Modelli booleani e come fascificarli (da un lavoro con Matteo Viale)

Moreno Pierobon

Pisa - 20/10/2022

Moreno Pierobon

Modelli booleani e come fascificarli

Pisa - 20/10/2022

1/22

Boolean algebras

Given a topological space X, let CLOP(X) be the boolean algebra of the clopen subsets of X.

The Stone space St(B) of a boolean algebra B is

 $St(B) := \{G : G \text{ is an ultrafilter of } B\}.$

The base for the topology is:

$$\{N_b := \{G \in \mathsf{St}(\mathsf{B}) : b \in G\} : b \in \mathsf{B}\}.$$

B is isomorphic to CLOP(St(B)) via the Stone duality map

$$b \mapsto N_b = \{G \in \mathsf{St}(\mathsf{B}) : b \in G\}$$

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

If X is a topological space and $A \subset X$, Reg (A) is the interior of the closure of A in X. A is *regular open* if A = Reg(A). RO(X) is the family of regular open subsets of X (*CLOP*(X) \subseteq RO(X)).

RO(X) is a complete boolean algebra, with the operations given by

$$\neg U = X \setminus \overline{U}, \quad \bigvee_{i \in I} U_i := \operatorname{Reg}\left(\bigcup_{i \in I} U_i\right), \quad \bigwedge_{i \in I} U_i := \operatorname{Reg}\left(\bigcap_{i \in I} U_i\right).$$

A boolean algebra B is complete if and only if CLOP(St(B)) = RO(St(B)).

Every boolean algebra B can be densely embedded in the complete boolean algebra RO(St(B)) via the Stone duality map.

Boolean valued models

Definition

Let B be a *boolean algebra* and \mathcal{L} be a first order *relational* language. A B-*valued model* for \mathcal{L} is a tuple $\mathcal{M} = \langle M, =^{\mathcal{M}}, R_j^{\mathcal{M}} : i \in I, c_j^{\mathcal{M}} : j \in J \rangle$ with

$$=^{\mathcal{M}} \mathcal{M}^{2} \to \mathsf{B}$$
$$(\tau, \sigma) \mapsto \llbracket \tau = \sigma \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \tau = \sigma \rrbracket,$$

$$R^{\mathcal{M}}: M^{n} \to \mathsf{B}$$

$$(\tau_{1}, \ldots, \tau_{n}) \mapsto \llbracket R(\tau_{1}, \ldots, \tau_{n}) \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket R(\tau_{1}, \ldots, \tau_{n}) \rrbracket$$

for $R \in \mathcal{L}$ an *n*-ary relation symbol.

Moreno Pierobon

Modelli booleani e come fascificarli

The constraints on $R^{\mathcal{M}}$ and $=^{\mathcal{M}}$ are the following:

• for $R \in \mathcal{L}$ with arity *n*, and $(\tau_1, \ldots, \tau_n), (\sigma_1, \ldots, \sigma_n) \in M^n$,

$$\llbracket R(\tau_1,\ldots,\tau_n) \rrbracket \land \bigwedge_{h \in \{1,\ldots,n\}} \llbracket \tau_h = \sigma_h \rrbracket \le \llbracket R(\sigma_1,\ldots,\sigma_n) \rrbracket.$$

Definition

Let $\mathcal M$ be a B-valued model in the relational language $\mathcal L.$ The boolean value

$$\llbracket \phi \rrbracket_{\mathsf{B}}^{\mathcal{M}} = \llbracket \phi \rrbracket$$

of the formula ϕ is defined by recursion as follows:

•
$$\llbracket \neg \psi \rrbracket = \neg \llbracket \psi \rrbracket;$$

•
$$\llbracket \psi \land \theta \rrbracket = \llbracket \psi \rrbracket \land \llbracket \theta \rrbracket;$$

•
$$\llbracket \exists y \psi(y) \rrbracket = \bigvee_{\tau \in M} \llbracket \psi(y/\tau) \rrbracket.$$

Theorem (Soundness and completeness)

An \mathcal{L} -sentence ϕ is provable by an \mathcal{L} -theory T is and only if, for every B-valued model for \mathcal{L} in which every axiom of T has boolean value 1, $\llbracket \phi \rrbracket_B^{\mathcal{M}} = 1$.

Example 1: (ultra)products

Let $\{M_x : x \in X\}$ be a family of structures for the language \mathcal{L} .

$$\prod_{x\in X} \mathcal{M}_x = \{f: X \to \bigcup_{x\in X} \mathcal{M}_x : f(x) \in \mathcal{M}_x\}$$

is a $\mathcal{P}(X)$ -valued model for \mathcal{L} : if R is an *n*-ary relational symbol

$$\llbracket f_1 = f_2 \rrbracket = \{ x \in X : f_1(x) = f_2(x) \};$$

$$\llbracket R(f_1, \dots, f_n) \rrbracket = \{ x \in X : \mathcal{M}_x \models R(f_1(x), \dots, f_n(x)) \}.$$

Moreno Pierobon

Let \mathcal{M}_L be the algebra of Lebesgue measurable subsets of \mathbb{R} and let Null be the ideal of null sets. The *measure algebra* is MALG := \mathcal{M}_L /Null.

