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Sobolev and vector calculus on metric measure spaces

=⇒ Sobolev spaces on metric measure spaces were thoroughly studied.

Haj lasz, Cheeger, Shanmugalingam, Ambrosio, Gigli, Savaré, Di Marino...

A way to define W 1,2(X), with (X, d,m) metric measure space: as the

finiteness domain of the Cheeger energy Ch : L2(X) → [0,+∞], which

is the L2(X)-lower semicontinuous envelope of the functional

L2(X) ∋ f 7−→

{
1
2

´
lip2(f )dm,

+∞,

if f ∈ LIPbs(X),

otherwise.

Here, lip(f ) stands for the slope: lip(f )(x) := limy→x
|f (y)−f (x)|

d(y ,x) .

=⇒ The Cheeger energy admits the following integral representation:

Ch(f ) =
1

2

ˆ
|Df |2 dm, for every f ∈ W 1,2(X).

The function |Df | ∈ L2(X) is called the minimal relaxed slope of f .
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Sobolev and vector calculus on metric measure spaces

When Ch is a quadratic form, we say that (X, d,m) is infinitesimally

Hilbertian. In this case, the carré du champ operator is bilinear:

W 1,2(X)×W 1,2(X) ∋ (f , g) 7→ ∇f ·∇g :=
|D(f + g)|2 − |Df |2 − |Dg |2

2
.

A notion of gradient was introduced by [Gigli’18]: the relevant object

is the tangent module L2(TX), i.e. the completion of L∞(X)-linear

combinations of the ‘formal’ gradients ∇f of f ∈ W 1,2(X).

Divergence: v ∈ L2(TX) has divergence div(v) ∈ L2(X) if

ˆ
∇f · v dm = −

ˆ
f div(v)dm, for every ∈ W 1,2(X).

Laplacian: f ∈ W 1,2(X) has Laplacian ∆f if ∃div(∇f ) =: ∆f .

=⇒ The heat flow semigroup (ht)t≥0, i.e. the gradient flow of the

Cheeger energy, is characterised by the identity d
dt ht f = ∆ht f .
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The class of RCD spaces

=⇒ RCD spaces are ‘Riemannian-like’ metric measure spaces verifying

lower bounds on the Ricci curvature and upper bounds on the dimension.

Lott, Villani, Sturm, Bacher, Ambrosio, Gigli, Savaré, Rajala, Mondino,

Erbar, Kuwada, Cavalletti, Milman...

A metric measure space (X, d,m) is called an RCD(K ,N) space, for

some constants K ∈ R and N ∈ [1,∞), provided the following hold:

i) There exist C > 0 and x̄ ∈ X such that m(Br (x̄)) ≤ CeCr
2 ∀r > 0.

ii) (Sobolev-to-Lipschitz) Each function f ∈ W 1,2(X) with |Df | ≤ 1

m-a.e. has a 1-Lipschitz representative.

iii) (X, d,m) is infinitesimally Hilbertian.

iv) (Weak Bochner inequality) For sufficiently many functions f ,

∆
|Df |2

2
≥ (∆f )2

N
+ ∇f · ∇∆f + K |Df |2.
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The class of RCD spaces

=⇒ RCD(K ,N) spaces with N ∈ N and m = H N have a special role.

(These are non-collapsed, in the sense of [De Philippis-Gigli’18].)

The theory of RCD covers the following important classes of spaces:

• Smooth Riemannian manifolds with Ricci curvature bounded from

below (possibly weighted and/or with convex boundary).

• Finite-dimensional Alexandrov spaces, with sectional curvature

bounded from below [Petrunin’11].

• Ricci limits, i.e. limits of sequences of Riemannian manifolds with

uniform lower bounds on the Ricci curvature and having constant

dimension (Cheeger, Colding, Naber...).

Limits are with respect to the pointed measured Gromov–Hausdorff

topology (pmGH for short), which we will recall in the following slide.
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Pointed measured Gromov–Hausdorff convergence

=⇒ We recall the extrinsic definition of pmGH convergence.

