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In this talk

A model-theoretic look at certain graphs arising from a non-well-founded set theory.

Main point

In models of Anti-Foundation, the relation x € y € x encodes plenty of information.

Plan of the talk:
® Set-up: double-membership graphs; Anti-Foundation.
¢ Untameness: why these graphs are (very) wild.

® Games: how ideas from finite model theory help.
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Membership graphs
A model M of set theory is a digraph. Let Mg be its symmetrisation.

{0, {01} {0,{0}}
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Fact (Folklore (Gaifman?))
If M E ZFC is countable, then Mg is the Random Graph.

Proof.
Show that Mg satisfies the Random Graph axioms.
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Membership graphs
A model M of set theory is a digraph. Let Mg be its symmetrisation.

{0, {01} {0,{0}}

/NN

p—— {0} 0 —— {0}

Fact (Folklore (Gaifman?))
If M E ZFC is countable, then Mg is the Random Graph.

Proof.
Show that Mg satisfies the Random Graph axioms. 0J

How much set theory does M need? Emptyset, Pairing, Union, and Foundation.
Foundation: no infinite descending €-sequences. In particular, no z € z, noz € y € z.

What happens without Foundation?
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Double-membership

Definition
Let M be an {€}-structure. S(z,y) =x€cyVyecxz D(z,y) =z e€yAye€umx.
Double-membership graph Mp: reduct of M to {D}. Similarly for Mgp.

= 9T 9 e
0 —— {0} 0 —— {0} p— {0} 0 {0}
M Msp Mg Mp

From now on graph=loopy graph: points are allowed to have an edge to themselves.

Proposition (Adam-Day, Howe, M.)

Let G be a graph in M E ZFC. There is N F ZFC\ {Foundation} such that Np is
isomorphic to G plus infinitely many isolated points. In particular Mg can have an
arbitrary number of points with loops.
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the well-founded ones. Allow ‘Mostowski collapse for all binary relations’.
Definition
Let X be set of ‘indeterminates’, A a set of sets. A flat system of equations is a set
of equations of the form x = S,, where S, C X U A. Solution: what you expect.
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X={z,y}, A= {®7 {(D}}a equations z = {x,y, ®} and y = {z, {(D}}
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Anti-Foundation Axiom
So we need structure. AFA: allow non-well-founded sets, but in a way controlled by
the well-founded ones. Allow ‘Mostowski collapse for all binary relations’.
Definition
Let X be set of ‘indeterminates’, A a set of sets. A flat system of equations is a set
of equations of the form x = S,, where S, C X U A. Solution: what you expect.

Example
X = {x,y}, A= {®7 {(D}}a equations x = {l',y,Q} and y = {l’, {(D}} Ca TS b
~_—
A solution is z + a, y — b as in: + +
0 — {0}
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Anti-Foundation Axiom
So we need structure. AFA: allow non-well-founded sets, but in a way controlled by
the well-founded ones. Allow ‘Mostowski collapse for all binary relations’.
Definition
Let X be set of ‘indeterminates’, A a set of sets. A flat system of equations is a set
of equations of the form x = S,, where S, C X U A. Solution: what you expect.

Example
X = {x,y}, A= {®7 {(D}}a equations x = {l',y,Q} and y = {l‘, {(D}} Ca TS b
~
A solution is x + a, y + b as in: + +
0 —— {0}

Anti-Foundation Axiom: ‘every flat system has a unique solution’.
ZFA is ZFC with Foundation replaced by Anti-Foundation.
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Untameness

Anti-Foundation Axiom
So we need structure. AFA: allow non-well-founded sets, but in a way controlled by
the well-founded ones. Allow ‘Mostowski collapse for all binary relations’.
Definition
Let X be set of ‘indeterminates’, A a set of sets. A flat system of equations is a set
of equations of the form x = S,, where S, C X U A. Solution: what you expect.

