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Outline of the talk

Introduction to manifolds with lower bounds on the Ricci curvature,
nonnegative Ricci curvature and Euclidean Volume Growth

The sharp isoperimetric inequality in such class, an elementary heuristic
proof, its issues

The asymptotic mass decomposition for minimizing sequences for the
isoperimetric problem and the emergence of nonsmooth spaces
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Nonnegative Ricci curvature

We will consider Riemannian manifolds with Ric ≥ kg , that is

Ric(X ,X ) ≥ k|X |2

for any vector �eld X on M.

We recall that
∆∇v = ∇∆v + Ric(∇v , ·)

and that
1

2
∆|∇f |2 = |∇∇f |2 + 〈∇∆f ,∇f 〉+ Ric(∇f ,∇f ).

If Ricci bounded from below by k

1

2
∆|∇f |2 = |∇∇f |2 + 〈∇∆f ,∇f 〉+ Ric(∇f ,∇f )

≥ (∆f )2

n
+ 〈∇∆f ,∇f 〉+ k|∇f |2.

Nonnegative Ricci curvature if k = 0.
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Nonnegative Ricci: Bishop Gromov and AVR

In a complete noncompact manifold with nonnegative Ricci the function

Θ(r) =
|B(o, r)|
ωnrn

is monotone nonincreasing.

In particular

|B(o, r)| ≤ ωnr
n.

This allows to de�ne

AVR(g) = lim
r→+∞

|B(o, r)|
ωnrn

Asymptotic Volume Ratio.

We say (M, g) has Euclidean Volume Growth if AVR(g) > 0.
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Isoperimetric inequality and AVR

Theorem (Isoperimetric inequality (various contributions, later))

Riemannian manifolds (M, g) with nonnegative Ricci and Euclidean Volume
Growth satis�es

P(Ω)n

|Ω|n−1
≥ PRn (B)n

|B|n−1 AVR(g).

for any bounded Ω ⊂ M with �nite perimeter.

Sharp in the whole class:

lim
r→+∞

P(B(o, r))n

|B(o, r)|n−1 = AVR(g).

RMK: the above inequality is the one that holds true also on Riemannian
cones, where AVR(g) can be characterized by the aperture (Morgan-Ritoré).
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A list of contributions

80's, 90's - Croke, Carron, Hebey, Salo�-Coste... :
There exists a positive isoperimetric constant in Ric ≥ 0 with Euclidean
volume growth.

00's - Huisken (lectures):
In dimension 3, the isoperimetric constant is characterized by the in�mum
of the Willmore energy

2020 - Agostiniani, F., Mazzieri (Inv. Math, preprint 2018):
exploiting Huisken ideas and discovering the sharp bound for the Willmore
energy ⇒ sharp isoperimetric inequality in dimension 3 + rigidity.

2020 - F., Mazzieri (preprint)
Extension to dimension n ≤ 7 with rigidity,

2022 - Brendle (CPAM, preprint 2020),
di�erent technique (ABP method) to provide the inequality in any
dimension + rigidity, assuming smoothness.

2022 - Balogh-Kristaly (Mathematische Annalen, preprint 2020)
Extension to CD(0, n) spaces with Euclidean Volume Growth.

2022 - Antonelli- Pasqualetto-Pozzetta-Semola (preprint) Inequality and
full rigidity in RCD spaces, in particular rigidity for �nite perimeter sets in
smooth manifolds.
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Ingredients in the proof

We are considering E ⊂ M isoperimetric, bounded, with the regularity you like.

Isoperimetric means

P(E) = inf{P(F ) |F | = |E |}

We recall that the isoperimetric pro�le is de�ned as

I (V ) = inf{P(F ) |F | = V },

so that
I (|E |) = P(E).

On M \ E , we let r(x) = dist(x ,E).
We have

∆r(x) = H∂Er(x)(x),

where ER = E ∪ {r ≤ R}. In particular

∆r |∂E = H∂E .
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A sharp bound on the Laplacian of r

Let r(x) = dist(x ,E).
Applying the Bochner identity

0 =
1

2
|∇r |2 ≥ |∇∇r |2 + 〈∇∆r ,∇r〉 =

n−1∑
i,j=1

(∇∇r(ei , ej))2 + ∂r∆r

≥
n−1∑
j=1

(∇∇r(ej , ej))2

n − 1
+ ∂r∆r

=
(∆r)2

n − 1
+ ∂r∆r

Integrating, and coupling with

∆r(0) = H∂E

we get

∆r ≤ H∂E

1 + H∂E
n−1 r

.
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Estimates on the growth of sublevel sets of r

By the Divergence Theorem and the coarea formula

P(ER)− P(E) =

�
ER\E

∆r =

� R

0

�
∂Es

∆r

so that

∂sP(Es) =

�
∂Es

∆r

that by

∆r ≤ H∂E

1 + H∂E
n−1 r

yields, integrating the di�erential inequality,

P(Es) ≤ P(E)

(
1 +

H∂E

n − 1
s

)n−1

.

Integrating

|ER \ E | ≤ P(E)

� R

0

(
1 +

H∂E

n − 1
s

)n−1

.
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Sharp estimate on the mean curvature

We got

|ER \ E | ≤ P(E)

� R

0

(
1 +

H∂E

n − 1
s

)n−1

.

Dividing both sides by ωnR
n, recalling that

0 < AVR(g) = lim
R→+∞

|B(o,R)|
ωnRn

we obtain

H∂E ≥ (n − 1)

(
|Sn−1|AVR(g)

P(E)

) 1
n−1

.

