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Set-up Untameness Games

In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

Main point
In models of Anti-Foundation, the relation x ∈ y ∈ x encodes plenty of information.

Plan of the talk:
• Set-up: double-membership graphs; Anti-Foundation.
• Untameness: why these graphs are (very) wild.
• Games: how ideas from finite model theory help.
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Set-up Untameness Games

Membership graphs
A model M of set theory is a digraph.

Let MS be its symmetrisation.

∅ {∅}

{∅, {∅}}

∅ {∅}

{∅, {∅}}

Fact (Folklore (Gaifman?))
If M ⊨ ZFC is countable, then MS is the Random Graph.

Proof.
Show that MS satisfies the Random Graph axioms.
How much set theory does M need? Emptyset, Pairing, Union, and Foundation.
Foundation: no infinite descending ∈-sequences. In particular, no x ∈ x, no x ∈ y ∈ x.

What happens without Foundation?
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Double-membership
Definition
Let M be an {∈}-structure. S(x, y) := x ∈ y ∨ y ∈ x D(x, y) := x ∈ y ∧ y ∈ x.
Double-membership graph MD: reduct of M to {D}. Similarly for MSD.

a b

∅ {∅}
M

a b

∅ {∅}
MSD

a b

∅ {∅}
MS

a b

∅ {∅}
MD

From now on graph=loopy graph: points are allowed to have an edge to themselves.

Proposition (Adam-Day, Howe, M.)
Let G be a graph in M ⊨ ZFC. There is N ⊨ ZFC \ {Foundation} such that ND is
isomorphic to G plus infinitely many isolated points. In particular MS can have an
arbitrary number of points with loops. Proof
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Anti-Foundation Axiom
So we need structure. AFA: allow non-well-founded sets, but in a way controlled by
the well-founded ones. Allow ‘Mostowski collapse for all binary relations’.

Definition
Let X be set of ‘indeterminates’, A a set of sets. A flat system of equations is a set
of equations of the form x = Sx, where Sx ⊆ X ∪A. Solution: what you expect.

Example
X = {x, y}, A = {∅, {∅}}, equations x = {x, y, ∅} and y = {x, {∅}}. a b

∅ {∅}
A solution is x 7→ a, y 7→ b as in:

Anti-Foundation Axiom: ‘every flat system has a unique solution’.
ZFA is ZFC with Foundation replaced by Anti-Foundation.

Fact (Forti, Honsell; Aczel)
ZFA is biinterpretable with (hence equiconsistent to) ZFC.
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Summary of results
Starting point:

Theorem (Adam-Day, Cameron)
If M ⊨ ZFA is countable, then MS is the Fraïssé limit of finite loopy graphs.
MSD and MD are not ω-categorical: every finite graph embeds as a union of
connected components in MD.

Questions that
1. Are there infinitely many countable models of Th(MSD)? Of Th(MD)?

Yes.

2. Are there infinitely many countable MSD? MD?

Yes.

3. Infinite connected components of MD?

Basically arbitrary.
4. ZFA with Infinity replaced by its negation?

5. MSD ≡ N , both countable. Is N an SD-graph? Same for MD.

No.

6. Is Th({MD |M ⊨ ZFA}) complete?

No. Completions characterised.
Fine print: assume Con(ZFC). Otherwise there might be nothing to study.
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Connected components and non-smallness
Theorem (Adam-Day, Howe, M.)
Any graph of M ⊨ ZFA is isomorphic to a union of connected components of MD.

Proof.
Wlog domG = κ. Take a solution to xi = {i, xj | j ∈ κ,G ⊨ R(i, j)}(i ∈ κ).

{ai,5|i<5}

{a5,0}{a5,1}

{a5,2}

{a5,3}

{a5,4}

01

2
3

4

5Why not just xi = {xj | j ∈ κ,G ⊨ R(i, j)}?
Solutions need not be injective: if x 7→ a solves x = {x}
then x = {y}, y = {x} is solved by x 7→ a, y 7→ a,
and solutions are unique.

