Quantitative stability estimates for fractional

inequalities

Eleonora Cinti

Università di Bologna

Isoperimetric Problems - Pisa, June 21st, 2022
(joint works with L. Brasco, R. Ognibene, B. Ruffini, and S. Vita)

An overview on stability estimates for geometric and functional inequalities

- The isoperimetric inequality;
- The Faber-Krahn inequality;
- The isocapacitary inequality.

An overview on stability estimates for geometric and functional inequalities

- The isoperimetric inequality

The classical isoperimetric inequality states that balls minimize the perimeter functional (in the sense of De Giorgi) among all measurable sets with the same volume:

$$
\frac{P(\Omega)}{|\Omega|^{\frac{n-1}{n}}} \geq \frac{P(B)}{|B|^{\frac{n-1}{n}}} .
$$

Question about stability: if a set Ω is almost optimal for the above inequality, can we say that it is "almost" a ball (in some sense)?

An overview on stability estimates for geometric and functional inequalities

- The isoperimetric inequality

The classical isoperimetric inequality states that balls minimize the perimeter functional (in the sense of De Giorgi) among all measurable sets with the same volume:

$$
\frac{P(\Omega)}{|\Omega|^{\frac{n-1}{n}}} \geq \frac{P(B)}{|B|^{\frac{n-1}{n}}} .
$$

Question about stability: if a set Ω is almost optimal for the above inequality, can we say that it is "almost" a ball (in some sense)?

Let us define the Fraenkel asymmetry of Ω :

$$
\mathcal{A}(\Omega)=\min \left\{\frac{|\Omega \Delta B|}{|\Omega|}: B \text { is a ball with }|B|=|\Omega|\right\}
$$

and the isoperimetric deficit

\square Isoperim̄etric Prōblems +P isa, June 21 st, 2022 (jC

Let us define the Fraenkel asymmetry of Ω :

$$
\mathcal{A}(\Omega)=\min \left\{\frac{|\Omega \Delta B|}{|\Omega|}: B \text { is a ball with }|B|=|\Omega|\right\}
$$

and the isoperimetric deficit

$$
\delta_{P}(\Omega)=\frac{P(\Omega)}{|\Omega|^{\frac{n-1}{n}}}-\frac{P(B)}{|B|^{\frac{n-1}{n}}} .
$$

\square Isoperimetric Prōblems - Pisa, June 21 st, 2022 (jC

Theorem
There exists a constant $C(n)$ such that

$$
\delta_{P}(\Omega) \geq C(n) \mathcal{A}(\Omega)^{2}
$$

Moreover, the exponent 2 is optimal.

Proofs by:

- Fusco, Maggi, Pratelli (2008): via symmetrization;
- Figalli, Maggi, Pratelli (2010): via mass transport;
- Cicalese,Leonardi (2012): via selection principle.
(Previous contributions by many others: Bernstein, Bonnesen, Fuglede, Hall,
Hayman and Weitsman....)

4 Isoperimetric Problems + P4sa, June 21 st, 2022

Theorem

There exists a constant $C(n)$ such that

$$
\delta_{P}(\Omega) \geq C(n) \mathcal{A}(\Omega)^{2} .
$$

Moreover, the exponent 2 is optimal.

Proofs by:

- Fusco, Maggi, Pratelli (2008): via symmetrization;
- Figalli, Maggi, Pratelli (2010): via mass transport;
- Cicalese,Leonardi (2012): via selection principle.
(Previous contributions by many others: Bernstein, Bonnesen, Fuglede, Hall, Hayman and Weitsman....)
- The Faber-Krahn inequality.

Let $\lambda_{1}(\Omega)$ denote the first eigenvalue of the Dirichlet-Laplacian, which has the following variational characterization:

$$
\lambda_{1}(\Omega):=\inf \left\{\int_{\Omega}|\nabla u|^{2}: u \in C_{0}^{\infty}(\Omega), \int_{\Omega} u^{2}=1\right\} .
$$

$\lambda_{1}(\Omega)|\Omega|^{\frac{2}{n}} \geq \lambda_{1}(B)|B|^{\frac{2}{n}}$
and equality holds if and only if Ω is a ball.
What about stability?

- The Faber-Krahn inequality.

Let $\lambda_{1}(\Omega)$ denote the first eigenvalue of the Dirichlet-Laplacian, which has the following variational characterization:

$$
\lambda_{1}(\Omega):=\inf \left\{\int_{\Omega}|\nabla u|^{2}: u \in C_{0}^{\infty}(\Omega), \int_{\Omega} u^{2}=1\right\} .
$$

Then

$$
\lambda_{1}(\Omega)|\Omega|^{\frac{2}{n}} \geq \lambda_{1}(B)|B|^{\frac{2}{n}}
$$

and equality holds if and only if Ω is a ball.
What about stability?

- The Faber-Krahn inequality.

Let $\lambda_{1}(\Omega)$ denote the first eigenvalue of the Dirichlet-Laplacian, which has the following variational characterization:

$$
\lambda_{1}(\Omega):=\inf \left\{\int_{\Omega}|\nabla u|^{2}: u \in C_{0}^{\infty}(\Omega), \int_{\Omega} u^{2}=1\right\} .
$$

Then

$$
\lambda_{1}(\Omega)|\Omega|^{\frac{2}{n}} \geq \lambda_{1}(B)|B|^{\frac{2}{n}}
$$

and equality holds if and only if Ω is a ball.
What about stability?

Let, as before, $\mathcal{A}(\Omega)$ denote the Fraenkel asymmetry, and let us set

$$
\delta_{\lambda_{1}}(\Omega)=\lambda_{1}(\Omega)|\Omega|^{\frac{2}{n}}-\lambda_{1}(B)|B|^{\frac{2}{n}} .
$$

```
Theorem (Brasco, De Philippis, Velichkov)
There exist a constant C(n) such that
\delta}\mp@subsup{\lambda}{1}{}(\Omega)\geqC(n)\mathcal{A}(\Omega\mp@subsup{)}{}{2}
```

and the exponent 2 is optimal.

Some previous contributions by: Bhattacharya, Sznitman, Povel, Melas, Hansen and Nadirashvili, Fusco-Maggi-Pratelli.
\square

Let, as before, $\mathcal{A}(\Omega)$ denote the Fraenkel asymmetry, and let us set

$$
\delta_{\lambda_{1}}(\Omega)=\lambda_{1}(\Omega)|\Omega|^{\frac{2}{n}}-\lambda_{1}(B)|B|^{\frac{2}{n}} .
$$

Theorem (Brasco, De Philippis, Velichkov)
There exist a constant $C(n)$ such that

$$
\delta_{\lambda_{1}}(\Omega) \geq C(n) \mathcal{A}(\Omega)^{2},
$$

and the exponent 2 is optimal.

Some previous contributions by: Bhattacharya, Sznitman, Povel, Melas, Hansen
and Nadirashvili, Fusco-Maggi-Pratelli.
Recent improvements by Allen, Kriventsov, Neumayer.

Let, as before, $\mathcal{A}(\Omega)$ denote the Fraenkel asymmetry, and let us set

$$
\delta_{\lambda_{1}}(\Omega)=\lambda_{1}(\Omega)|\Omega|^{\frac{2}{n}}-\lambda_{1}(B)|B|^{\frac{2}{n}} .
$$

Theorem (Brasco, De Philippis, Velichkov)
There exist a constant $C(n)$ such that

$$
\delta_{\lambda_{1}}(\Omega) \geq C(n) \mathcal{A}(\Omega)^{2},
$$

and the exponent 2 is optimal.