Example
X = {x,y}, A= {®7 {(D}}a equations x = {l',y,Q} and y = {l‘, {(D}} Ca TS b
~
A solution is x + a, y + b as in: + +
0 —— {0}

Anti-Foundation Axiom: ‘every flat system has a unique solution’.
ZFA is ZFC with Foundation replaced by Anti-Foundation.

Fact (Forti, Honsell; Aczel)
ZFA is biinterpretable with (hence equiconsistent to) ZFC.
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Theorem (Adam-Day, Cameron)

If M E ZFA is countable, then Mg is the Fraissé limit of finite loopy graphs.
Mgp and Mp are not w-categorical: every finite graph embeds as a union of
connected components in Mp.
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Theorem (Adam-Day, Cameron)

If M E ZFA is countable, then Mg is the Fraissé limit of finite loopy graphs.
Mgp and Mp are not w-categorical: every finite graph embeds as a union of
connected components in Mp.

Questions that were asked:
1. Are there infinitely many countable models of Th(Mgp)? Of Th(Mp)?
Are there infinitely many countable Mgp? Mp?
Infinite connected components of Mp?
ZFA with Infinity replaced by its negation?
Mgp = N, both countable. Is N an SD-graph? Same for Mp.
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Summary of results
Starting point:

Theorem (Adam-Day, Cameron)

If M E ZFA is countable, then Mg is the Fraissé limit of finite loopy graphs.
Mgp and Mp are not w-categorical: every finite graph embeds as a union of
connected components in Mp.

Questions that we study:
1. Are there infinitely many countable models of Th(Mgp)? Of Th(Mp)? Yes.
2. Are there infinitely many countable Mgp? Mp? Yes.

3. Infinite connected components of Mp? Basically arbitrary.

5. Mgp = N, both countable. Is N an SD-graph? Same for Mp. No.
6. Is Th({Mp | M E ZFA}) complete? No. Completions characterised.

Fine print: assume Con(ZFC). Otherwise there might be nothing to study.
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Theorem (Adam-Day, Howe, M.)
Any graph of M F ZFA is isomorphic to a union of connected components of Mp.

Proof.
WLOG dom G = k. Take a solution to z; = {i,z; | j € k,GF R(i,))}(i € k). O
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Connected components and non-smallness
Theorem (Adam-Day, Howe, M.)

Any graph of M E ZFA is isomorphic to a union of connected components of Mp.

Proof.
WLOG dom G = k. Take a solution to z; = {i,z; | j € k,GF R(i,))}(i € k). O

11— {0‘571} {0‘570} —0

NV

' {a;i,bi<5} ~
{a5a2} — S {a574}
e
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2 4

33— {(1573}
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Connected components and non-smallness
Theorem (Adam-Day, Howe, M.)

Any graph of M E ZFA is isomorphic to a union of connected components of Mp.

Proof.
WLOG dom G = k. Take a solution to z; = {i,z; | j € k,GF R(i,))}(i € k). O

1 — {as,1} {as,0} 0
\\// °
Ve {a;i,bi<5} ~
{a5a2} — S— {a574}
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Connected components and non-smallness
Theorem (Adam-Day, Howe, M.)

Any graph of M E ZFA is isomorphic to a union of connected components of Mp.

Proof.
WLOG dom G = k. Take a solution to z; = {i,z; | j € k,GF R(i,))}(i € k). O
1 {as,1} {as,0} 0
N
{a:,5i<5} ~

{a5a2} — ) {a574}
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3 {as,3}
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Connected components and non-smallness
Theorem (Adam-Day, Howe, M.)
Any graph of M E ZFA is isomorphic to a union of connected components of Mp.
Proof.
WLOG dom G = k. Take a solution to z; = {i,z; | j € k,GF R(i,))}(i € k). O
{as,1} {a5,0}

N/

{a:,5i<5} ~
{a5a2} — ) {a574}

{a573}
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Connected components and non-smallness
Theorem (Adam-Day, Howe, M.)

Any graph of M E ZFA is isomorphic to a union of connected components of Mp.