Let (Xn, dn,mn, x̄n) be a pointed RCD(Kn,Nn) space, with (Kn)n, (Nn)n
bounded, and (X∞, d∞,m∞, x̄∞) a pointed metric measure space. Then

(Xn, dn,mn, x̄n)
pmGH−→ (X∞, d∞,m∞, x̄∞)

if there exist a proper metric space (Z, dZ) and isometric embeddings

ιn : Xn ↪→ Z for every n ∈ N ∪ {∞} such that ιn(x̄n) → ι∞(x̄∞) and

(ιn)#mn ⇀ (ι∞)#m∞, in duality with Cbs(Z).

Fundamental properties of RCD spaces related to pmGH:

• (Stability) If we assume that Kn → K and Nn → N, then the

pmGH-limit space (X∞, d∞,m∞) is RCD(K ,N).

• (Compactness) The class of RCD(K ,N) spaces is pmGH-compact.
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Structure theory of RCD spaces

For a pointed RCD(K ,N) space (X, d,m, x), the tangent cone Tanx(X)

is the set of all those pointed RCD(0,N) spaces (Y, dY ,mY, ȳ) such that

(X, r−1
i d, cx,rim, x)

pmGH−→ (Y, dY,mY, ȳ), as i → ∞,

for some sequence of radii ri ↘ 0, where cx,ri are normalising factors.

=⇒ It holds that Tanx(X) ̸= ∅ for every x ∈ X by pmGH-compactness.

Theorem (Structure of RCD spaces)

Let (X, d,m) be an RCD(K ,N) space. Then there exists a unique

n ∈ N with n ≤ N such that Tanx(X) = {(Rn, 0)} for m-a.e. x ∈ X.

Moreover, (X, d) is n-rectifiable up to m-null sets and m = θHn for

some θ : X → (0,+∞). We call n the essential dimension of X.

Gigli, Mondino, Rajala, Naber, Bruè, Semola, Kell, Pasqualetto, De

Philippis, Marchese, Rindler...
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Refined vector calculus on RCD spaces

=⇒ The RCD condition entails a refined (and second-order) calculus.

The key observation, due to [Savaré’14] (see also [Gigli’18]), is that

Test(X) :=
{
f ∈ W 1,2(X) ∩ LIPb(X)

∣∣∣ ∃∆f ∈ W 1,2(X)
}
,

is an algebra of functions strongly dense in W 1,2(X) and satisfying

∇f · ∇g ∈ W 1,2(X), for every f , g ∈ Test(X). (1)

As a consequence, one deduces that |Df | ∈ W 1,2(X) for all f ∈ Test(X).

=⇒ In particular, the test vector fields, which are the elements of

Test(TX) :=

{ n∑
i=1

gi∇fi

∣∣∣∣ (fi )
n
i=1, (gi )

n
i=1 ⊂ Test(X)

}
⊂ L2(TX),

are well-defined up to Cap-null sets, in a suitable sense (see next slide).

Using test functions/vector fields and suitable integration-by-parts

formulae, [Gigli’18] introduced Hessian, covariant derivative, etc...
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Refined vector calculus on RCD spaces

The Sobolev 2-capacity on X is the outer measure Cap, given by

Cap(E ) := inf
f

ˆ
|f |2 dm +

ˆ
|Df |2 dm, for every set E ⊂ X,

where the infimum is among all f ∈ W 1,2(X) satisfying f ≥ 1 m-a.e. on

an open neighbourhood of E . In great generality, it holds that

every f ∈ W 1,2(X) has a quasi-continuous representative.

In particular, Sobolev functions are well-defined Cap-almost everywhere.

By building on top of (1), in [Debin-Gigli-Pasqualetto’21] the concept of

the capacitary tangent module L∞Cap(TX) on (X, d,m) was introduced.

=⇒ L∞Cap(TX) is obtained as the completion of the L∞(Cap)-linear

combinations of the ‘formal’ gradients ∇f of f ∈ Test(X).

As m ≪ Cap, there is a natural projection map L∞Cap(TX) → L∞(TX).
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Sets of finite perimeter and functions of bounded variation

=⇒ BV functions on metric measure spaces were thoroughly studied.

Miranda Jr., Ambrosio, Di Marino, Martio...

Given any f ∈ L1loc(X) and Ω ⊂ X open, we define

|Df |(Ω) := inf

{
lim

n→∞

ˆ
Ω

lip(fn)dm

∣∣∣∣ (fn)n ⊂ LIPloc(Ω), fn → f in L1loc(Ω)

}
.