Some previous contributions by: Bhattacharya, Sznitman, Povel, Melas, Hansen and Nadirashvili, Fusco-Maggi-Pratelli.

Recent improvements by Allen, Kriventsov, Neumayer.

- The isocapacitary inequality

Let $\operatorname{cap}(\Omega)$ denote the capacity of the set Ω, that is

$$
\operatorname{cap}(\Omega):=\inf \left\{\int_{\mathbb{R}^{n}}|\nabla u|^{2}: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), u \geq 1 \text { on } \Omega\right\} .
$$

- The isocapacitary inequality

Let $\operatorname{cap}(\Omega)$ denote the capacity of the set Ω, that is

$$
\operatorname{cap}(\Omega):=\inf \left\{\int_{\mathbb{R}^{n}}|\nabla u|^{2}: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), u \geq 1 \text { on } \Omega\right\} .
$$

Then

$$
\operatorname{cap}(\Omega)|\Omega|^{\frac{2}{n}-1} \geq \operatorname{cap}(B)|B|^{\frac{2}{n}-1} .
$$

Let, as before, $\mathcal{A}(\Omega)$ denote the Fraenkel asymmetry, and let define now the deficit as

$$
\delta_{\operatorname{cap}}(\Omega)=\operatorname{cap}(\Omega)|\Omega|^{\frac{2}{n}-1}-\operatorname{cap}(B)|B|^{\frac{2}{n}-1} .
$$

Then, we have the following
Theorem (De Philippis, Marini, Mukoseeva)
There exist a constant $C(n)$ such that

$$
\delta_{\text {cap }}(\Omega) \geq C(n) \mathcal{A}(\Omega)^{2},
$$

and the exponent 2 is optimal.

Let, as before, $\mathcal{A}(\Omega)$ denote the Fraenkel asymmetry, and let define now the deficit as

$$
\delta_{\operatorname{cap}}(\Omega)=\operatorname{cap}(\Omega)|\Omega|^{\frac{2}{n}-1}-\operatorname{cap}(B)|B|^{\frac{2}{n}-1} .
$$

Then, we have the following
Theorem (De Philippis, Marini, Mukoseeva)
There exist a constant $C(n)$ such that

$$
\delta_{\text {cap }}(\Omega) \geq C(n) \mathcal{A}(\Omega)^{2},
$$

and the exponent 2 is optimal.

Proof of the Faber-Krahn inequality

We focuse on the case of the Faber-Krahn inequality.

The proof of the inequality is based on radial decreasing rearrangements and the
Pólya-Szegö inequality.
Let u^{*} be the radially symmetric decreasing function such that
$\left|\left\{u^{*}>t\right\}\right|=|\{u>t\}|$, then we have:

Pólya-Szegö

$$
\int\left|\nabla u^{*}\right|^{2} \leq \int|\nabla u|^{2}
$$

\square Isoperī̈metric Prōblems + P4sa, June 21 st, 2022 (jC

Proof of the Faber-Krahn inequality

We focuse on the case of the Faber-Krahn inequality.
The proof of the inequality is based on radial decreasing rearrangements and the Pólya-Szegö inequality.

Let u^{*} be the radially symmetric decreasing function such that
$\left|\left\{u^{*}>t\right\}\right|=|\{u>t\}|$, then we have:

and

$4 \square$ Isoperimetric Prōblems -P isa, June 21 st, 2022 (jC

Proof of the Faber-Krahn inequality

We focuse on the case of the Faber-Krahn inequality.
The proof of the inequality is based on radial decreasing rearrangements and the Pólya-Szegö inequality.

Let u^{*} be the radially symmetric decreasing function such that
$\left|\left\{u^{*}>t\right\}\right|=|\{u>t\}|$, then we have:

Proof of the Faber-Krahn inequality

We focuse on the case of the Faber-Krahn inequality.
The proof of the inequality is based on radial decreasing rearrangements and the Pólya-Szegö inequality.

Let u^{*} be the radially symmetric decreasing function such that
$\left|\left\{u^{*}>t\right\}\right|=|\{u>t\}|$, then we have:

$$
\int\left|u^{*}\right|^{2}=\int|u|^{2}
$$

and

Proof of the Faber-Krahn inequality

We focuse on the case of the Faber-Krahn inequality.
The proof of the inequality is based on radial decreasing rearrangements and the Pólya-Szegö inequality.

Let u^{*} be the radially symmetric decreasing function such that
$\left|\left\{u^{*}>t\right\}\right|=|\{u>t\}|$, then we have:

$$
\int\left|u^{*}\right|^{2}=\int|u|^{2}
$$

and

$$
\text { Pólya-Szegö } \quad \int\left|\nabla u^{*}\right|^{2} \leq \int|\nabla u|^{2} \text {. }
$$

Proof of the Faber-Krahn inequality

Let us focuse on the proof of the Pólya-Szegö inequality:

Let $\mu(t)=|\{u>t\}| \mathrm{W} / \mathrm{e}$ observe that

$$
-\mu^{\prime}(t) \geq \int_{\{u=t\}} \frac{d \mathcal{H}^{n-1}}{|\nabla u|}
$$

We have

Proof of the Faber-Krahn inequality

Let us focuse on the proof of the Pólya-Szegö inequality:
Let $\mu(t)=|\{u>t\}|$.We observe that

We have

Proof of the Faber-Krahn inequality

Let us focuse on the proof of the Pólya-Szegö inequality:
Let $\mu(t)=|\{u>t\}|$.We observe that

We have

Proof of the Faber-Krahn inequality

Let us focuse on the proof of the Pólya-Szegö inequality:
Let $\mu(t)=|\{u>t\}|$.We observe that

$$
-\mu^{\prime}(t) \geq \int_{\{u=t\}} \frac{d \mathcal{H}^{n-1}}{|\nabla u|}
$$

We have

Proof of the Faber-Krahn inequality

Let us focuse on the proof of the Pólya-Szegö inequality:
Let $\mu(t)=|\{u>t\}|$.We observe that

$$
-\mu^{\prime}(t) \geq \int_{\{u=t\}} \frac{d \mathcal{H}^{n-1}}{|\nabla u|}
$$

We have

$$
\int_{\Omega}|\nabla u|^{2} \stackrel{\text { coarea }}{=} \int_{0}^{+\infty}\left(\int_{\{u=t\}}|\nabla u|^{2} \frac{1}{|\nabla u|} d \mathcal{H}^{n-1}\right) d t
$$

Proof of the Faber-Krahn inequality

Let us focuse on the proof of the Pólya-Szegö inequality:
Let $\mu(t)=|\{u>t\}|$.We observe that

$$
-\mu^{\prime}(t) \geq \int_{\{u=t\}} \frac{d \mathcal{H}^{n-1}}{|\nabla u|}
$$

We have

$$
\begin{aligned}
& \int_{\Omega}|\nabla u|^{2} \text { coarea } \int_{0}^{+\infty}\left(\int_{\{u=t\}}|\nabla u|^{2} \frac{1}{|\nabla u|} d \mathcal{H}^{n-1}\right) d t \\
& \stackrel{\text { Jensen }}{\geq} \int_{0}^{+\infty}\left(\int_{\{u=t\}}|\nabla u| \frac{1}{|\nabla u|} d \mathcal{H}^{n-1}\right)^{2} \frac{d t}{\int_{0}^{+\infty} \frac{d \mathcal{H}^{n-1}}{|\nabla u|}}
\end{aligned}
$$

