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@ Intro: Isoperimetric clustering problem
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The classical isoperimetric clustering problem

vi
A cluster is a collection of pairwise
disjoint sets in R". @

E={E,E,....,En}, m2>1 b V3
Volume: [€| = (|Ei|,|B2l,-- -, |Em|) € (RT)™.
Perimeter: P(E) = H""}(9E), where §*€ = |JO*E;.
. 1 (< m
Notice: P(€) = 5 (Z P(Ei) + P(U,-lE,-)>
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The classical isoperimetric clustering problem

A cluster is a collection of pairwise vl
disjoint sets in R”.
5:{E17E27"‘7Em}7 mZ]- ) V3

Volume: |€] = (|El, |E2],- -, |En|) € (RT)™.
Perimeter: P(E) = H" 1(0*E), where 9*& = |JO*E;.

Notice: P(&) = % (i P(E) + P(U;LEI))

Isoperimetric clustering problem

Given v = (vi,...,vm) € (RT)™, consider
inf {P(&):|&] =v}.

Solutions are called (m-)isoperimetric clusters.




The classical isoperimetric clustering problem

(i) 3 + regularity of solutions in R", n > 2:  [Almgren Memoirs AMS (1976)]
& minimal = & smooth outside singular set ¥, H"}(X) = 0.

(i) Structure of singularities ¥ in R?: [Morgan (1994)]

1"0
(see [Taylor Annals of Math (1975)] for n = 3) m
£ minimal — 0& = U smooth cmc curves

meeting in threes at 120°. \/LJ x



The classical isoperimetric clustering problem

(i) 3 + regularity of solutions in R", n > 2:  [Almgren Memoirs AMS (1976)]
& minimal = & smooth outside singular set ¥, H"}(X) = 0.

(i) Structure of singularities ¥ in R?: [Morgan (1994)]

1Y0
(See [Taylor Annals of Math (1975)] for n = 3) m
£ minimal — 0& = U smooth cmc curves

meeting in threes at 120°. w ‘

(i) Classification of isoperimetric clusters?

(m = 1) Isoperimetric problem: solutions are balls.

t

isoperimetric



Classification of isoperimetric clustering problem

(m = 2) Double bubble problem. Solutions are standard double bubbles:

FFPS

Images from [Foisy & al. Pacific J. Math. (1993)] and [Maggi (book) (2012)]

[Foisy & al. Pacific J. Math. (1993)]; [Hutchings, Morgan, Ritoré & Ros Annals of Math.
(2002)]; [Reichardt JGA (2008)]



Classification of isoperimetric clustering problem

(m = 2) Double bubble problem. Solutions are standard double bubbles:

FFPS

Images from [Foisy & al. Pacific J. Math. (1993)] and [Maggi (book) (2012)]

[Foisy & al. Pacific J. Math. (1993)]; [Hutchings, Morgan, Ritoré & Ros Annals of Math.
(2002)]; [Reichardt JGA (2008)]

(m = 3): If n =2, solutions are the standard triple bubbles: [Wichiramala (2004)]

Image from [Wichiramala Crelle (2004)]

(m = 4) n =2, same volumes [Paolini & Tortorelli Calc. Var. PDEs (2018)], [Paolini &
Tamagnini COCV (2018)].



Examples of isoperimetric clusters in the plane
(m < min{4, n}): [Milman&Neeman preprint (1 June 2022)]

Solution in R" and S” of the Multiple Bubble conjecture for
<A m = 2 - Double Bubble: Vn > 2,
%@ m = 3 - Triple Bubble: Vn > 3

m = 4 - Quadruple bubble: Vn > 4.

— E. Milman talk: Thursday 23/06, 17h.
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Examples of isoperimetric clusters in the plane
(m < min{4, n}): [Milman&Neeman preprint (1 June 2022)]

Solution in R" and S” of the Multiple Bubble conjecture for
<3 m = 2 - Double Bubble: Vn > 2,
%a m = 3 - Triple Bubble: Vn > 3

m = 4 - Quadruple bubble: Vn > 4.

— E. Milman talk: Thursday 23/06, 17h.