If |Df |(X) < +∞, then |Df | can be extended to a Borel measure |Df |.

• We say that f ∈ L1(X) is of bounded variation, briefly f ∈ BV(X),

if |Df |(X) < +∞. We call |Df | the total variation measure of f .

• E ⊂ X Borel is of finite perimeter if P(E ) := |D1E |(X) < +∞.

We call P(E , ·) := |D1E | the perimeter measure of E .

The total variation enjoys the following lower semicontinuity property:

|Df |(Ω) ≤ lim
n→∞

|Dfn|(Ω), if fn → f in L1loc(X) and Ω ⊂ X is open.
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De Giorgi’s Theorem for sets of finite perimeter in RCD

=⇒ De Giorgi’s Structure Theorem for sets of finite perimeter in the

Euclidean space was generalised to the setting of RCD spaces.

Following [Ambrosio-Bruè-Semola’19], given E ⊂ X of finite perimeter,

we call Tanx(X,E ) the set of (Y, dY,mY, ȳ ,F ) with (Y, ȳ) ∈ Tanx(X)

such that F ⊂ Y has (locally) finite perimeter and χ(ri )
E → χF in L1loc

along some realisation of the pmGH-convergence r−1
i X → Y.

Theorem (Structure of sets of finite perimeter)

Let (X, d,m) be an RCD(K ,N) space of essential dimension n ≤ N and

E ⊂ X a set of finite perimeter. Then the reduced boundary of E ,

FE :=
{
x ∈ X

∣∣∣ Tanx(X,E ) =
{

(Rn, 0, {xn > 0}
}}

,

satisfies P(E ,X \ FE ) = 0. Moreover, FE is (n − 1)-rectifiable up to

P(E , ·)-null sets and P(E , ·) = ΘHn−1, where Θ(x) := limr↘0
m(Br (x))

ωnrn
.

Ambrosio, Bruè, Semola, Pasqualetto, Antonelli, Brena...
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Gauss–Green formula on RCD spaces

As proved in [Bruè-Pasqualetto-Semola’22] (see also [Brena-Gigli’22]),

P(E , ·) ≪ Cap, for every set E ⊂ X of finite perimeter.

Therefore, the statement of the following result is meaningful:

Theorem (Gauss-Green formula)

Let (X, d,m) be an RCD(K ,N) space, E ⊂ X a set of finite perimeter.

Then there exists an element νE ∈ L∞Cap(TX), unique up to P(E , ·)-a.e.

equality, such that |νE | = 1 holds P(E , ·)-a.e. and

ˆ
E

div(v)dm =

ˆ
v · νE dP(E , ·), for every v ∈ Test(TX).

We say that νE is the outer unit normal of E .

=⇒ A Gauss–Green formula for vector fields having measure-valued

divergence was obtained in [Buffa-Comi-Miranda Jr.’21].
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Topological properties of isoperimetric sets in RCD

Let (X, d,m) be an RCD(K ,N) space. A set E ⊂ X of finite perimeter

with 0 < m(E ) < +∞ is said to be isoperimetric provided it holds

P(E ) ≤ P(F ), whenever F ⊂ X satisfies m(F ) = m(E ).

Notation: E (1) denotes the essential interior of E , where we set

E (t) :=

{
x ∈ X

∣∣∣∣ lim
r↘0

m(E ∩ Br (x))

m(Br (x))
= t

}
, for every t ∈ [0, 1].

The essential boundary of E is defined as ∂eE := X \ (E (1) ∪ E (0)).

=⇒ Note that FE ⊂ ∂eE ⊂ ∂E and that E (1) = E up to m-null sets.

Theorem (Topological properties of isoperimetric sets)

Let (X, d,HN) be RCD(K ,N), with N ≥ 2 and infx∈X HN(B1(x)) > 0.

Let E ⊂ X be an isoperimetric set. Then E (1) is open and bounded.

Moreover, ∂E (1) = ∂eE and ∂E (1) is (N − 1)-Ahlfors regular in X.
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Deformation Lemma in RCD spaces

Strategy of proof:

1) Build measure-prescribing deformations of sets with interior points.

2) Prove that isoperimetric sets have interior and exterior points.