Proof of the Faber-Krahn inequality

Let us focuse on the proof of the Pólya-Szegö inequality:
Let $\mu(t)=|\{u>t\}|$.We observe that

$$
-\mu^{\prime}(t) \geq \int_{\{u=t\}} \frac{d \mathcal{H}^{n-1}}{|\nabla u|}
$$

We have

$$
\begin{aligned}
& \int_{\Omega}|\nabla u|^{2} \stackrel{\text { coarea }}{=} \int_{0}^{+\infty}\left(\int_{\{u=t\}}|\nabla u|^{2} \frac{1}{|\nabla u|} d \mathcal{H}^{n-1}\right) d t \\
& \quad \stackrel{\text { Jensen }}{\geq} \int_{0}^{+\infty}\left(\int_{\{u=t\}}|\nabla u| \frac{1}{|\nabla u|} d \mathcal{H}^{n-1}\right)^{2} \frac{d t}{\int_{0}^{+\infty} \frac{d \mathcal{H}^{n-1}}{|\nabla u|}} \\
& \quad \geq \int_{0}^{+\infty} \frac{(P(\{u>t\}))^{2}}{-\mu^{\prime}(t)} d t .
\end{aligned}
$$

Proof of the Faber-Krahn inequality

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} & \geq \int_{0}^{+\infty} \frac{(P(\{u>t\}))^{2}}{-\mu^{\prime}(t)} d t \\
& \stackrel{\text { Isoper.ineq. }}{\geq} \int_{0}^{+\infty} \frac{\left(P\left(\left\{u^{*}>t\right\}\right)\right)^{2}}{-\mu^{\prime}(t)} d t=\int_{\Omega}\left|\nabla u^{*}\right|^{2}
\end{aligned}
$$

The equality cases comes from the equality cases in the isoperimetric inequality.

An idea by Melas, Hansen and Nadirashvili: introduce quantitative elements in the
proof of the Pólya-Szegö inequality, by using quantitative versions of the
isoperimetric inequality.

Isoperimetric Prōblems +P sa, June $21 \mathrm{st}, 2022$ (JC

Proof of the Faber-Krahn inequality

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} & \geq \int_{0}^{+\infty} \frac{(P(\{u>t\}))^{2}}{-\mu^{\prime}(t)} d t \\
& \stackrel{\text { Isoper.ineq. }}{\geq} \int_{0}^{+\infty} \frac{\left(P\left(\left\{u^{*}>t\right\}\right)\right)^{2}}{-\mu^{\prime}(t)} d t=\int_{\Omega}\left|\nabla u^{*}\right|^{2}
\end{aligned}
$$

The equality cases comes from the equality cases in the isoperimetric inequality.

An idea by Melas, Hansen and Nadirashvili: introduce quantitative elements in the
proof of the Dólya-Szegö inequality, by using quantitative versions of the
isoperimetric inequality.

Proof of the Faber-Krahn inequality

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} & \geq \int_{0}^{+\infty} \frac{(P(\{u>t\}))^{2}}{-\mu^{\prime}(t)} d t \\
& \stackrel{\text { Isoper. ineq. }}{\geq} \int_{0}^{+\infty} \frac{\left(P\left(\left\{u^{*}>t\right\}\right)\right)^{2}}{-\mu^{\prime}(t)} d t=\int_{\Omega}\left|\nabla u^{*}\right|^{2}
\end{aligned}
$$

The equality cases comes from the equality cases in the isoperimetric inequality.

An idea by Melas, Hansen and Nadirashvili: introduce quantitative elements in the
proof of the Pólya-Szegö inequality, by using quantitative versions of the
isoperimetric inequality.

Proof of the Faber-Krahn inequality

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} & \geq \int_{0}^{+\infty} \frac{(P(\{u>t\}))^{2}}{-\mu^{\prime}(t)} d t \\
& \stackrel{\text { Isoper. ineq. }}{\geq} \int_{0}^{+\infty} \frac{\left(P\left(\left\{u^{*}>t\right\}\right)\right)^{2}}{-\mu^{\prime}(t)} d t=\int_{\Omega}\left|\nabla u^{*}\right|^{2}
\end{aligned}
$$

The equality cases comes from the equality cases in the isoperimetric inequality.

An idea by Melas, Hansen and Nadirashvili: introduce quantitative elements in the proof of the Pólya-Szegö inequality, by using quantitative versions of the isoperimetric inequality.

A quantitative (non optimal) Faber-Krahn inequality

Theorem (Brasco, De Philippis)
There exists an explicit dimensional constant $c_{n}>0$ such that

$$
\delta_{\lambda_{1}}(\Omega) \geq c_{n} \mathcal{A}(\Omega)^{3} .
$$

Proof. We recall, from the proof of the Faber-Krahn inequality, that

Moreover, by the quantitative isoperimetric inequality, we have

Isoperimetric Prōlems + Pisa, June 21 st, 2022 (jC

A quantitative (non optimal) Faber-Krahn inequality

Theorem (Brasco, De Philippis)
There exists an explicit dimensional constant $c_{n}>0$ such that

$$
\delta_{\lambda_{1}}(\Omega) \geq c_{n} \mathcal{A}(\Omega)^{3} .
$$

Proof. We recall, from the proof of the Faber-Krahn inequality, that

$$
\int_{\Omega}|\nabla u|^{2} \geq \int_{0}^{+\infty} \frac{(P(\{u>t\}))^{2}}{-\mu^{\prime}(t)} d t
$$

Moreover, by the quantitative isoperimetric inequality, we have

Isoperī̈metric Prōblems + Pisa, June 21 st, 2022 (jC

A quantitative (non optimal) Faber-Krahn inequality

Theorem (Brasco, De Philippis)
There exists an explicit dimensional constant $c_{n}>0$ such that

$$
\delta_{\lambda_{1}}(\Omega) \geq c_{n} \mathcal{A}(\Omega)^{3} .
$$

Proof. We recall, from the proof of the Faber-Krahn inequality, that

$$
\int_{\Omega}|\nabla u|^{2} \geq \int_{0}^{+\infty} \frac{(P(\{u>t\}))^{2}}{-\mu^{\prime}(t)} d t
$$

Moreover, by the quantitative isoperimetric inequality, we have

$$
(P(\{u>t\}))^{2} \geq\left(P\left(\left\{u^{*}>t\right\}\right)\right)^{2}+c \mu(t)^{\frac{2(n-1)}{n}} \mathcal{A}(\{u>t\})^{2}
$$

A quantitative (non optimal) Faber-Krahn inequality

Hence, we obtain

$$
\int_{\Omega}|\nabla u|^{2} \geq \int_{\Omega}\left|\nabla u^{*}\right|^{2}+c \int_{0}^{+\infty} \mathcal{A}(\{u>t\})^{2} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} .
$$

Question: how can we pass from $\mathcal{A}(\{u>t\})$ to $\mathcal{A}(\Omega)$?

Idea: Choose a level T such that

\square Isoperim̄etric Prōlems + P4sa, June 21 st, 2022 (jC

A quantitative (non optimal) Faber-Krahn inequality

Hence, we obtain

$$
\int_{\Omega}|\nabla u|^{2} \geq \int_{\Omega}\left|\nabla u^{*}\right|^{2}+c \int_{0}^{+\infty} \mathcal{A}(\{u>t\})^{2} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} .
$$

Question: how can we pass from $\mathcal{A}(\{u>t\})$ to $\mathcal{A}(\Omega)$?