Proof.
WLOG dom G = k. Take a solution to z; = {i,z; | j € k,GF R(i,))}(i € k). O

{CL5,1} {0‘570}

Why not just z; = {x; | j € k,G F R(4,7)}?

Solutions need not be injective: if x — a solves x = {z} {ai5li<5} ~
then z = {y}, y = {z} is solved by x — a,y — a, {as,2} — {as,4}
and solutions are unique.

{a573}



Set-up Untameness Games

€00 00000

Connected components and non-smallness
Theorem (Adam-Day, Howe, M.)
Any graph of M E ZFA is isomorphic to a union of connected components of Mp.

Proof.
WLOG dom G = k. Take a solution to z; = {i,z; | j € k,GF R(i,))}(i € k). O

{CL5,1} {0‘570}

Why not just z; = {x; | j € k,G F R(4,7)}?

Solutions need not be injective: if x — a solves x = {z} {ai5li<5} ~
then z = {y}, y = {z} is solved by x — a,y — a, {a5,2} — {as,4}
and solutions are unique.

Corollary (Adam-Day, Howe, M.) {as,3}

There are 280 countable Mp. Each of their theories has 280 countable models.
Proof.

For every A C w \ {0}, consider ‘I have a neighbour of degree n iff n € A’. O
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and call the result x(x). Define u(p) = Iz (-D(x,z) A x(x)).
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It turns out that Mp is horribly complicated. This is the main reason.
Definition

Let ¢ be a {D}-sentence implying D is symmetric. Relativise Jy and Vy to D(zx,y)
and call the result x(x). Define u(p) = Iz (-D(x,z) A x(x)).
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Mp F u(p) < M E Con(ep)
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Let ¢ be a {D}-sentence implying D is symmetric. Relativise Jy and Vy to D(zx,y)
and call the result x(x). Define u(p) = Iz (-D(x,z) A x(x)).
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The root of all evil
It turns out that Mp is horribly complicated. This is the main reason.
Definition

Let ¢ be a {D}-sentence implying D is symmetric. Relativise Jy and Vy to D(zx,y)
and call the result x(x). Define u(p) = Iz (-D(x,z) A x(x)).

Intuitively, u(p) says ‘there is a point whose neighbours form a model of ¢’.
[ J— ”7

. —_— .
Example: / \ F u(‘the universe is a triangle’)
© \ <N

Lemma (Adam-Day, Howe, M.)
Mp E p(p) < M E Con(yp) = A union of connected components of Mp satisfies .

Proof.

Add/remove a point to/from a graph and use the previous theorem. O
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The evil that graphs do

Corollary (Adam-Day, Howe, M.)

Th(Mp) interprets with parameters arbitrary finite fragments of ZFC.
In particular it has SOP, TPy, IP for all k£, you name it.

Corollary (Adam-Day, Howe, M.)
Th({Mp | M E ZFA}) is not complete.
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The evil that graphs do

Corollary (Adam-Day, Howe, M.)

Th(Mp) interprets with parameters arbitrary finite fragments of ZFC.
In particular it has SOP, TPy, IP for all k£, you name it.

Corollary (Adam-Day, Howe, M.)
Th({Mp | M E ZFA}) is not complete.

Proof.
1. Rosser: there is a IIY arithmetical statement independent of ZFC/ZFA.

Rosser’s Theorem=Refined version of G6del Incompleteness.

2. Friedman-Harrington: every I} statement is equivalent to some Con(6).
3. Translate 0 into a formula ¢ of graphs (graphs interpret anything!).
4. Consider pu(y).
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® Duplicator wins iff (a1,...,a,) = (b1,...,by).
Example

[ ]
/ o\ Duplicator has a winning strategy for the game of length 2;
e — o e — o

but not for the game of length 3. Same for (Z, <) and (Q, <).
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but not for the game of length 3. Same for (Z, <) and (Q, <).