("m = 00”) Honeycomb theorem [Hales Discrete & Comp. Geom. (2001)]]: a regular
hexagonal grid is the best way to tassellate the plane into regions of equal area
with the least total perimeter.

Image from Morgan’s book

(m > 5) OPEN. Numerical simulations (e.g. [Cox, Morgan, Graner Proc. Royal Soc.
A (2013)], [Del Nin Adv. Calc. Var. (2019)])



Today's subject

Planar clustering problem
inf {Pn(&E) : |E€]r = (v1,...vm)},

Pr(€) = %(Z Ph(Ei) + Po(UZLE)),

i=1

for volume and perimeter with densities

Ph(E):/a*Eh(x,z/(x)) dH(x), |E|f:/Ef(X) dx.

h:R®>xS' = (0,+00), f:R*—= (0,400),l.s.c.

Examples:
Ix|?

e Gaussian plane h(x) = f(x) = ;e 2.
—  [Milman & Neeman Annals of Math. (2022)] in dimension n > 2, with m < n.

o Wulff perimeters [Fonseca Proc. Roy. Soc. London Ser. A (1991)], [Morgan French
Greenleaf JGA (1998)]

@ A motivating example from sub-Riemannian geometry: the Grushin plane.

o
N



Grushin perimeter
Denote x = (x1,x2) € R2. For a > 0, E C R? smooth set, let

Py (E) := /aE \/ V2 + |xa |03 d?—[l(x).

N————
ha(x,1(x))

@ Related with the Heisenberg geometry.

@ P, is anisotropic, not translation

invariant, not uniformly elliptic: 6, )
A {v e R* : h(z,v) <1}
o[/ - \ \
ha(Xv V(X)) =0 — | [ \‘ NN
if x=(0,x2) and v = (0, £1). \ /f‘ U/ \f/ — A
N =1

@ There exists a transformation ¢ : R?> — R? such that
C

P, (E) = Peac(V(E)) (h=1),  LY(E) = |W(E)ls, filxi. ) =

x| T

8/27



Today's subject

Planar clustering problem for volume and perimeter with densities
inf {Pu(E) : |€lr = (v1,...vm)},

P(€) = %(Z Pu(E) + Po(UTL E})),

o (m=1) isoperimetric problem with density. [Cabré, Cafiete, Cinti, De Philippis,

Franzina, Fusco, Maggi, Miranda, Morgan, Pratelli, Rosales, Ros-Oton, Saracco, Serra,... ]

@ 1 and regularity are in general not expected. Today, we do not focus on 3.

Are there assumptions under which minimizers are regular out of a
small set?

What about the structure of the singular set depending on h, 7




Outline

e First part: Isotropic perimeter density
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Isotropic perimeter density

ﬁ P,,(E):/a*Eh(x) dH'(x), |E\f:/Ef(x) dx.
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Isotropic perimeter density

j P,,(E):/a*Eh(x) dH'(x), |E\f:/Ef(x) dx.

A preliminary version of our result is the following

Theorem (F., Pratelli, Stefani Comm. Cont. Math (2022))

Assume that

H1: h is locally a-Hélder, for some o € (0,1);

H2: f is loc. bdd., and the f-vol. of Eucl. balls satisfies the growth condition

|Beuct(x, F)|¢ S, n>1/8, r<1, B =

Then the boundary of any isoperimetric cluster is a locally finite union of
regular arcs joining in triple points at 120°.

o “regular’ = C"7 arcs with v = 2 min{nB — 1, a}.
o (Growth): Euclidean, Gaussian: 1 = 2;

Grushin (h=1, f = Clxa| #1): n=a+2.



Idea of the proof

-‘@’- Key point: show that multiple points are loc. finite & triple.
Once this is done, regularity follows in a classical way [Tamanini (1984)].



Idea of the proof

S q o a 2 o a
_@- Key point: show that multiple points are loc. finite & triple.
Once this is done, regularity follows in a classical way [Tamanini (1984)].

1) Length bound in small balls for minimizers: £ minimal = IR < 1:
1(a* 13 2
H(BSHB(X,r))<?r, Vr < R, x € R".