Idea: Choose a level T such that

Isoperimetric Prōblems - Pisa, June 21 st, 2022 (jC

A quantitative (non optimal) Faber-Krahn inequality

Hence, we obtain

$$
\int_{\Omega}|\nabla u|^{2} \geq \int_{\Omega}\left|\nabla u^{*}\right|^{2}+c \int_{0}^{+\infty} \mathcal{A}(\{u>t\})^{2} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} .
$$

Question: how can we pass from $\mathcal{A}(\{u>t\})$ to $\mathcal{A}(\Omega)$?
Idea: Choose a level T such that

Isoperimetric Prōblems + Pisa, June 21 st, 2022 (jC

A quantitative (non optimal) Faber-Krahn inequality

Hence, we obtain

$$
\int_{\Omega}|\nabla u|^{2} \geq \int_{\Omega}\left|\nabla u^{*}\right|^{2}+c \int_{0}^{+\infty} \mathcal{A}(\{u>t\})^{2} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} .
$$

Question: how can we pass from $\mathcal{A}(\{u>t\})$ to $\mathcal{A}(\Omega)$?
Idea: Choose a level T such that

$$
\frac{|\{u>T\} \Delta \Omega|}{|\Omega|} \sim \mathcal{A}(\Omega), \text { then } \mathcal{A}(\{u>t\}) \gtrsim \mathcal{A}(\Omega) \text { for every } 0<t<T
$$

A quantitative (non optimal) Faber-Krahn inequality

Hence, we can deduce that

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} & \geq \int_{\Omega}\left|\nabla u^{*}\right|^{2}+c \int_{0}^{+\infty} \mathcal{A}(\{u>t\})^{2} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} d t \\
& \geq \mathcal{C A}(\Omega)^{2} \int_{0}^{T} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} d t .
\end{aligned}
$$

Moreover, one can see that

Isoperimetric Prōlems + Pisa, June 21 st, 2022 (jC

A quantitative (non optimal) Faber-Krahn inequality

Hence, we can deduce that

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2} & \geq \int_{\Omega}\left|\nabla u^{*}\right|^{2}+c \int_{0}^{+\infty} \mathcal{A}(\{u>t\})^{2} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} d t \\
& \geq \operatorname{CA}(\Omega)^{2} \int_{0}^{T} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} d t .
\end{aligned}
$$

Moreover, one can see that

$$
\int_{0}^{T} \frac{\mu(t)^{\frac{2(n-1)}{n}}}{-\mu^{\prime}(t)} d t \gtrsim \frac{T^{2}}{\mathcal{A}(\Omega)|\Omega|}
$$

A quantitative (non optimal) Faber-Krahn inequality

If $T \gtrsim \mathcal{A}(\Omega)$, we then deduce

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2}-\int_{\Omega}\left|\nabla u^{*}\right|^{2} & \geq \mathcal{A}(\Omega)^{2} \frac{T^{2}}{\mathcal{A}(\Omega)|\Omega|} \\
& \geq \subset \mathcal{A}(\Omega)^{3} .
\end{aligned}
$$

It remains to deal with the case $T \ll \mathcal{A}(\Omega)$
\square Isoperimetric Prōblems - P4sa, June 21 st, 2022 (jC

A quantitative (non optimal) Faber-Krahn inequality

If $T \gtrsim \mathcal{A}(\Omega)$, we then deduce

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{2}-\int_{\Omega}\left|\nabla u^{*}\right|^{2} & \geq \mathcal{A}(\Omega)^{2} \frac{T^{2}}{\mathcal{A}(\Omega)|\Omega|} \\
& \geq \subset \mathcal{A}(\Omega)^{3} .
\end{aligned}
$$

It remains to deal with the case $T \ll \mathcal{A}(\Omega)$

A quantitative (non optimal) Faber-Krahn inequality

Case $T \ll \mathcal{A}(\Omega)$. In this case, we do not use the chain of inequality seen before, but we use a comparison argument, choosing as a competitor a suitable truncation of u (at level T). In this way, under the assumption that $T \ll \mathcal{A}(\Omega)$, one can conclude that

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq \mathcal{C A}(\Omega) .
$$

A quantitative (non optimal) Faber-Krahn inequality

Case $T \ll \mathcal{A}(\Omega)$. In this case, we do not use the chain of inequality seen before, but we use a comparison argument, choosing as a competitor a suitable truncation of u (at level T). In this way, under the assumption that $T \ll \mathcal{A}(\Omega)$, one can conclude that

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq C \mathcal{A}(\Omega) .
$$

A quantitative (non optimal) Faber-Krahn inequality

Case $T \ll \mathcal{A}(\Omega)$. In this case, we do not use the chain of inequality seen before, but we use a comparison argument, choosing as a competitor a suitable truncation of u (at level T). In this way, under the assumption that $T \ll \mathcal{A}(\Omega)$, one can conclude that

$$
\lambda_{1}(\Omega)-\lambda_{1}(B) \geq C \mathcal{A}(\Omega) .
$$

The nonlocal setting

- The fractional isoperimetric inequality;
- The fractional Faber-Krahn inequality;
- The fractional isocapacitary inequality.

The fractional perimeter (Caffarelli, Roquejoffre, Savin)

Let $0<s<1 / 2$ and E be a bounded subset of \mathbb{R}^{n}. We define the s-perimeter of E as

$$
\operatorname{Per}_{s}(E)=\int_{E} \int_{\mathbb{R}^{n} \backslash E} \frac{d x d y}{|x-y|^{n+2 s}}=\frac{1}{2}\left[\chi_{E}\right]_{W^{2 s, 1}\left(\mathbb{R}^{n}\right)},
$$

where χ_{E} denotes the characteristic function of the set E.

We have that

$$
(1-2 s) \operatorname{Per}_{s}(E) \rightarrow \operatorname{Per}(E), \quad \text { as } s \uparrow 1 / 2 .
$$

The fractional perimeter (Caffarelli, Roquejoffre, Savin)

Let $0<s<1 / 2$ and E be a bounded subset of \mathbb{R}^{n}. We define the s-perimeter of E as

$$
\operatorname{Per}_{s}(E)=\int_{E} \int_{\mathbb{R}^{n} \backslash E} \frac{d x d y}{|x-y|^{n+2 s}}=\frac{1}{2}\left[\chi_{E}\right]_{W^{2 s, 1}\left(\mathbb{R}^{n}\right)},
$$

where χ_{E} denotes the characteristic function of the set E.
We have that

$$
(1-2 s) \operatorname{Per}_{s}(E) \rightarrow \operatorname{Per}(E), \quad \text { as } s \uparrow 1 / 2 .
$$

The fractional isoperimetric inequality

Theorem (Almgren and Lieb, Frank and Seiringer)

$$
\frac{\operatorname{Per}_{s}(\Omega)}{|\Omega|^{\frac{n-2 s}{n}}} \geq \frac{\operatorname{Per}_{s}(B)}{|B|^{\frac{n-2 s}{n}}} .
$$

Equality holds if and only if Ω is a ball.

Question: What about stability?

\square Isoperimetric Prōblems +P isa, June 21 st, 2022 (jC

The fractional isoperimetric inequality

Theorem (Almgren and Lieb, Frank and Seiringer)

$$
\frac{\operatorname{Per}_{s}(\Omega)}{|\Omega|^{\frac{n-2 s}{n}}} \geq \frac{\operatorname{Per}_{s}(B)}{|B|^{\frac{n-2 s}{n}}} .
$$

Equality holds if and only if Ω is a ball.

Question: What about stability?