Theorem (Ehrenfeucht)
Duplicator has a winning strategy iff M =,, N (formulas of quantifier depth n).
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Reminder: Ehrenfeucht-Fraissé games

Two players: Spoiler and Duplicator.

Fix relational structures M, N and length n of the game.

Turn i: Spoiler plays a; € M or b; € N, Duplicator plays in the other structure.

¢ Duplicator wins iff (a1,...,an) = (b1,...,by).
Example
[ ] [ ]
/ o\ Duplicator has a winning strategy for the game of length 2;
e — o e — o

but not for the game of length 3. Same for (Z, <) and (Q, <).

Theorem (Ehrenfeucht)
Duplicator has a winning strategy iff M =,, N (formulas of quantifier depth n).

Fact
=,-classes are characterised by a single formula. (The language is finite relational!)
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Theorem (Adam-Day, Howe, M.)
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e Play the Ehrenfeucht-Fraissé game of length n. Show the Duplicator wins.

® Take the union of the connected components of a,...,a;_1 in M.
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Completions

Theorem (Adam-Day, Howe, M.)
A,BE Th({Mp | M E ZFA}). Then A = B iff they satisfy the same p(p)’s.

Proof strategy.

® As the class is pseudoelementary, it is enough to work with Mp, Np.
e Play the Ehrenfeucht-Fraissé game of length n. Show the Duplicator wins.

® Take the union of the connected components of a,...,a;_1 in M.
® Inductively, they are =,,_;;9-equivalent to those of b1,...,b;—1 in N.



Set-up Untameness Games
000 00000

Completions

Theorem (Adam-Day, Howe, M.)
A,BE Th({Mp | M E ZFA}). Then A = B iff they satisfy the same p(p)’s.

Proof strategy.

® As the class is pseudoelementary, it is enough to work with Mp, Np.
e Play the Ehrenfeucht-Fraissé game of length n. Show the Duplicator wins.

® Take the union of the connected components of a,...,a;_1 in M.
® Inductively, they are =,,_;;9-equivalent to those of b1,...,b;—1 in N.
® If the Spoiler plays in an already considered connected component, fine.
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Theorem (Adam-Day, Howe, M.)
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Proof strategy.
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Theorem (Adam-Day, Howe, M.)
A,BE Th({Mp | M E ZFA}). Then A = B iff they satisfy the same p(p)’s.

Proof strategy.

® As the class is pseudoelementary, it is enough to work with Mp, Np.

e Play the Ehrenfeucht-Fraissé game of length n. Show the Duplicator wins.

Take the union of the connected components of a1, ...,a;_1 in M.
Inductively, they are =, _;s-equivalent to those of by,...,b;—1 in N.

If the Spoiler plays in an already considered connected component, fine.
Otherwise, recall the lemma: Mp F u(p) < M F Con(yp).

Use the lemma to copy the =,,_;;1-class of the component of the new point.

Since M, Np are actual reducts, one is free to remove the witness of 3 from p(p).
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Completions

Theorem (Adam-Day, Howe, M.)
A,BE Th({Mp | M E ZFA}). Then A = B iff they satisfy the same p(p)’s.

Proof strategy.

® As the class is pseudoelementary, it is enough to work with Mp, Np.

e Play the Ehrenfeucht-Fraissé game of length n. Show the Duplicator wins.
® Take the union of the connected components of a,...,a;_1 in M.

Inductively, they are =, _;s-equivalent to those of by,...,b;—1 in N.

If the Spoiler plays in an already considered connected component, fine.

Otherwise, recall the lemma: Mp F u(p) < M F Con(yp).

Use the lemma to copy the =,,_;;1-class of the component of the new point.

Since M, Np are actual reducts, one is free to remove the witness of 3 from p(p).

e Works if natural numbers are standard. Otherwise more care is needed.

Essentially, replace ‘connected component’ with ‘what the model thinks is a connected component’. ‘7‘
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Mgp = N, both countable. Is N an SD-graph? Similar question for Mp.
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Recall:
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Question
Mgp = N, both countable. Is N an SD-graph? Similar question for Mp.