Proof. Let £ = minimizer,
B(x, r) =small ball.
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_@- Key point: show that multiple points are loc. finite & triple.
Once this is done, regularity follows in a classical way [Tamanini (1984)].

1) Length bound in small balls for minimizers: £ minimal = IR < 1:

13
HYO*E N B(x,r)) < S Vr<R xe R2.

Proof. Let £ = minimizer, £ &'
B(x, r) =small ball. EU ,
‘ . 4
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Idea of the proof

_@- Key point: show that multiple points are loc. finite & triple.
Once this is done, regularity follows in a classical way [Tamanini (1984)].

1) Length bound in small balls for minimizers: £ minimal = IR < 1:

13
HYO*E N B(x,r)) < S Vr<R xe R2.

Proof. Let £ = minimizer, &'
B(x, r) =small ball. ET '
‘ . 4
E3'
AP =P(E') = P(E) < 2nrhmax — P(E; B(x, 1)), (1a)
AV| < m|B(x, r)|r. (1b)

Need to repristinate the volume!

12/27



€ — € property

[ € — € property ]
|6 J

/ “Gently pushing’ we can modify a cluster in volume of
AV by changing its perimeter of

|AP| < JAV.

@ [Almgren (1976)] Euclidean perimeter.
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€ — € property

[ € — € property ]
|6 J

/ “Gently pushing’ we can modify a cluster in volume of
AV by changing its perimeter of

|AP| < JAV.

@ [Almgren (1976)] Euclidean perimeter.

[ e — e property, 0 < <1 ]
\ J

& satisfyies the € — e® property if Ve € R™, |g| < 1, ¥x € R?, there
exist a cluster F and a radius Rs such that FAE cC R?\ B(x, Rs) and

|Fle —|E€lr =¢, Pu(F)—Pu(€) < lel”
N———— ——

AV AP

@ [Cinti,Pratelli Crelle (2012)], [Pratelli, Saracco Adv Nonlin St (2019)]:

f,hloc. bdd, h = h(x,v) is a-Holder in x = any cluster of loc. finite

. L . 1
perimeter satisfies the ¢ — &” property with 3 = o
-«

13 /27



Idea of the proof
1) Perimeter bound in small balls for minimizers: £ minimal = 3IR < 1:

HYO*EN B(x,r)) < ? r, Vr<R, x€R2

Proof. Let & = minimizer, &'
B(x, r) =small ball. BT N
|
E3'
AP =P(E') = P(E) < 2nrhmax — P(E; B(x, 1)), (1a)
|AV| < m|B(x,r)|f=e. (1b)
Repristinate the volume via (¢ — &” prop.): growth |B(x,r)|s < Cyyr”!
—_—

= 3" 1" = |€]r, PE) S PE)+Clel’ <PEY+C™ . (2
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Idea of the proof
1) Perimeter bound in small balls for minimizers: £ minimal = 3IR < 1:

HYO*EN B(x,r)) < ? r, Vr<R, x€R2

Proof. Let & = minimizer, &'
B(x, r) =small ball. Ved %
w
‘;\ )
E3
AP =P(E') — P(E) < 2nrhmax — P(E; B(x, 1)), (1a)
|AV| < m|B(x,r)|f=e. (1b)
Repristinate the volume via (e — P prop.): growth |B(x,r)|r < Cpr"!

——
= 3" (" = €], PE") S PE)+Clel® <PEY+C" . (2)

By minimality: P(£) < P(E") < P(E) + 2nrhmax — P(E, B(x, r)) + Cr"”
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Idea of the proof
1) Perimeter bound in small balls for minimizers: £ minimal = 3IR < 1:

13
HYO*E N B(x,r)) < S Vr<R xe R2.

Proof. Let £ = minimizer, &
B(x, r) =small ball. T :
E3
AP =P(E') = P(E) < 2nrhmax — P(E; B(x, 1)), (1a)
|AV| < m|B(x,r)|f=e. (1b)
Repristinate the volume via (¢ — £” prop.): growth |B(x,r)|s < Cypr”!
—_—
= 3" 1" = |€]r, PE) < PE)+Cle)? <PEY+C™ . (2
By minimality: P4€] < PEY+ 27 hmax — P(E, B(x,r)) + Cr"?
H(9*E N B(x,r)) < w < 2ﬂr@ + " < 1?3 r.
min min O

14 /27



2) The boundary of many small balls contains < 3 points of 9*E:
Proof. Start from < 6.