Then $L^{\infty}(\mathbb{R})$ is a MALG-valued model for the language of rings $\mathcal{L} = \{+, \cdot, 0, 1\}$ where, for $f, g, h \in L^{\infty}(\mathbb{R})$,

$$[[+(f, g, h)]] := [\{r \in \mathbb{R} : f(r) + g(r) = h(r)\}]_{\text{Null}}$$

One can prove that $L^{\infty}(\mathbb{R}) \models T_{\text{fields}}$:

$$\llbracket \forall f (f \neq 0 \rightarrow \exists g (f \cdot g = 1) \rrbracket = 1_{\mathsf{MALG}}.$$

Quotients of B-valued models

Let \mathcal{M} a B-valued model for \mathcal{L} , and F a filter over B. Consider the equivalence relation

$$\tau \equiv_F \sigma \qquad \Longleftrightarrow \qquad \llbracket \tau = \sigma \rrbracket \in F.$$

The B/*F*-valued model $\mathcal{M}/F = \langle M/F, R_i^{\mathcal{M}/F} : i \in I, c_j^{\mathcal{M}/F} : j \in J \rangle$ is defined letting:

• $M/F := M/\equiv_F;$

• for any *n*-ary relation symbol R in \mathcal{L}

$$R^{\mathcal{M}/\mathcal{F}}([\tau_1]_{\mathcal{F}},\ldots,[\tau_n]_{\mathcal{F}}) = [\llbracket R(\tau_1,\ldots,\tau_n) \rrbracket]_{\mathcal{F}} \in \mathsf{B}/\mathcal{F};$$

• For any constant symbol c in \mathcal{L} , $c^{\mathcal{M}/F} = [c^{\mathcal{M}}]_F$.

In particular, if G is an ultrafilter, M/G is a traditional first order structure.

Fullness

Definition

Given a first order signature \mathcal{L} , a B-valued model \mathcal{M} for \mathcal{L} is **full** if for all ultrafilters G on B, all \mathcal{L} -formulas $\phi(x_1, \ldots, x_n)$ and all $\tau_1, \ldots, \tau_n \in \mathcal{M}$

 $\mathcal{M}_{G} \models \phi([\tau_{1}]_{G}, \dots, [\tau_{n}]_{G})$ if and only if $[\![\phi(\tau_{1}, \dots, \tau_{n})]\!]^{\mathcal{M}} \in G$.

Example

- If $\{M_x : x \in X\}$ is a family of \mathcal{L} structures, $\prod_{x \in X} M_x$ is a full model for \mathcal{L} (Łoś Theorem).
- The MALG-valued model L[∞](ℝ) is not full for L = {+, ·, 0, 1} since we can find ultrafilters G ∈ St(MALG) such that L[∞](ℝ)/G is not a field.

・ ロ ト ・ 行 ト ・ 日 ト ・ 日 ト

Theorem (Łoś Theorem for boolean valued models)

Let \mathcal{M} be a B-valued model for the signature \mathcal{L} . The following are equivalent:

- \mathcal{M} is full, i.e. $\mathcal{M}/_G \models \phi([\tau_1]_G, \dots, [\tau_n]_G) \iff \llbracket \phi(\tau_1, \dots, \tau_n) \rrbracket^{\mathcal{M}} \in G;$
- **②** for all *L_M*-formulas $φ(x_0, ..., x_n)$ and all $τ_1, ..., τ_n ∈ M$ there exists $σ_1, ..., σ_m ∈ M$ such that

$$\bigvee_{\sigma \in \mathcal{M}} \llbracket \phi(\sigma, \tau_1, \ldots, \tau_n) \rrbracket = \bigvee_{i=1}^m \llbracket \phi(\sigma_i, \tau_1, \ldots, \tau_n) \rrbracket$$

Mixing property

Definition

A B-valued model M satisfies the *mixing property* if for every antichain $A \subset B$, and for every subset $\{\tau_a : a \in A\} \subseteq M$, there exists $\tau \in M$ such that

 $a \leq \llbracket \tau = \tau_a \rrbracket$ for every $a \in A$.

Proposition

Let \mathcal{M} be a B-model for \mathcal{L} satisfying the mixing property. Then \mathcal{M} is full.

If M is a countable transitive model of ZFC, then the forcing B-valued model for set theory M^{B} is full but not mixing.