"True" for any isoperimetric set E of volume V .
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Conclusion of the proof

Let I the isoperimetric pro�le, EV isoperimetric of volume V . We have

I ′(V ) = HEV ≥ (n−1)

(
|Sn−1|AVR(g)

P(EV )

) 1
n−1

= (n−1)

(
|Sn−1|AVR(g)

I (V )

) 1
n−1

.

Integrating we get
P(EV )n

|EV |n−1
≥ PRn (B)n

|B|n−1 AVR(g),

and thus for any bounded set Ω with volume V we have

P(Ω)n

|Ω|n−1
≥ PRn (B)n

|B|n−1 AVR(g).
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Main issues

Do isoperimetric sets exist??

How to deal with regularity issues?
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Minimizing sequences for the isoperimetric problem

Let Ei have all volume V > 0: |Ei | = V and

P(Ei )→i inf{P(E) | |E | = V } = I (V ),

is Ei converging to some isoperimetric set of volume V ?

Ritoré-Rosales (04, TAMS): On any complete Riemannian manifold, and for
any volume V , we can always �nd a minimizing sequence {Ωi}i∈N with
|Ωi | = V such that

Ωi = Ωc
i ∪ Ωd

i , I (V ) = lim
i→+∞

P(Ωc
i ) + P(Ωd

i ),

where Ωc
i converges (in L1loc and with the perimeter) to an isoperimetric set Ωv

of volume 0 ≤ v ≤ V , while Ωd
i drifts away at in�nity.

What happens to Ωd
i ???
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Gromov-Hausdor� convergence

De�nition (pmGH-convergence)

Take (Mi , gi ) and pi ∈ Mi . The
sequence of pointed mms
(Mi ,disti ,H

n
i , pi )

pmGH-converges to a pointed mms
(X ,dist,H n, p) if there is a
complete separable (Z , d) and
isometric embeddings ιi : Mi ↪→ Z ,
ι : X ↪→ Z s.t.

ιi (Br (pi ))→ ι(Br (p)) in
Hausdor� distance in Z for
any r > 0,

H n
i (Br (pi ))→H n(Br (p)) for

any r > 0.

We are going to look at the convergence of sequences like (M,distg ,H
n
d , xi )

with xi drifting away at in�nity.
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Spaces at in�nity

We are going to look at the convergence of sequences like (M, distg , xi ) with xi
drifting away at in�nity, with Ric ≥ kg for some nonpositive k and such that
B(xi , 1) > v > 0 (noncollapsed)

FACT: Nonnegative Ricci and AVR(g) > 0 ⇒ noncollapsed.

No compactness in the pmGH-topology in the smooth class...
...but compactness in a bigger class

Theorem (Existence of spaces at in�nity)

(M, distg , xi ) (sub)converges in the pmGH-topology to a RCD(k, n) space
(X , dist,H n

dist, x).

X is a special pointed metric measure space (X , dist,H n
distg , x) with a notion

of Ric ≥ kg .
1

2
∆|∇f |2 ≥ (∆f )2

n
+ 〈∇∆f ,∇f 〉+ k|∇f |2
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Asymptotic mass decomposition

Theorem (Asymptotic mass decomposition (contributions below))

Let (M, g) with Ric ≥ kg and |B(p, 1)| > c > 0. Let V > 0. Then some
volume 0 ≤ V1 ≤ V is recovered by a bounded isoperimetric set Ω1 in M.

The runaway volume is recovered as follows. There exists a �nite number of j 's
such that there exists a sequence of {Ωd

i,j}i∈N and RCD spaces

(Xj , distj ,H
n
distj

, xj) appearing as pmGH limits of (M, distg , xi ) such that Ωd
i,j

converges in volume and perimeter to an isoperimetric set Zj ⊂ Xj .

In particular

IM(V ) = inf{P(E) such thatE ⊂ M with |E | = V } = PM(Ω1) +
∑
j

PXj (Zj).
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Asymptotic mass decomposition
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Contributions to the asymptotic mass decomposition

Nardulli (2014, Asian Journal of M.), AMD assuming C 1,α control on the
metric.

Antonelli, F., Pozzetta (2021, preprint) AMD in the full generality above,
with possibly in�nite spaces at in�nity.

Antonelli, Pasqualetto, Pozzetta (2021, preprint) main technical tools in
order to reach for a �nite number of spaces at in�nity.

Antonelli, Nardulli, Pozzetta (2022, preprint), ultimate result in the
generality of RCD (X , d ,Hd) spaces.

Topic of Lecture 2!
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What's coming next

If we are able to work with isoperimetric sets in nonsmooth spaces we can
bypass the possible nonexistence of isoperimetric sets in the original
Riemannian manifold!

Fact: There exist plenty of complete manifolds with Ricci bounded from below
without isoperimetric sets!

So we are going to see

Sets of �nite perimeter and basic topological properties of isoperimetric
sets in RCD spaces. (Lecture 3)

Estimates on �rst and second variations, mean curvature and Laplacian of
distance functions in RCD. (Lecture 4).

Applications to properties (concavity, monotonicity) of the isoperimetric
pro�le in RCD(k,N) and the sharp isoperimetric inequality in RCD(0, n)
with optimal rigidity statement. (Lecture 5).

But what about (as sharp as possible) conditions ensuring the existence of
isoperimetric sets?
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Existence of isoperimetric sets under certain conditions

Applying everything we deduce that

On manifolds with nonnegative Ricci, AVR(g) > 0 and certain conditions on
the asymptotic cone at in�nity, there exist isoperimetric sets of any volume big

enough. (Lecture 6).
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Thank you

Mattia Fogagnolo Introduction to isoperimetry on manifolds