15 /27



2) The boundary of many small balls contains < 3 points of 9*E:
Proof. Start from < 6.

JR<1:VxeR:Lr<R, Ipc (ﬁ,r) . §(8*E N 8B(x, p)) < 6.
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2) The boundary of many small balls contains < 3 points of 9E:

Proof. Start from < 6. — pass to < 5 via Steiner 120°

B(z,r)

JR<1:¥xeR:Lr<R, Ipe (ﬁ,r) L4 (0°E N OB(x,p)) < 6.

15 /27



120° rule

'/

TN

If A,B,C € RR? are three points such that |A — C| = |B — C|, and the
angle ACB is < 120°, then there exists a unique point F minimizing
the sum of the distances from the three points A, B, C and it has the

120° property.

TRACCIA CoN CoNTl

(&

From Math Circles @ Math UNIPD.

16 /27



2) The boundary of many small balls contains < 3 points of 9*E

Proof. Start from < 6.

T
14

P(&, B(z,1)) > P(€, B(z,7) \ B 14))
>7. 18, 18,
=14 2

— pass to < 5 via Steiner 120°.

JR<1:Vx€R:Lr<R, 3pec (ﬁ,r) L8 (8*E N OB(x, p)) < 6.

17 /27



2) The boundary of many small balls contains < 3 points of 9*E

Proof. Start from < 6. — pass to < 5 via Steiner 120°.

T
14

P(&, B(z,1)) > P(€, B(z,7) \ B 14))
>7. 18, 18,
=14 2

3R<1,C>0:¥xcR:r<R, Ipc (ér) L H(8*E NBB(x, p)) < 5.
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2) The boundary of many small balls contains < 3 points of 9*E
Proof. Start from < 6. — .- <3

r

JR<1,C>0:Vx€R:Lr<R, Ipe (C,r) L4 (0°E N OB(x, p)) < 3.

17 /27



2) The boundary of many small balls contains < 3 points of 9*E

Proof. Start from < 6. — passto <5---<3

8w,
W

3) At most 3 colors at small scales < No-islands (cf. no-infiltration in
immiscible fluids [Leonardi (2001)])

17/27
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8w,
W
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4) Distinguish 2 different cases

= Interface regularity in small balls and 120° rule.
* 2 colors: geometric version of [Tamanini (1984)]
* 3-color points are a positive distance apart.

18/27



4) Distinguish 2 different cases

= Interface regularity in small balls and 120° rule.
x 2 colors: geometric version of [Tamanini (1984)]
% 3-color points are a positive distance apart.

We have used

(HO) The regularity of h for the C* regularity of the free boundary;
(H1) & — & property;
(H2) Growth condition |B(x, r)|f < r”.

18/27



Our isotropic result
Theorem (F., Pratelli, Stefani Comm. Cont. Math. (2022))
Assume that
HO: h is continuous, v/h is Dini continuous (i.e., /01 @ dt < +o00 );

H1: & satisfies the ¢ — ” property for 0 < 8 < 1;

H2: the f-volume of Euclidean balls satisfies the growth condition
|Bewer(x, )l S 17, n>1/8, r<1

Then the boundary of an isoperimetric cluster £ is a locally finite union of C*
arcs meeting in triple points at 120°.
If h is a-Hélder, the arcs are C7 with v = § min{npB — 1, a}.

@ The case 8 = 1 can be also treated, implying C* regularity of the free
boundary, under some extra assumptions (t — Cg[t] is regular).

Y

Otherwise it may fail. For example:
Euclidean volume f =1,

so
0=t
’}

19/27



Outline

e Second part: The anisotropic case
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Our anisotropic result

<4 Ph(E)z/a*Eh(xm(x)) dH (%), |E|f:/Ef(x) d.
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Our anisotropic result
g P,,(E):/ h(x, v(x)) dH!(x), |E|f:/f(x) dx.
O*E E

Theorem (F., Pratelli, Stefani subm. (2021))
Assume that
HOa: h is continuous, \/h is Dini continuous in x;
HOb: h is C', strictly convex and uniformly round in v;
H1: & satisfies the ¢ — ” property for 0 < 8 < 1;

H2: the f-volume of Euclidean balls satisfies the growth condition
|Beuet(x, 1) ¢ S, n>1/8, r< 1.