3) Combine 1) with 2), to obtain the Topological Regularity Theorem.

=⇒ Unless otherwise specified, hereafter the results are taken from:

Antonelli-Pasqualetto-Pozzetta, Isoperimetric sets in spaces with lower

bounds on the Ricci curvature, Nonlinear Analysis 220 (2022), 112839.

Theorem (Deformation Lemma)

Let (X, d,m) be an RCD(K ,N) space and R > 0. Then for any E ⊂ X

of finite perimeter and any point x ∈ X it holds that

P(Br (x),E (1)) ≤ CK ,N,R
m(E ∩ Br (x))

r
+ P(E ,Br (x)), ∀r ∈ (0,R).
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Deformation Lemma in RCD spaces

P(Br (x),E (1)) ≤ CK ,N,R
m(E ∩ Br (x))

r
+ P(E ,Br (x))
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Deformation Lemma in RCD spaces

Sketch of proof.

By lower semicontinuity, it suffices to prove the claim for a.e. r ∈ (0,R),

thus we can assume that P(E ∩ Br (x)) = P(Br (x),E (1)) + P(E ,Br (x)).

=⇒ Apply Gauss–Green formula to ∇d2
x = 2dx∇dx on F := E ∩ Br (x).

νF =

{
νBr (x) = ∇dx ,

νE ,

on E (1) ∩ ∂eF ,

on Br (x) ∩ ∂eF .
(2)

We will need the Laplacian comparison estimate from [Gigli’15]:

∆d2
x ≤ 2N(τ̃K ,N ◦ dx)m. (3)

By applying the Gauss–Green formula to ∇d2
x on F , we obtain thatˆ

F

∆d2
x︸ ︷︷ ︸

(LHS)

=

ˆ
F

div(∇d2
x) =

ˆ
∂eF

νF · ∇d2
x dP(F , ·)︸ ︷︷ ︸

(RHS)

.
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Deformation Lemma in RCD spaces

We can bound (LHS) using the Laplacian comparison estimate for d2
x :

(LHS)
(3)

≤ 2N

ˆ
F

τ̃K ,N ◦ dx dm ≤ 2NC̃K ,N,R m(E ∩ Br (x)).

Concerning (RHS), we can estimate

(RHS) = 2

ˆ
∂eF

dx(νF · ∇dx)dP(F , ·)

(2)
= 2

ˆ
E (1)

dx |∇dx |2︸ ︷︷ ︸
=r on ∂Br (x)

dP(Br (x), ·) + 2

ˆ
Br (x)

dx(νE · ∇dx)dP(E , ·)

≥ 2r P(Br (x),E (1)) − 2

ˆ
Br (x)

dx |νE · ∇dx |︸ ︷︷ ︸
≤r on Br (x)

dP(E , ·)

≥ 2r P(Br (x),E (1)) − 2r P(E ,Br (x)).

We thus obtain the statement with CK ,N,R := NC̃K ,N,R .
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Volume-prescribing localised deformations

We say that a Borel set E ⊂ X has an interior point x ∈ X provided

m(Br (x) \ E ) = 0, for some radius r > 0.

Corollary (Measure-prescribing deformations)

Let E ⊂ X be of finite perimeter. Suppose E has an interior point.

Then there exist v̄ , C̄ > 0 and a ball B such that the following holds:

given any v ∈ (0, v̄), there exists a Borel set F ⊂ X with E ⊂ F and

E∆F ⊂ B, m(F ∩ B) = m(E ∩ B) + v , P(F ) ≤ C̄ v + P(E ).

Proof.
Let x ∈ X and r > 0 satisfy m(Br (x) \ E ) = 0. On a geodesic joining x

with any y ∈ E (0), one can pick a point z such that m(Br/2(z) \ E ) = 0

and m(Br (z) \ E ) > 0. We conclude by using the Deformation Lemma:

one can choose B := Br (z), v̄ := m(Br (z) \ E ), and C̄ :=
2CK,N,r

r .