B N A B N

Presheaves and sheaves

For X a topological space, a X-**presheaf** is a contravariant functor $O(X) \rightarrow \text{Set.}$

A X-presheaf \mathcal{F} is a X-topological sheaf if for every family $\{U_i : i \in I\} \subseteq O(X)$ with $U = \bigcup_{i \in I} U_i$:

• if $f, g \in \mathcal{F}(U)$ are such that $\mathcal{F}(U_i \subseteq U)(f) = \mathcal{F}(U_i \subseteq U)(g)$ then f = g;

② if { $f_i \in \mathcal{F}(U_i)$: *i* ∈ *I*} is a matching family i.e. such that, for *i* ≠ *j*

$$\mathcal{F}(U_i \cap U_j \subseteq U_i)(f_i) = \mathcal{F}(U_i \cap U_j \subseteq U_j)(f_j),$$

then there exists a *collation* $f \in \mathcal{F}(U)$ such that

$$\mathcal{F}(U_i \subseteq U)(f) = f_i$$
 for every $i \in I$.

A X-presheaf \mathcal{F} is a X-stonean sheaf if for every family $\{U_i : i \in I\} \subseteq O(X)$ with $\bigcup_{i \in I} U_i$ dense in $U \in O(X)$:

• if $f, g \in \mathcal{F}(U)$ are such that $\mathcal{F}(U_i \subseteq U)(f) = \mathcal{F}(U_i \subseteq U)(g)$ then f = g;

2 if $\{f_i \in \mathcal{F}(U_i) : i \in I\}$ is a matching family i.e. such that, for $i \neq j$

 $\mathcal{F}(U_i \cap U_j \subseteq U_i)(f_i) = \mathcal{F}(U_i \cap U_j \subseteq U_j)(f_j),$

then there exists a *collation* $f \in \mathcal{F}(U)$ such that

 $\mathcal{F}(U_i \subseteq U)(f) = f_i \text{ for every } i \in I.$

We can replace *U* in the definition with $\text{Reg}(\bigcup_{i \in I} U_i)$.

A stonean sheaf is also a topological sheaf.

14/22

イロト 不得 トイヨト イヨト 二日

Boolean valued models as presheaves

Given a complete boolean algebra B and a B-valued model \mathcal{M} , its associated presheaf $\mathcal{F}_{\mathcal{M}} : O(St(B))^{op} \to Set$ is such that

*F*_M(U) = M/<sub>F_{Reg(U)} where F_{Reg(U)} is the filter generated by Reg(U);
 *F*_M(U ⊆ V) is the map
</sub>

$$\begin{split} i_{UV}^{\mathcal{M}} &: \mathcal{M}/_{F_{Reg(V)}} \to \mathcal{M}/_{F_{Reg(U)}} \\ & [\tau]_{F_{Reg(V)}} \mapsto [\tau]_{F_{Reg(U)}}. \end{split}$$

Theorem (Monro - '86)

Let B be a complete boolean algebra. Then the B-valued model \mathcal{M} has the mixing property if and only if the presheaf $\mathcal{F}_{\mathcal{M}}$ is a sheaf.

Note: $\mathcal{F}_{\mathcal{M}}$ is a topological sheaf if and only if it is a stonean sheaf.

15/22

Presheaves as boolean valued models

Given a topological space X and a X-presheaf $\mathcal{F} : O(X)^{op} \to \text{Set}$, we can associate to it a RO(X)-valued model $\mathcal{M}_{\mathcal{F}}$ for the empty language:

$$\mathcal{M}_{\mathcal{F}} = \mathcal{F}(X)$$

with the interpretation for =

$$\llbracket f = g \rrbracket := \mathsf{Reg} \left(\bigcup \{ U \in O(X) : \mathcal{F}(U \subseteq X)(f) = \mathcal{F}(U \subseteq X)(g) \} \right)$$

While $\mathcal{M} \cong \mathcal{M}_{\mathcal{F}_{\mathcal{M}}}, \mathcal{F}$ and $\mathcal{F}_{\mathcal{M}_{\mathcal{F}}}$ can have little in common:

- \mathcal{F} is defined on X while $\mathcal{F}_{\mathcal{M}_{\mathcal{F}}}$ is defined on St(RO(X));
- if *F* is a topological sheaf but not stonean, then *F*_{M_F} is not a (topological) sheaf.

16/22

Topological sheafification

Definition

Let X be a topological space and $\mathcal{F} : O(X)^{\text{op}} \to \text{Set}$ be a presheaf.

$$E_{\mathcal{F}} := \prod_{x \in X} \mathcal{F}_x = \{ [f]_{\sim_x} : x \in X, f \in \mathcal{F}(U), x \in U \in O(X) \}$$

projects onto X via the map $p_{\mathcal{F}} : [f]_{\sim_x} \mapsto x$. Each $f \in \mathcal{F}(U)$ determines

$$\begin{split} \dot{f} : U \to E_{\mathcal{F}} \\ x \mapsto [f]_{\sim_x} \end{split}$$

The topology of $E_{\mathcal{F}}$ is generated by the family of the f[U]'s.