Then the boundary of an isoperimetric cluster & is a locally finite union of C*
arcs meeting in triple points.
If h is a-Hélder, the arcs are CY with v = 3 min{nB — 1, a}.

@ nfs =1 as in the isotropic case.

N

o
N}



Our anisotropic result
g Ph(E):/ h(x, v(x)) dH(x), |E|f:/f(x) d.
O*E E

Theorem (F., Pratelli, Stefani subm. (2021))

Assume that
HOa: h is continuous, \/h is Dini continuous in x;
HOb: h is C', strictly convex and uniformly round in v;
H1: & satisfies the € — £ property for 0 < 8 < 1;

H2: the f-volume of Euclidean balls satisfies the growth condition

‘BEUC/(Xfr)‘fS/r,]‘/ 7]>1/B I’<<1

Then the boundary of an isoperimetric cluster £ is a locally finite union of C*

arcs meeting in triple points. If h is c-Hélder, the arcs are C*7 with
v =1 min{n8 -1, a}.

@ 7 =1 as in the isotropic case.

21/27



The assumptions: convexity and roundedness

HOb: h is C, strictly convex and uniformly round in v.

Let h(x, A\v) = Ah(x,v), A > 0 and set C(x) := {v € R* : h(x,v) < 1}.

Strict convexity: C is strictly convex for all x € R?.

Uniform roundedness: the curvature of C(x) is bounded
from below by ¢ > 0 locally uniformly w.r.t. x.

22/27



The assumptions: convexity and roundedness

HOb: h is C, strictly convex and uniformly round in v.

Let h(x, A\v) = Ah(x,v), A > 0 and set C(x) := {v € R*: h(x,v) < 1}.

Strict convexity: C is strictly convex for all x € R?.

Uniform roundedness: the curvature of C(x) is bounded
from below by ¢ > 0 locally uniformly w.r.t. x.

@ Strict convexity is used both to prove that multiple junctions are locally
finite triple points and for the regularity of the free boundary.

@ Uniform roundedness is only used for the regularity of the free boundary.

Regularity of the free boundary may fail already for
& m = 1 if h is not strictly convex and uniformly round.

N
N

~



The assumptions: quadruple points and C! regularity

HOb: his C, strictly convex and uniformly round in v.

@ The fact that junction points are necessarily triple is related to the fact that
heC'

Es

The unit ball C for h(v) = £*(v). Isoperimetric clusters may have quadruple
junctions [Morgan,French,Greenleaf JGA (1998)].



The assumptions: quadruple points and C! regularity

HOb: his C, strictly convex and uniformly round in v.

@ The fact that junction points are necessarily triple is related to the fact that
heC

E A

E E E E

Es D C

The unit ball C for h(v) = £*(v). Isoperimetric clusters may have quadruple
junctions [Morgan,French,Greenleaf JGA (1998)].

On the right: the unit ball C for a modification of the ¢ norm that gives h
strictly convex and uniformly round, but not C*.

Quadruple points are still allowed in minimizers!

N}

N
N



Comments

The anisotropic Steiner rule:

@ Using that h is C! and strictly convex in v, we
prove that in small balls, no more than three radii
can meet in order to minimize their anisotropic
perimeter.

— [Alfaro et al Pacific J Math (1998)], [Lawlor & Morgan
Pacific J Math (1994)] for minimizing networks.



Comments

The anisotropic Steiner rule:

@ Using that h is C* and strictly convex in v, we c
prove that in small balls, no more than three radii
can meet in order to minimize their anisotropic

perimeter. ‘

— [Alfaro et al Pacific J Math (1998)], [Lawlor & Morgan B
Pacific J Math (1994)] for minimizing networks.