Theorem (Adam-Day, Howe, M.)
No. No.
Recall:
® Gaifman graph: join two points of a structure iff they are in relation.
® Gaifman balls: balls in this graph.
® o[n,r] == ‘I=" pointed r-balls, far apart, satisfying the relativisation of v (x)’.

¢ Gaifman’s Theorem: M = N iff they satisfy the same ¥[n,r]’s.
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Countable nonelementarity

Question
Mgp = N, both countable. Is N an SD-graph? Similar question for Mp.

Theorem (Adam-Day, Howe, M.)
No. No.
Recall:
® Gaifman graph: join two points of a structure iff they are in relation.
® Gaifman balls: balls in this graph.
® o[n,r] == ‘I=" pointed r-balls, far apart, satisfying the relativisation of v (x)’.
¢ Gaifman’s Theorem: M = N iff they satisfy the same ¥[n,r]’s.
Proof for Mp.

Mp has a connected component of infinite diameter. Build IV as disconnected
pieces satisfying the correct 9[1,7]’s. Each has finite diameter. Ol
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Countable nonelementarity: the difficult case

Question
Mgp = N, both countable. Is N an SD-graph?
The same trick won’t work: Mgp is one ball of diameter 2.

You cannot add a generic Random Graph to the previous N: no elimination of 3°°, Chatzidakis—Pillay does not apply.
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Mgp = N, both countable. Is N an SD-graph?

The same trick won’t work: Mgp is one ball of diameter 2.

You cannot add a generic Random Graph to the previous N: no elimination of 3°°, Chatzidakis—Pillay does not apply.

Theorem (Hanf)
M =,, N by counting 3"-balls provided their size is uniformly bounded.

proof of Hanf’s Theorem: back-and-forth system I, ..., Iy

Ij={a1,...,ap = b1,....0p | k <n—3j,B((3 —1)/2,a) = B((3’ —1)/2,b)}
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Countable nonelementarity: the difficult case
Question

Mgp = N, both countable. Is N an SD-graph?

The same trick won’t work: Mgp is one ball of diameter 2.

You cannot add a generic Random Graph to the previous N: no elimination of 3°°, Chatzidakis—Pillay does not apply.

Theorem (Hanf)
M =,, N by counting 3"-balls provided their size is uniformly bounded.

Answer.
Let N be Mgp without the connected components of infinite diameter.
Add a twist to the proof of Hanf’s Theorem: back-and-forth system I, ..., Iy

Ij={a1,...,ap = b1,....0p | k <n—3j,B((3 —1)/2,a) = B((3’ —1)/2,b)}

where the isomorphisms are in Lgp but the balls are with respect to Lp.
To show back-and-forth, write suitable flat systems in M. O
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Concluding remarks

In conclusion: D-graphs are quite wild. SD-graphs are worse.
Ideas from finite model theory help to understand them.

Open Problems
1. Axiomatise the theory of the Mp’s.
2. Axiomatise the theory of the Mgp’s.
3. Characterise the completions of the latter.

4. ZFA Wlth Inﬁnlty I‘eplaced by ltS negation? Problem: transitive closure.

Thanks for your attention!

(=] i=l
[=]

Want to see what was swept under the rug?



Rieger-Bernays permutation models

Proposition (Adam-Day, Howe, M.)

Let G be a graph in M E ZFC. There is N F ZFC\ {Foundation} such that Np is
isomorphic to G plus infinitely many isolated points. In particular Mg can have an
arbitrary number of points with loops.

Proof.
WLOG dom G = k. Define NEFzx €y < M F z € n(y), where 7 is the
permutation swapping a; = &\ {i} with b; .= {a; | GF R(7,7)}. Then

Nl=ai€aj < M’:aiEﬂ'(a]’):bj <— GFZR(Z,‘])

and by choice of a; and b; there are no other D-edges.
It is an old result that N F ZFC\ {Foundation}. O
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