The (non optimal) quantitative fractional isoperimetric

 inequalityLet $\delta_{P_{s}}(\Omega)$ denote the fractional isoperimetric deficit

$$
\delta_{P_{s}}(\Omega)=\frac{\operatorname{Per}_{s}(\Omega)}{|\Omega|^{\frac{n-2 s}{n}}}-\frac{\operatorname{Per}_{s}(B)}{|B|^{\frac{n-2 s}{n}}} .
$$

Theorem (Fusco, Millot, Morini)
There exists a constant $C_{n, s}>0$, such that

Isoperimetric Prōblems - P4sa, June 21 st, 2022 (jC

The (non optimal) quantitative fractional isoperimetric

 inequalityLet $\delta_{P_{s}}(\Omega)$ denote the fractional isoperimetric deficit

$$
\delta_{P_{s}}(\Omega)=\frac{\operatorname{Per}_{s}(\Omega)}{|\Omega|^{\frac{n-2 s}{n}}}-\frac{\operatorname{Per}_{s}(B)}{|B|^{\frac{n-2 s}{n}}} .
$$

Theorem (Fusco, Millot, Morini)
There exists a constant $C_{n, s}>0$, such that

$$
\delta_{P_{s}}(\Omega) \geq C_{n, s} \mathcal{A}(\Omega)^{\frac{4}{s}} .
$$

The optimal quantitative fractional isoperimetric inequality

Theorem (Figalli, Fusco, Maggi, Millot, Morini)
There exists a constant $C_{n, s}>0$, such that

$$
\delta_{P_{s}}(\Omega) \geq C_{n, s} \mathcal{A}(\Omega)^{2} .
$$

- the proof is based on a reduction to nearly spherical sets;
- it uses regularity theory for Λ-minimizers of the s-perimeter;
- the constant $C_{n, s}$ is not explicit.

The optimal quantitative fractional isoperimetric inequality

Theorem (Figalli, Fusco, Maggi, Millot, Morini)
There exists a constant $C_{n, s}>0$, such that

$$
\delta_{P_{s}}(\Omega) \geq C_{n, s} \mathcal{A}(\Omega)^{2} .
$$

Remark

- the proof is based on a reduction to nearly spherical sets;
- it uses regularity theory for Λ-minimizers of the s-perimeter;
- the constant $C_{n, s}$ is not explicit.

The optimal quantitative fractional isoperimetric inequality

Theorem (Figalli, Fusco, Maggi, Millot, Morini)
There exists a constant $C_{n, s}>0$, such that

$$
\delta_{P_{s}}(\Omega) \geq C_{n, s} \mathcal{A}(\Omega)^{2}
$$

Remark

- the proof is based on a reduction to nearly spherical sets;
- it uses regularity theory for Λ-minimizers of the s-perimeter;
- the constant $C_{n, s}$ is not explicit

The optimal quantitative fractional isoperimetric inequality

Theorem (Figalli, Fusco, Maggi, Millot, Morini)
There exists a constant $C_{n, s}>0$, such that

$$
\delta_{P_{s}}(\Omega) \geq C_{n, s} \mathcal{A}(\Omega)^{2}
$$

Remark

- the proof is based on a reduction to nearly spherical sets;
- it uses regularity theory for Λ-minimizers of the s-perimeter;
- the constant $C_{n, s}$ is not explicit.

The fractional Faber-Krahn inequality

Let us consider now the eigenvalue problem for the fractional Laplacian.
For $0<s<1$, we consider the operator

$$
(-\Delta)^{s} u(x)=\mathrm{PV} \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y
$$

The nonlocal quadratic functional associated to it is

We have that

The fractional Faber-Krahn inequality

Let us consider now the eigenvalue problem for the fractional Laplacian.
For $0<s<1$, we consider the operator

$$
(-\Delta)^{s} u(x)=\mathrm{PV} \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y .
$$

The nonlocal quadratic functional associated to it is

$$
[u]_{W^{s, 2}\left(\mathbb{R}^{n}\right)}^{2}:=\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{n+2 s}} d x d y .
$$

We have that

and

The fractional Faber-Krahn inequality

Let us consider now the eigenvalue problem for the fractional Laplacian.
For $0<s<1$, we consider the operator

$$
(-\Delta)^{s} u(x)=\operatorname{PV} \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y .
$$

The nonlocal quadratic functional associated to it is

$$
[u]_{W^{s, 2}\left(\mathbb{R}^{n}\right)}^{2}:=\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} \frac{|u(x)-u(y)|^{2}}{|x-y|^{n+2 s}} d x d y .
$$

We have that

$$
[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2} \sim \frac{C}{s} \int|u|^{2} d x, \quad \text { for } s \searrow 0
$$

and

$$
[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2} \sim \frac{C}{1-s} \int|\nabla u|^{2} d x, \quad \text { for } s \nearrow 1
$$

The fractional Faber-Krahn inequality

We define the space $\mathcal{D}_{0}^{s, 2}(\Omega)$ as the completion of $C_{0}^{\infty}(\Omega)$ with respect to the norm $[\cdot]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}$. The first eigenvalue of the fractional Dirichlet-Laplacian of order s on Ω (denoted by $\left.\lambda_{s}(\Omega)\right)$ is defined as the smallest real number λ such that the following boundary value problem

admits a nontrivial solution $u \in \mathcal{D}_{0}^{s, 2}(\Omega)$

Isoperimetric Prōblems - Pisa, June 21 st, 2022 (jC

The fractional Faber-Krahn inequality

We define the space $\mathcal{D}_{0}^{s, 2}(\Omega)$ as the completion of $C_{0}^{\infty}(\Omega)$ with respect to the norm $[\cdot]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}$. The first eigenvalue of the fractional Dirichlet-Laplacian of order s on Ω (denoted by $\left.\lambda_{s}(\Omega)\right)$ is defined as the smallest real number λ such that the following boundary value problem

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =\lambda u, & & \text { in } \Omega, \\
u & =0, & & \text { in } \mathbb{R}^{N} \backslash \Omega,
\end{aligned}\right.
$$

admits a nontrivial solution $u \in \mathcal{D}_{0}^{s, 2}(\Omega)$

The fractional Faber-Krahn inequality

Similarly to the classical case, the first eigenvalue has the following variational characterization

$$
\lambda_{s}(\Omega)=\min _{u \in \mathcal{D}_{0}^{s, 2}(\Omega)}\left\{[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2}:\|u\|_{L^{2}(\Omega)}=1\right\} .
$$

Theorem We have

and Lieb, Frank and Seiringer),

The fractional Faber-Krahn inequality

Similarly to the classical case, the first eigenvalue has the following variational characterization

$$
\lambda_{s}(\Omega)=\min _{u \in \mathcal{D}_{0}^{s, 2}(\Omega)}\left\{[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2}:\|u\|_{L^{2}(\Omega)}=1\right\} .
$$

Theorem
We have

$$
|\Omega|^{\frac{2 s}{n}} \lambda_{s}(\Omega) \geq|B|^{\frac{2 s}{n}} \lambda_{s}(B) .
$$

The fractional Faber-Krahn inequality

Similarly to the classical case, the first eigenvalue has the following variational characterization

$$
\lambda_{s}(\Omega)=\min _{u \in \mathcal{D}_{0}^{s, 2}(\Omega)}\left\{[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2}:\|u\|_{L^{2}(\Omega)}=1\right\} .
$$

Theorem
We have

$$
|\Omega|^{\frac{2 s}{n}} \lambda_{s}(\Omega) \geq|B|^{\frac{2 s}{n}} \lambda_{s}(B) .
$$

Remark

The proof is based again on decreasing radial rearrangements (results by Almgren and Lieb, Frank and Seiringer).