Directions at multiple points:

@ Criticality: If 71,7, 73 € S! are the tangent directions to the boundary of an
isoperimetric cluster meeting at a triple point O

= Vb(r1) + Vh(72) + Vh(73) = 0,

where b is the perimeter density (computed on vectors rotated of 90 degrees)
and “freezed” at the multiple point O.

@ Number of admissible triples: depends on whether h(x, ) = h(x, —v) or not.

N
R
o
N



The role of the symmetry of h
Perimeter:  Py(E) = [,.p h(x,v(x)) dH'(x)
1 (& .
Pu(€) = 5 (Z Py(Ei) + P (Ui=1Ei)>

=\

Qi

25 /27



The role of the symmetry of h

. Perimeter:  Py(E) = [,.p h(x,v(x)) dH'(x)
Pa(E) = (Z Pn(Ei) + Pn (U 1E)>

i=1

If x € 9"E;NO"E;: in P(E) appears 1 </ h(x,v) dH? +/ h(x, —v) dHl)
2 \Jo=E O*E;
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The role of the symmetry of h

Perimeter:  Py(E) = [,.p h(x,v(x)) dH'(x)
Pu(€) = % (Z Py(Ei) + Py (U;nlEi)>

Caigly

If x € 0"E;NO"E;: in P(E) appears 1 / h(x,v) dH? +/ h(x, —v) dH?
2 \Jo*E % E;
If x € 0"EiN 0" Eo: in P(E) appears / h(x,v) dH?!, where Eg = R*\ U, E;
9% E;
The contributions coming from the “colored”
sets may be different from the
ones coming from the “white” one.



Possible directions at multiple points

‘) How many triples of directions are possible? optimal divections

& If h(x,v) = h(x, —v): Given 7y € S, (72, 73)
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Possible directions at multiple points

? How many triples of directions are possible? optimal divections
e

& If h(x,v) = h(x, —v): Given 7y € S, (72, 73)

& If h(x,v) # h(x, —v): Given 71 € S!, a triple containing 71 may exists and
be unique, may not exists, or may be not unique.

A /
ac B A B

A/

Figure: Left: an example with no admissible triple containing A. Right: an example
with multiple admissible triples containing A.

26 /27



[ Conclusions |
Ph(E):/a* h(x,v) dH(x), |E|f:/Ef(x) dx.

e — P property and n-growth conditions are key for regularity.

@ Dependence on the normal should be C! for having no more than 3
regular arcs meeting, together with some strict convexity assumptions.

Symmtery/asymmetry plays a crucial role in discussing minimal triples
of directions.

We cover the Grushin setting
We have a double bubble conjecture here

27 /27



[ Conclusions |
| S ——
P,,(E):/a*Eh(x,u) dH (), |E|f:/Ef(x) dx.

@ ¢ — &’ property and 7-growth conditions are key for regularity.

@ Dependence on the normal should be C! for having no more than 3
regular arcs meeting, together with some strict convexity assumptions.

@ Symmtery/asymmetry plays a crucial role in discussing minimal triples
of directions.

@ We cover the Grushin setting [ Grushin J
We have a double bubble conjecture here.

Outlook:
@ Higher dimensions?
@ Grushin plane: prove double bubble conjecture through Steiner regularity.
@ Heisenberg setting?
@ Numerical simulations (Brakke surface evolver)
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I Conclusions |
- J
Ph(E):/a*Eh(x,V) dH(x), |E|f=/Ef(X) dx.

@ ¢ — &/ property and 7-growth conditions are key for regularity.

@ Dependence on the normal should be C! for having no more than 3
regular arcs meeting, together with some strict convexity assumptions.

@ Symmtery/asymmetry plays a crucial role in discussing minimal triples
of directions.

@ We cover the Grushin setting
We have a double bubble conjecture here

\. J

Outlook:
@ Higher dimensions?
@ Grushin plane: prove double bubble conjecture through Steiner regularity.
@ Heisenberg setting?
@ Numerical simulations (Brakke surface evolver)
TINSAM] vorksnop dbzz F R i) "o »muwwffﬂi

1.2
g\n‘sotrpp etrlc .
‘ _I;leemsg m . |

"~ September sth-oth, 2022

INdAM Workshop
Rome 5-9/09/22

Registration is open!