17



Volume-prescribing localised deformations

For any v ∈ (0, v̄) there exists ρ ∈ ( r
2 , r) such that F := E ∩ Bρ(z)

satisfies m(F ∩ Br (z)) = m(E ∩ Br (z)) + v . By the Deformation Lemma,

P(F ) ≤ P(E ) + CK ,N,r
m(Bρ(z) \ E )

ρ
≤ P(E ) +

2CK ,N,r

r
v .
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Isoperimetric sets have interior and exterior points

Hereafter, we consider an RCD(K ,N) space (X, d,HN) with N ≥ 2 and

inf
x∈X

HN(B1(x)) > 0.

Some important properties of this class of spaces:

i) (Bishop–Gromov comparison) If x ∈ X and 0 < r < R, then

HN(BR(x))

v(N,K/(N − 1),R)
≤ HN(Br (x))

v(N,K/(N − 1), r)
,

where v(N,K/(N − 1), r) is the volume of an r -ball in MN
K/(N−1).

ii) Let ΘN(x) := limr↘0
HN (Br (x))

ωN rN
. Then ΘN = 1 holds HN -a.e. on X.

iii) By lower semicontinuity of ΘN , we deduce from ii) that ΘN ≤ 1.

Proposition

Every isoperimetric set E ⊂ X has both interior and exterior points.
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Isoperimetric sets have interior and exterior points

To prove the previous Proposition, we adapted an argument by [Xia’05],

which was in turn inspired by [Gonzalez-Massari-Tamanini’83].

=⇒ We omit the details. Some of the ingredients of the proof:

1) A volume decay estimate: given any o ∈ E (0), it holds that

inf
{
HN(E ∩ Br (x))

∣∣∣ x ∈ Br̄ (o)
}
≤ Cr

N2

N−1 , ∀r ∈ (0, r̄).

2) Almost Euclidean isoperimetric ineq.: if ΘN(o) = 1 and ε > 0,

P(E ) ≥ Nω
1/N
N (1 − ε− C̄ r)HN(E )

N−1
N ,

when r < r̄ , x ∈ BR̄(o), E ⊂ Br (x). See [Cavalletti-Mondino’20].

3) Balls almost verify the reverse Euclidean isoperimetric inequality:

P(B) ≤ Nω
1/N
N (1 + ε)HN(B)

N−1
N , ∀ ball B with HN(B) ≤ v̄ε.

=⇒ Thanks to the RCD version of the Morgan–Johnson Lemma.
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Topological regularity of isoperimetric sets

All in all, we have measure-prescribing deformations of isoperimetric.

=⇒ Following e.g. [Maggi’12], we prove the Topological Regularity Thm.

Main steps of the proof:

1) We prove that every isoperimetric set E ⊂ X is a (Λ, r0)-perimeter

minimiser, for some Λ, r0 > 0. This means that if x ∈ X and r < r0,

P(E ,Br (x)) ≤ P(F ,Br (x)) + ΛHN(E∆F ), when E∆F ⋐ Br (x).

2) Isoperimetric inequality for small volumes: ∃C̄ , v̄ > 0 such that

E ⊂ X with HN(E ) ≤ v̄ =⇒ P(E ) ≥ C̄HN(E )
N−1
N .

3) Using 2), we show that E is also a (K , r ′0)-quasi minimal set for

some K ≥ 1 and r ′0 > 0. This means that if x ∈ X and r < r ′0,

P(E ,Br (x)) ≤ K P(F ,Br (x)), when E∆F ⋐ Br (x).
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Topological regularity of isoperimetric sets

4) We prove that there exist C1 ∈ (0, 1), C2 ≥ 1, and r̄ > 0 such that

C1 ≤
HN(E ∩ Br (x))

HN(Br (x))
≤ 1 − C1,

1

C2
≤ P(E ,Br (x))

rN−1
≤ C2,

for every x ∈ ∂E (1) and r < r̄ . It follows that E (1) is open, that

∂E (1) = ∂eE , and that the set ∂E (1) is (N − 1)-Ahlfors regular.

5) To prove that E (1) is bounded: fix an interior point x̄ of E and

define V (r) := HN(E \ Br (x)) for every r > 0. One can show that

V (r)
N−1
N ≤ CV ′(r), for a.e. r sufficiently large,

for some C > 0. By an ODE comparison, we deduce that V (r̄) = 0

for some r̄ > 0. This means that Hn(E \ Br̄ (x̄)) = 0, as desired.
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Thank you for the attention