The quantitative fractional Faber-Krahn inequality

Define the deficit as

$$
\delta_{\lambda_{s}}=|\Omega|^{\frac{2 s}{n}} \lambda_{s}(\Omega)-|B|^{\frac{2 s}{n}} \lambda_{s}(B) .
$$

\square

Remark
By letting $s \uparrow 1$, we recover the local quantitative Faber-Krahn inequality with
exponent 3 .

The quantitative fractional Faber-Krahn inequality

Define the deficit as

$$
\delta_{\lambda_{s}}=|\Omega|^{\frac{2 s}{n}} \lambda_{s}(\Omega)-|B|^{\frac{2 s}{n}} \lambda_{s}(B)
$$

Theorem (Brasco, C., Vita)
Let $0<s<1$ and $n \geq 2$. For every open set Ω with finite measure, we have

$$
\delta_{\lambda_{s}} \geq \frac{C}{1-s} \mathcal{A}(\Omega)^{\frac{3}{s}},
$$

where C is an explicit constant, which is uniform as $s \uparrow 1$,

The quantitative fractional Faber-Krahn inequality

Define the deficit as

$$
\delta_{\lambda_{s}}=|\Omega|^{\frac{2 s}{n}} \lambda_{s}(\Omega)-|B|^{\frac{2 s}{n}} \lambda_{s}(B)
$$

Theorem (Brasco, C., Vita)
Let $0<s<1$ and $n \geq 2$. For every open set Ω with finite measure, we have

$$
\delta_{\lambda_{s}} \geq \frac{C}{1-s} \mathcal{A}(\Omega)^{\frac{3}{s}},
$$

where C is an explicit constant, which is uniform as $s \uparrow 1$,
Remark
By letting $s \uparrow 1$, we recover the local quantitative Faber-Krahn inequality with exponent 3.

The Caffarelli-Silvestre extension

Theorem
Given $u \in \mathcal{D}_{0}^{s, 2}(\Omega)$, there exists a unique function E_{u} satisfying

$$
\begin{cases}\operatorname{div}\left(z^{1-2 s} \nabla E_{u}\right)=0 & \text { in } \mathbb{R}_{+}^{n+1} \\ E_{u}(x, 0)=u(x) & \text { on } \mathbb{R}^{n} .\end{cases}
$$

Moreover, U satisfies the following variational problem

$$
\min \left\{\int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}|\nabla V|^{2} d x d z: \operatorname{Trace}(V)=u\right\}
$$

and we have

$$
[u]_{W^{s}, 2\left(\mathbb{R}^{n}\right)}=\gamma_{n, s} \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla E_{u}\right|^{2} d x d z
$$

The quantitative fractional Faber-Krahn inequality

Proof of the main result. We try to follow the argument described for the local case and to apply it to the extension E_{u}. For almost every fixed $z>0$, we define the function $E_{u}^{*}(\cdot, z)$ as the unique radially symmetric decreasing function on \mathbb{R}^{N} such that for all $t>0$

$$
\left|\left\{x \in \mathbb{R}^{N}: E_{u}^{*}(x, z)>t\right\}\right|=\left|\left\{x \in \mathbb{R}^{N}: E_{u}(x, z)>t\right\}\right| .
$$

Lemma (Fusco, Millot, Morini - Brasco, C., Vita)
We have

The quantitative fractional Faber-Krahn inequality

Proof of the main result. We try to follow the argument described for the local case and to apply it to the extension E_{u}. For almost every fixed $z>0$, we define the function $E_{u}^{*}(\cdot, z)$ as the unique radially symmetric decreasing function on \mathbb{R}^{N} such that for all $t>0$

$$
\left|\left\{x \in \mathbb{R}^{N}: E_{u}^{*}(x, z)>t\right\}\right|=\left|\left\{x \in \mathbb{R}^{N}: E_{u}(x, z)>t\right\}\right|
$$

Lemma (Fusco, Millot, Morini - Brasco, C., Vita)
We have

The quantitative fractional Faber-Krahn inequality

Proof of the main result. We try to follow the argument described for the local case and to apply it to the extension E_{u}. For almost every fixed $z>0$, we define the function $E_{u}^{*}(\cdot, z)$ as the unique radially symmetric decreasing function on \mathbb{R}^{N} such that for all $t>0$

$$
\left|\left\{x \in \mathbb{R}^{N}: E_{u}^{*}(x, z)>t\right\}\right|=\left|\left\{x \in \mathbb{R}^{N}: E_{u}(x, z)>t\right\}\right| .
$$

Lemma (Fusco, Millot, Morini - Brasco, C., Vita)
We have

$$
\begin{aligned}
& \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla_{x} E_{u}\right|^{2} d x d z \geq \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla_{x} E_{u}^{*}\right|^{2} d x d z, \\
& \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\partial_{z} E_{u}\right|^{2} d x d z \geq \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\partial_{z} E_{u}^{*}\right|^{2} d x d z, \\
& \text { Isoperimetric Problem }
\end{aligned}
$$

The quantitative fractional Faber-Krahn inequality

First, observe that, as a consequence of the previous lemma, we deduce the fractional Faber-Krahn inequality:

$$
\begin{aligned}
\lambda_{s}(\Omega) & =[u]_{W^{s, 2}}^{2}=\gamma_{n, s} \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla E_{u}\right|^{2} d x d z \\
& \geq \gamma_{n, s} \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla E_{u}^{*}\right|^{2} d x d z \geq \gamma_{n, s} \int_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla E_{u^{*}}\right|^{2} d x d z \\
& =\left[u^{*}\right]_{W^{s}, 2}^{2}=\lambda_{s}(B) .
\end{aligned}
$$

The quantitative fractional Faber-Krahn inequality

Let us now try to insert quantitative elements, arguing as in the local case.
$\iint_{\mathbb{R}^{n+1}} z^{1-2 s}\left|\nabla_{x} E_{U}\right|^{2} d x d z$

where $\Omega_{t, z}=\left\{x \in \mathbb{R}^{n}: E_{u}(x, z)>t\right\}$ and $P\left(\Omega_{t, z}\right)$ denotes the perimeter of the
set Ω_{t}.
\square Isoperimetric Prōblems + P4sa, June 21 st, 2022 (jC

The quantitative fractional Faber-Krahn inequality

Let us now try to insert quantitative elements, arguing as in the local case.

$$
\iint_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla_{x} E_{u}\right|^{2} d x d z
$$

$$
\stackrel{\text { coarea }}{=} \int_{0}^{+\infty} z^{1-2 s}\left(\int_{0}^{+\infty}\left(\int_{\left\{x \in \mathbb{R}^{n}: E_{u}(x, z)=t\right\}}\left|\nabla_{x} E_{u}\right|^{2} \frac{d \mathcal{H}^{n-1}(x)}{\left|\nabla_{x} E_{u}\right|}\right) d t\right) d z
$$

set $\Omega_{t, z}$
Isoperimetric Prōblems + Pisa, June 21 st, 2022 (jC

The quantitative fractional Faber-Krahn inequality

Let us now try to insert quantitative elements, arguing as in the local case.

$$
\begin{aligned}
& \iint_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla_{x} E_{u}\right|^{2} d x d z \\
& \stackrel{\text { coarea }}{=} \int_{0}^{+\infty} z^{1-2 s}\left(\int_{0}^{+\infty}\left(\int_{\left\{x \in \mathbb{R}^{n}: E_{u}(x, z)=t\right\}}\left|\nabla_{x} E_{u}\right|^{2} \frac{d \mathcal{H}^{n-1}(x)}{\left|\nabla_{x} E_{u}\right|}\right) d t\right) d z \\
& \quad \stackrel{\text { Jensen }}{\geq} \int_{0}^{+\infty} z^{1-2 s}\left(\int_{0}^{+\infty} \frac{P\left(\Omega_{t, z}\right)^{2}}{\int_{\left\{x \in \mathbb{R}^{n}: E_{u}(x, z)=t\right\}} \frac{d \mathcal{H}^{n-1}(x)}{\left|\nabla_{x} E_{u}\right|}} d t\right) d z
\end{aligned}
$$

where $\Omega_{t, z}=\left\{x \in \mathbb{R}^{n}: E_{u}(x, z)>t\right\}$ and $P\left(\Omega_{t, z}\right)$ denotes the perimeter of the set $\Omega_{t, z}$.