The **topological sheafification** $\operatorname{sh}(\mathcal{F}) : O(X)^{\operatorname{op}} \to \operatorname{Set}$ is the (topological) sheaf of continuous sections of $p_{\mathcal{F}}$.

イロト イボト イヨト イヨト

17/22

-

Stonean sheafification

Definition

Let $X = \operatorname{St}(\operatorname{RO}(X))$ and $\mathcal{F} : O(X)^{\operatorname{op}} \to \operatorname{Set}$ be a presheaf. Its **stonean sheafification** is the (stonean) sheaf $\operatorname{St-sh}(\mathcal{F}) : O(X)^{\operatorname{op}} \to \operatorname{Set}$ where $\operatorname{St-sh}(\mathcal{F})(U)$ is the set of continuous functions

$$s: U \to E_{\mathcal{F}} \cup \{\infty\}$$

such that

- { $x \in U : s(x) \in E_{\mathcal{F}}$ } contains an open dense subset D_s of U;
- $s \upharpoonright D_s$ is a section of $p_{\mathcal{F}}$ (i.e. $s \upharpoonright D_s \in sh(\mathcal{F})(D_s)$).

Theorem

The functor $\mathcal{F} \mapsto St\text{-}sh(\mathcal{F})$ is left adjoint to the inclusion of the stonean *X*-sheaves into the *X*-presheaves.

Sheafifing a boolean valued model

Let $\mathcal M$ be a B-valued model for the language $\mathcal L$. Its sheafification is the B-valued model for the language $\mathcal L$

 $\mathcal{M}^+ = \{ s : St(B) \rightarrow E_{\mathcal{F}_{\mathcal{M}}} \cup \{\infty\} : s \text{ continuous and } s^{-1}[\{\infty\}] \text{ nowhere dense} \}.$

Consider the maps

$$\xi_{\mathbf{G}} : \mathcal{M}/_{\mathbf{G}} \to \mathcal{M}^+/_{\mathbf{G}}$$
$$[\sigma]_{\mathbf{G}} \mapsto [\dot{\sigma}]_{\mathbf{G}}$$

Proposition

- if $G \in St(B)$ is generic, then ξ_G is an isomorphism;
- M has the mixing property if and only if, for every G ∈ St(B), ξ_G is an isomorphism;
- *M* is full if and only if, for every G ∈ St(B), ξ_G is an elementary embedding.

An example: B-names for the real numbers

Let \mathcal{L} be a relational language whose interpretation in \mathbb{R} is Borel. The family $C(St(B), \mathbb{R})$ is a B-valued model for \mathcal{L} with the interpretation

$$\llbracket R(f_1,\ldots,f_n) \rrbracket^{C(\operatorname{St}(\mathsf{B}),\mathbb{R})} := \operatorname{Reg} \left(\{ G \in \operatorname{St}(\mathsf{B}) : R^{\mathbb{R}}(f_1(G),\ldots,f_n(G)) \} \right).$$

This model has not the mixing property: take a countable antichain and the family of constant functions $\{c_n : G \mapsto n\}_{n \in \mathbb{N}}$.

Its stonean sheafification is the sheaf

 $C^+(St(B), \mathbb{R}) = \{s : St(B) \to \mathbb{R} \cup \{\infty\} : s \text{ continuous and } s^{-1}[\{\infty\}] \text{ meager } \}.$

It is isomorphic (see Vaccaro - Viale) to the B-model

$$\{\tau \in V^{\mathsf{B}} : \llbracket \tau \in \mathbb{R} \rrbracket^{V^{\mathsf{B}}} = 1\}.$$

References

- Monro. A Category-Theoretic Approach to Boolean-Valued Models of Set Theory. Journal of Pure and Applied Algebra 42 (1986) 245-274.
- Monro. *Quasitopoi, Logic and Heyting-Valued Models.* Journal of Pure and Applied Algebra 42 (1986) 141-164.
- Loullis. *Sheaves and Boolean Valued Model Theory*. Journal of Symbolic Logic 44.2 (1979) 153-183.
- P. Viale. Boolean valued models, presheaves, and étalé spaces. arXiv: 2006.14852.
- Vaccaro Viale. Generic absoluteness and boolean names for elements of a Polish space. Bollettino dell'Unione Matematica Italiana 10(3) (2017) 293–319.

THANK YOU!

Moreno Pierobon

Modelli booleani e come fascificarli

Pisa - 20/10/2022

22/22

э