Thank you for your attention!

27 /27



Steps of the proof of the anisotropic result |

_‘?’. Key point: as in the isotropic case, show that multiple points are loc.
finitely & triple.

1) The anisotropic Steiner rule. In small balls, no

more than three radii can meet in order to minimize

their anisotropic perimeter. (Replaces the 120° ‘
rule. Involves the C! regularity of h in the second B
variable and strictly convex.) [Alfaro et al Pacific J
Math (1998)], [Lawlor & Morgan Pacific J Math (1994)]
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N

5

o
N}



Steps of the proof of the anisotropic result |

_‘?’. Key point: as in the isotropic case, show that multiple points are loc.
finitely & triple.

1) The anisotropic Steiner rule. In small balls, no

more than three radii can meet in order to minimize

their anisotropic perimeter. (Replaces the 120° b ‘

rule. Involves the C! regularity of h in the second B
variable and strictly convex.) [Alfaro et al Pacific J

Math (1998)], [Lawlor & Morgan Pacific J Math (1994)]
A

2) £ minimal = Perimeter in a (small) ball is controlled by radius:

JR<1: P& B(x,r))Sr, Vr<R, x€ R2.

3) No-island (no-infiltration): only for colored
chambers! (i # 0) We can still have some white
holes between different chambers.



Steps of the proof of the anisotropic result |l

4) To exclude this case, we need to enter into the details of the reduced
boundary 9*€ and play with quasi-minimality, porosity (of colored regions),

providing quantitative estimates of “errors” based on the strict convexity of h.

5) At small scales: many circles have < 3 intersections with 9*&
(it was Step 2 before!)

6) Conclusion
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The Grushin case

[ Grushin perimeter ]
| J

Given a > 0, on a smooth set E C R? it is the following:

P.(E) :/a Ve b dii(x),  x = (xa, %)

E%’_/
ha(x,v(x))

@ P, is anisotropic, not translation invariant, not uniformly elliptic:

ha(x,v(x)) =0 if x = (0,x) and v = (0, £1).
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The Grushin case

[ Grushin perimeter ]
\ J

Given a > 0, on a smooth set E C R? it is the following:

P.(E) = /@ A/ V2 + [ xa|Pau? d’;’-[l(x), x = (x1,%2).

Eeeo——
ha(x,v(x))

@ P, is anisotropic, not translation invariant, not uniformly elliptic:
ha(x,v(x)) =0 if x = (0,x) and v = (0, £1).
@ [soperimetric sets for P, and Euclidean volume constraint are characterized
[Monti, Morbidelli JGA (2004)]
E.={x € R’ x| < pa(x1), |xa| <1}
——"

explicit

For a = 1, this is a section of the candidate
isoperimetric set in the Heisenberg group !
[Pansu (1982)].
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The Grushin case

[ Grushin perimeter ]
\ J

Given a > 0, on a smooth set E C R? it is the following:

P.(E) = /@ A/ V2 + [ xa|Pau? d’;’-[l(x), x = (x1,%2).

Eeeo——
ha(x,v(x))

@ P, is anisotropic, not translation invariant, not uniformly elliptic:
ha(x,v(x)) =0 if x = (0,x) and v = (0, £1).
@ [soperimetric sets for P, and Euclidean volume constraint are characterized

[Monti, Morbidelli JGA (2004)]

E,={x¢€ R? : 2| < pal(x), |xa| <1}
~——

explicit

For a = 1, this is a section of the candidate
isoperimetric set in the Heisenberg group !
[Pansu (1982)].




Grushin isoperimetric clustering problem

@ There exists a transformation ® : R — R? that gives

[ Transformed plane ]
\ J

oo (x)
—_—

Po(E) = Peua(®(E))  |E1 =0(E)ls = /d,@) 2+ x| 51 dx.

The transformed volume and perimeter satisfy the ¢ — ¢ and growth condition
with n = a + 2.
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[ Transformed plane ]
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——
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The transformed volume and perimeter satisfy the ¢ — ¢ and growth condition
with n = a + 2.