The quantitative fractional Faber-Krahn inequality

We now use the quantitative isoperimetric inequality (on the horizontal-superlevel sets of E_{u}), to get
$\iint_{\mathbb{R}_{+}^{n+1}} z^{1-2 s}\left|\nabla_{x} E_{u}\right|^{2} d x d z \geq \int_{0}^{+\infty} z^{1-2 s}\left(\int_{0}^{+\infty} \frac{P\left(\Omega_{t, z}^{*}\right)^{2}}{-\mu_{z}^{\prime}(t)} d t\right) d z$
$+C_{n} \int_{0}^{+\infty} z^{1-2 s}\left(\int_{0}^{+\infty} \frac{\left(\mu_{z}(t)^{\frac{N-1}{N}}\right)^{2} \mathcal{A}\left(\Omega_{t, z}\right)^{2}}{-\mu_{z}^{\prime}(t)} d t\right) d z$

The quantitative fractional Faber-Krahn inequality

Problem: how to pass from $\mathcal{A}\left(\Omega_{t, z}\right)$ to $\mathcal{A}(\Omega)$?
Roughly speaking, we will do this, in two steps:

- Relate the asymmetry of $\Omega_{t, z}$ to the one of $\Omega_{t}=\{x \in \Omega: u(x)>t\}$, i.e.
something of the type

$$
\mathcal{A}\left(\Omega_{t, z}\right) \simeq \mathcal{A}\left(\Omega_{t}\right), \quad \text { for } t \ll 1 \text { and } z \ll 1 .
$$

- Relate the asymmetry of Ω_{t} to that of Ω, i.e.

$$
\mathcal{A}\left(\Omega_{t}\right) \simeq \mathcal{A}(\Omega), \quad \text { for } t \ll 1 .
$$

\square Isoperimetric Prōblems + P4sa, June 21 st, 2022 (jC

The quantitative fractional Faber-Krahn inequality

Problem: how to pass from $\mathcal{A}\left(\Omega_{t, z}\right)$ to $\mathcal{A}(\Omega)$?
Roughly speaking, we will do this, in two steps:

- Relate the asymmetry of $\Omega_{t, z}$ to the one of $\Omega_{t}=\{x \in \Omega: u(x)>t\}$, i.e. something of the type

$$
\mathcal{A}\left(\Omega_{t, z}\right) \simeq \mathcal{A}\left(\Omega_{t}\right), \quad \text { for } t \ll 1 \text { and } z \ll 1 .
$$

- Relate the asymmetry of Ω_{t} to that of Ω, i.e.

$$
\mathcal{A}\left(\Omega_{t}\right) \simeq \mathcal{A}(\Omega), \quad \text { for } t \ll 1 .
$$

\square Isoperimetric Prōblems +P 4 sa, June 21 st, 2022 (jC

The quantitative fractional Faber-Krahn inequality

Problem: how to pass from $\mathcal{A}\left(\Omega_{t, z}\right)$ to $\mathcal{A}(\Omega)$?
Roughly speaking, we will do this, in two steps:

- Relate the asymmetry of $\Omega_{t, z}$ to the one of $\Omega_{t}=\{x \in \Omega: u(x)>t\}$, i.e. something of the type

$$
\mathcal{A}\left(\Omega_{t, z}\right) \simeq \mathcal{A}\left(\Omega_{t}\right), \quad \text { for } t \ll 1 \text { and } z \ll 1
$$

- Relate the asymmetry of Ω_{t} to that of Ω, i.e.

The quantitative fractional Faber-Krahn inequality

Problem: how to pass from $\mathcal{A}\left(\Omega_{t, z}\right)$ to $\mathcal{A}(\Omega)$?
Roughly speaking, we will do this, in two steps:

- Relate the asymmetry of $\Omega_{t, z}$ to the one of $\Omega_{t}=\{x \in \Omega: u(x)>t\}$, i.e. something of the type

$$
\mathcal{A}\left(\Omega_{t, z}\right) \simeq \mathcal{A}\left(\Omega_{t}\right), \quad \text { for } t \ll 1 \text { and } z \ll 1
$$

- Relate the asymmetry of Ω_{t} to that of Ω, i.e.

$$
\mathcal{A}\left(\Omega_{t}\right) \simeq \mathcal{A}(\Omega), \quad \text { for } t \ll 1
$$

The quantitative fractional Faber-Krahn inequality

Proposition

Let T be such that $|\{u>T\} \Delta \Omega| \sim \mathcal{A}(\Omega)$, then

$$
\text { for } \frac{T}{4} \leq t \leq \frac{3}{8} T \quad \text { and } \quad \text { for } 0<z \leq z_{0}=c_{n, s}(\sqrt{\mathcal{A}(\Omega)|\Omega|} T)^{\frac{1}{s}}
$$

we have

$$
\begin{equation*}
\left|\Omega_{t, z} \Delta \Omega\right| \leq \frac{1}{3}|\Omega| \mathcal{A}(\Omega) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{A}\left(\Omega_{t, z}\right) \geq \frac{1}{5} \mathcal{A}(\Omega) . \tag{2}
\end{equation*}
$$

The quantitative fractional Faber-Krahn inequality

Remark
The proof of the proposition uses the trace estimate

$$
\left\|E_{u}(\cdot, z)-u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim z^{2 s} .
$$

Conclusion of the proof:

- if $T \gtrsim \mathcal{A}(\Omega)$: we conclude as in the local case, using the above proposition (observe also the dependence of z_{0} on T and $\mathcal{A}(\Omega)$, that's why the final power depends on $s!$);
- if $T \ll \mathcal{A}(\Omega)$: again as in the local case, we use a comparison argument (comparing with a truncation of u). In this case, we do not need to use the extension and we work "downstairs"
\square Isoperimetric Prōlems + P4sa, June 21 st, 2022 (JC

The quantitative fractional Faber-Krahn inequality

Remark

The proof of the proposition uses the trace estimate

$$
\left\|E_{u}(\cdot, z)-u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim z^{2 s} .
$$

Conclusion of the proof:

- if $T \gtrsim \mathcal{A}(\Omega)$: we conclude as in the local case, using the above proposition (observe also the dependence of z_{0} on T and $\mathcal{A}(\Omega)$, that's why the final power depends on $s!$);
- if $T \ll \mathcal{A}(\Omega)$: again as in the local case, we use a comparison argument (comparing with a truncation of u). In this case, we do not need to use the extension and we work "downstairs"

The quantitative fractional Faber-Krahn inequality

Remark

The proof of the proposition uses the trace estimate

$$
\left\|E_{u}(\cdot, z)-u\right\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2} \lesssim z^{2 s} .
$$

Conclusion of the proof:

- if $T \gtrsim \mathcal{A}(\Omega)$: we conclude as in the local case, using the above proposition (observe also the dependence of z_{0} on T and $\mathcal{A}(\Omega)$, that's why the final power depends on $s!$);
- if $T \ll \mathcal{A}(\Omega)$: again as in the local case, we use a comparison argument (comparing with a truncation of u). In this case, we do not need to use the extension and we work "downstairs".

