} 's.
2. Axiomatise the theory of the $M_{S D}$'s.
3. Characterise the completions of the latter.
4. ZFA with Infinity replaced by its negation? Problem: transitive closure.

Concluding remarks

In conclusion: D-graphs are quite wild. SD-graphs are worse. Ideas from finite model theory help to understand them.

Open Problems

1. Axiomatise the theory of the M_{D} 's.
2. Axiomatise the theory of the $M_{S D}$'s.
3. Characterise the completions of the latter.
4. ZFA with Infinity replaced by its negation? Problem: transitive closure.

Thanks for your attention!

Want to see what was swept under the rug?

Rieger-Bernays permutation models

Proposition (Adam-Day, Howe, M.)

Let G be a graph in $M \vDash$ ZFC. There is $N \vDash$ ZFC $\backslash\{$ Foundation $\}$ such that N_{D} is isomorphic to G plus infinitely many isolated points. In particular M_{S} can have an arbitrary number of points with loops.

Proof.

Wlog dom $G=\kappa$. Define $N \vDash x \in y \Longleftrightarrow M \vDash x \in \pi(y)$, where π is the permutation swapping $a_{i}:=\kappa \backslash\{i\}$ with $b_{j}:=\left\{a_{i} \mid G \vDash R(i, j)\right\}$. Then

$$
N \vDash a_{i} \in a_{j} \Longleftrightarrow M \vDash a_{i} \in \pi\left(a_{j}\right)=b_{j} \Longleftrightarrow G \vDash R(i, j)
$$

and by choice of a_{i} and b_{i} there are no other D-edges.
It is an old result that $N \vDash$ ZFC \backslash \{Foundation .

[^0]: Fine print: assume $\operatorname{Con}(Z F C)$. Otherwise there might be nothing to study.