@ [F, Stefani COCV (2019)]: study the double bubble problem in the Grushin
plane. — conjecture the shape of minimal double bubbles.
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[ Transformed plane ]
\ J
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——
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Grushin isoperimetric clustering problem

@ There exists a transformation ® : R — R? that gives

[ Transformed plane ]
\ J

fou (%)
——

Pi(E) = Pesat(®(E)) |El = |¢(E)ls, = /¢(E) (a4 1)x| 7 dx.

The transformed volume and perimeter satisfy the ¢ — ¢ and growth condition
with n = a + 2.

@ [F, Stefani COCV (2019)]: study the double bubble problem in the Grushin
plane. — conjecture the shape of minimal double bubbles. ©

Multiple points are triple and satisfy the 120° rule in the transformed plane.



Grushin double bubble problem

(Pas|-1): h= (2 +x23)Y2, f=1.

(M=2): Grushin double bubble problem

inf {Pa() : € = {E1, B} € C(v, ) | @ €l

Pa(E) = 5 (P(E)+P(E) + P(ELUE)). & {U x

N =
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Grushin double bubble problem

(Pas|-1): h= (2 +x23)Y2, f=1.

(M=2): Grushin double bubble problem

inf{Pa( ): € —{El,Ez}EM} @ 2

Pa(E) =

M\l—ﬂ

(P(E)+P(E)+P(EIUE)). =4 {L) :

We consider the double bubble problem under more restrictive conditions:
(1) We assume vi = v, = v > 0.
(2) We assume specific structures of interfaces.

Problem 1: (DBV) Only vertical interfaces on {x; = 0} allowed.
Problem 2: (DBH) Only horizontal interfaces allowed.
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Main result

Theorem (F., Stefani (2019))

Let v > 0. Then solutions to problems (DBV), (DBH) exist.
Moreover:

(DBV) £ C R? sol. to (DBV) = up to vertical translations, we have
£={x €R*: be| < f(pal), Ial <1},

f € C([0, r]) N C=(]0, r[), r €]0,+oc|, depends explicitly on v and c.
In particular, if o > 0, then f'(0) = 0.

Case a =0 Caseaa =1

y y
f=F(0,v) f=f(a,v)
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Main result

Theorem (F., Stefani (2019))

(DBH) E C R? sol. to (DBH) == up to vertical translations, we have

) <e])

o [0,1] — [0, 4+o00[ isoperimetric profile and k depends explicitly on v, a.

5:5% ({XER2 2 (X1,|X2\*s0a(

Case =0
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Main result

Theorem (F., Stefani (2019))

(DBH) E C R? sol. to (DBH) = up to vertical translations, we have

= ({x 3 (bl o () <22,

©va: [0,1] = [0, +oc| isoperimetric profile and k depends explicitly on v, c.
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120 degrees rule.
EV solution to (DBV).

f=f(a,v)

Al
N

The angle of interface between the
bubbles is flat! Let F¥ = W(EY)

FY=W(EY)

E" solution to (DBH).

1
trahsform

The angle of interface depends on
a,v. Let F" = w(EY).

y

FH=W(EH)




120 degrees rule.
EY solution to (DBV). E" solution to (DBH).

f=f(a,v) 1

F‘ 3‘\ | trafisforn
N

The angle of interface between the The angle of interface depends on
bubbles is flat! Let F¥ = W(EY) a,v. Let F" = w(E").

FH=W{EM)

Corollary (F., Stefani)

The boundaries of the transformed bubbles meet at an angle of 120 degrees.



Comparison between vertical and horizontal
What can we conclude in view of the general double bubble problem?

[ inf {Pa(E): E=EUE, L*E)=v} ]

(o = 0): Solutions to (DBV) and (DBH) are the standard double bubbles.

Vertical interface Horizontal interface
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Comparison between vertical and horizontal
What can we conclude in view of the general double bubble problem?

[ inf {Pa(E): E= E1UE, L*(E)=v} ]

(o = 0): Solutions to (DBV) and (DBH) are the standard double bubbles.

(o =1): Let EY be a solution to (DBV) and E" be a solution to (DBH).

Vertical interface Horizontal interface

y

™ )
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(EY) = Pu(E™)
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