Some generalization

For $N \geq 2$ and $0<s<1$, we set

$$
2_{s}^{*}=\frac{2 N}{N-2 s}
$$

Then for every $1 \leq q<2_{s}^{*}$, we consider the sharp Poincaré-Sobolev constant

$$
\lambda_{s, q}(\Omega)=\min _{u \in \mathcal{D}_{0}^{s, 2}(\Omega)}\left\{[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2}:\|u\|_{L^{q}(\Omega)}=1\right\} .
$$

For $q \neq 2$, any solution of the variational problem above solves the following
semilinear problem

\square Isoperim̄etric Prōblems - P4sa, June 21 st, 2022 (jC

Some generalization

For $N \geq 2$ and $0<s<1$, we set

$$
2_{s}^{*}=\frac{2 N}{N-2 s} .
$$

Then for every $1 \leq q<2_{s}^{*}$, we consider the sharp Poincaré-Sobolev constant

$$
\lambda_{s, q}(\Omega)=\min _{u \in \mathcal{D}_{0}^{D^{, 2}}(\Omega)}\left\{[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2}:\|u\|_{L^{q}(\Omega)}=1\right\} .
$$

For $q \neq 2$, any solution of the variational problem above solves the following semilinear problem

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =\lambda_{s, q}(\Omega)|u|^{q-2} u, & & \text { in } \Omega, \\
u & =0, & & \text { in } \mathbb{R}^{N} \backslash \Omega .
\end{aligned}\right.
$$

Some generalization

Theorem

Let $N \geq 2,0<s<1$ and $1 \leq q<2$. For every $\Omega \subset \mathbb{R}^{N}$ open set with finite measure, we have

$$
|\Omega|^{\frac{2}{q}-1+\frac{2 s}{N}} \lambda_{s, q}(\Omega)-|B|^{\frac{2}{q}-1+\frac{2 s}{N}} \lambda_{s, q}(B) \geq \frac{\sigma_{1}}{(1-s)} \mathcal{A}(\Omega)^{\frac{3}{s}},
$$

for an explicit constant $\sigma_{1}=\sigma_{1}(N, s, q)>0$, which is uniform as $s \nearrow 1$.

Some generalization

Case $q=1$: we call the quantity

$$
\mathcal{T}_{s}(\Omega):=\frac{1}{\lambda_{s, 1}(\Omega)}=\max _{u \in \mathcal{D}_{0}^{s, 2}(\Omega)}\left\{\left(\int_{\Omega}|u| d x\right)^{2}:[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2}=1\right\}
$$

fractional torsional rigidity of order s of Ω.
Corollary
Let $N \geq 2$ and $0<s<1$. For every $\Omega \subset \mathbb{R}^{N}$ open set with finite measure, we have

for an explicit constant $\sigma_{2}=\sigma_{2}(N, s)>0$, which is uniform as $s \nearrow 1$.

Isoperimetric Prōblems +P sa, June $21 \mathrm{st}, 2022$ (jC

Some generalization

Case $q=1$: we call the quantity

$$
\mathcal{T}_{s}(\Omega):=\frac{1}{\lambda_{s, 1}(\Omega)}=\max _{u \in \mathcal{D}_{0}^{s, 2}(\Omega)}\left\{\left(\int_{\Omega}|u| d x\right)^{2}:[u]_{W^{s, 2}\left(\mathbb{R}^{N}\right)}^{2}=1\right\}
$$

fractional torsional rigidity of order s of Ω.
Corollary
Let $N \geq 2$ and $0<s<1$. For every $\Omega \subset \mathbb{R}^{N}$ open set with finite measure, we have

$$
\frac{\mathcal{T}_{s}(B)}{|B|^{\frac{N+2 s}{N}}}-\frac{\mathcal{T}_{s}(\Omega)}{|\Omega|^{\frac{N+2 s}{N}}} \geq \sigma_{2}(1-s) \mathcal{A}(\Omega)^{\frac{3}{s}}
$$

for an explicit constant $\sigma_{2}=\sigma_{2}(N, s)>0$, which is uniform as $s \nearrow 1$.

The case of regular sets

For regular sets $\Omega \subset \mathbb{R}^{N}$ we can slightly improve the exponent on the asymmetry, according to the following

Theorem
Let $N \geq 2,0<s<1$ and $1 \leq q<2_{s}^{*}$. Let $\Omega \subset \mathbb{R}^{N}$ be an open bounded set, satisfying one of the following conditions:
A. either $\partial \Omega$ is Lipschitz and Ω satisfies the exterior ball condition, with radius ρ;
B. or $\partial \Omega$ is $C^{1, \alpha}$, for some $0<\alpha<1$.

Then we have

$$
|\Omega|^{\frac{2}{q}-1+\frac{2 s}{N}} \lambda_{s, q}(\Omega)-|B|^{\frac{2}{q}-1+\frac{2 s}{N}} \lambda_{s, q}(B) \geq \frac{C}{1-s} \mathcal{A}(\Omega)^{2+\frac{1}{s}}
$$

The case of regular sets

Idea: thanks to the regularity results by Ros-Oton and Serra, we know that u is of class $C^{s}\left(\mathbb{R}^{N}\right)$, and this allows us to upgrade the L^{2} control

$$
\begin{equation*}
\left\|E_{u}(\cdot, z)-u\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \lesssim z^{s}, \quad \text { for } z>0 \tag{3}
\end{equation*}
$$

to an L^{∞} control

$$
\begin{equation*}
\left\|E_{u}(\cdot, z)-u\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \lesssim z^{s}, \quad \text { for } z>0 . \tag{4}
\end{equation*}
$$

The fractional isocapacitary inequality

We consider the fractional generalization of the capacity, defined for compact sets as follows

$$
\begin{equation*}
\operatorname{Cap}_{s}(\Omega)=\inf \left\{[u]_{s}^{2}: u \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), u \geq 1 \text { on } \Omega\right\}, \tag{5}
\end{equation*}
$$

Again, as a sconsequence of the fractional Pólya-Szëgo type inequality, one can derive the fractional version of the isocapacitary inequality, stating that

$$
|\Omega|^{(2 s-n) / n} \operatorname{Cap}_{s}(\Omega) \geq|B|^{(2 s-n) / n} \operatorname{Cap}_{s}(B) .
$$

The quantitative fractional isocapacitary inequality

We define the fractional isocapacitary deficit as

$$
\delta_{\text {Cap }_{s}}(\Omega):=|\Omega|^{(2 s-n) / n} \operatorname{Cap}_{s}(\Omega)-|B|^{(2 s-n) / n} \operatorname{Cap}_{s}(B) .
$$

then we have,
Theorem (C.,Ognibene, Ruffini)

$$
\delta_{\text {Cap }_{s}}(\Omega) \geq C_{n, s} \mathcal{A}(\Omega)^{\frac{3}{s}} .
$$

\square Isoperimetric Prōblems - P4sa, June 21 st, 2022 (jC

Thanks a lot for your attention!