Corollary (Adam-Day, Howe, M.)
There are 2ℵ0 countable MD. Each of their theories has 2ℵ0 countable models.

Proof.
For every A ⊆ ω \ {0}, consider ‘I have a neighbour of degree n iff n ∈ A’.
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The root of all evil
It turns out that MD is horribly complicated. This is the main reason.

Definition
Let φ be a {D}-sentence implying D is symmetric. Relativise ∃y and ∀y to D(x, y)
and call the result χ(x). Define µ(φ) := ∃x (¬D(x, x) ∧ χ(x)).

Intuitively, µ(φ) says ‘there is a point whose neighbours form a model of φ’.

Example:

•

• •
•• •

•

••

•••

⊨ µ(‘the universe is a triangle’)

Lemma (Adam-Day, Howe, M.)
MD ⊨ µ(φ) ⇔M ⊨ Con(φ) ⇒ A union of connected components of MD satisfies φ.

Proof.
Add/remove a point to/from a graph and use the previous theorem.
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Let φ be a {D}-sentence implying D is symmetric. Relativise ∃y and ∀y to D(x, y)
and call the result χ(x). Define µ(φ) := ∃x (¬D(x, x) ∧ χ(x)).
Intuitively, µ(φ) says ‘there is a point whose neighbours form a model of φ’.

Example:

•

• •
•• •

•

••

•••

⊨ µ(‘the universe is a triangle’)
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MD ⊨ µ(φ) ⇔M ⊨ Con(φ) ⇒ A union of connected components of MD satisfies φ.

Proof.
Add/remove a point to/from a graph and use the previous theorem.
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The evil that graphs do

Corollary (Adam-Day, Howe, M.)
Th(MD) interprets with parameters arbitrary finite fragments of ZFC.
In particular it has SOP, TP2, IPk for all k, you name it.

Corollary (Adam-Day, Howe, M.)
Th({MD |M ⊨ ZFA}) is not complete.

Proof.
1. Rosser: there is a Π0

1 arithmetical statement independent of ZFC/ZFA.
Rosser’s Theorem=Refined version of Gödel Incompleteness.

2. Friedman–Harrington: every Π0
1 statement is equivalent to some Con(θ).

3. Translate θ into a formula φ of graphs (graphs interpret anything!).
4. Consider µ(φ).
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Set-up Untameness Games

Reminder: Ehrenfeucht-Fraïssé games
• Two players: Spoiler and Duplicator.

• Fix relational structures M,N and length n of the game.
• Turn i: Spoiler plays ai ∈M or bi ∈ N , Duplicator plays in the other structure.
• Duplicator wins iff ⟨a1, . . . , an⟩ ∼= ⟨b1, . . . , bn⟩.

Example
•

• •
•

•

• •
Duplicator has a winning strategy for the game of length 2;

but not for the game of length 3.

Same for (Z, <) and (Q, <).

Theorem (Ehrenfeucht)
Duplicator has a winning strategy iff M ≡n N (formulas of quantifier depth n).

Fact
≡n-classes are characterised by a single formula. (The language is finite relational!)
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Set-up Untameness Games

Completions

Theorem (Adam-Day, Howe, M.)
A,B ⊨ Th({MD |M ⊨ ZFA}). Then A ≡ B iff they satisfy the same µ(φ)’s.

Proof strategy.
• As the class is pseudoelementary, it is enough to work with MD, ND.
• Play the Ehrenfeucht-Fraïssé game of length n. Show the Duplicator wins.

• Take the union of the connected components of a1, . . . , ai−1 in M .
• Inductively, they are ≡n−i+2-equivalent to those of b1, . . . , bi−1 in N .
• If the Spoiler plays in an already considered connected component, fine.
• Otherwise, recall the lemma: MD ⊨ µ(φ) ⇔M ⊨ Con(φ).
• Use the lemma to copy the ≡n−i+1-class of the component of the new point.

Since MD , ND are actual reducts, one is free to remove the witness of ∃ from µ(φ).

• Works if natural numbers are standard. Otherwise more care is needed.
Essentially, replace ‘connected component’ with ‘what the model thinks is a connected component’.
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Set-up Untameness Games

Countable nonelementarity
Question
MSD ≡ N , both countable. Is N an SD-graph? Similar question for MD.

Theorem (Adam-Day, Howe, M.)
No. No.
Recall:

• Gaifman graph: join two points of a structure iff they are in relation.
• Gaifman balls: balls in this graph.
• ψ[n, r] := ‘∃≥n pointed r-balls, far apart, satisfying the relativisation of ψ(x)’.
• Gaifman’s Theorem: M ≡ N iff they satisfy the same ψ[n, r]’s.

Proof for MD.
MD has a connected component of infinite diameter. Build N as disconnected
pieces satisfying the correct ψ[1, r]’s. Each has finite diameter.
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Countable nonelementarity: the difficult case
Question
MSD ≡ N , both countable. Is N an SD-graph?
The same trick won’t work: MSD is one ball of diameter 2.
You cannot add a generic Random Graph to the previous N : no elimination of ∃∞, Chatzidakis–Pillay does not apply.

Theorem (Hanf)
M ≡n N by counting 3n-balls provided their size is uniformly bounded.

Answer.
Let N be MSD without the connected components of infinite diameter.
Add a twist to the proof of Hanf’s Theorem: back-and-forth system In, . . . , I0

Ij := {a1, . . . , ak 7→ b1, . . . , bk | k ≤ n− j, B((3j − 1)/2, ā) ∼= B((3j − 1)/2, b̄)}

where the isomorphisms are in LSD but the balls are with respect to LD.
To show back-and-forth, write suitable flat systems in M .
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where the isomorphisms are in LSD but the balls are with respect to LD.
To show back-and-forth, write suitable flat systems in M .



Set-up Untameness Games

Countable nonelementarity: the difficult case
Question
MSD ≡ N , both countable. Is N an SD-graph?
The same trick won’t work: MSD is one ball of diameter 2.
You cannot add a generic Random Graph to the previous N : no elimination of ∃∞, Chatzidakis–Pillay does not apply.

Theorem (Hanf)
M ≡n N by counting 3n-balls provided their size is uniformly bounded.

Answer.
Let N be MSD without the connected components of infinite diameter.
Add a twist to the

proof of Hanf’s Theorem: back-and-forth system In, . . . , I0

Ij := {a1, . . . , ak 7→ b1, . . . , bk | k ≤ n− j, B((3j − 1)/2, ā) ∼= B((3j − 1)/2, b̄)}
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Concluding remarks
In conclusion: D-graphs are quite wild. SD-graphs are worse.
Ideas from finite model theory help to understand them.

Open Problems

1. Axiomatise the theory of the MD’s.
2. Axiomatise the theory of the MSD’s.
3. Characterise the completions of the latter.
4. ZFA with Infinity replaced by its negation? Problem: transitive closure.

Thanks for your attention!

Want to see what was swept under the rug?
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Rieger-Bernays permutation models

Proposition (Adam-Day, Howe, M.)
Let G be a graph in M ⊨ ZFC. There is N ⊨ ZFC \ {Foundation} such that ND is
isomorphic to G plus infinitely many isolated points. In particular MS can have an
arbitrary number of points with loops.

Proof.
Wlog domG = κ. Define N ⊨ x ∈ y ⇐⇒ M ⊨ x ∈ π(y), where π is the
permutation swapping ai := κ \ {i} with bj := {ai | G ⊨ R(i, j)}. Then

N ⊨ ai ∈ aj ⇐⇒ M ⊨ ai ∈ π(aj) = bj ⇐⇒ G ⊨ R(i, j)

and by choice of ai and bi there are no other D-edges.
It is an old result that N ⊨ ZFC \ {Foundation}.
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