On Clusters and the Multi-Isoperimetric Profile in Riemannian Manifolds with Bounded Geometry

Reinaldo Resende de Oliveira

Isoperimetric Problems (University of Pisa)

June 22, 2022

Resende, R. O. (IME-USP)

Clusters in manifolds

June 22, 2022

Basic concepts

- 2 Multi-isoperimetric profile
- 3 Generalized compactness and existence
- 4 Small volumes implies small diameters
- 5 Local Holder continuity

Basic concepts

- 2 Multi-isoperimetric profile
- 3 Generalized compactness and existence
- 4 Small volumes implies small diameters
- 5 Local Holder continuity

6 Conclusion

An **N-cluster** \mathcal{E} of (M^n, g) is a finite family of sets of finite perimeter $\mathcal{E} := {\mathcal{E}(h)}_{h=1}^N$, $N \in \mathbb{N}$, $N \ge 1$, with

$$0 < \operatorname{Vol}_{g} \left(\mathcal{E}(h) \right) < +\infty, \qquad 1 \leq h \leq N,$$

 $\operatorname{Vol}_{g} \left(\mathcal{E}(h) \cap \mathcal{E}(k) \right) = 0, \qquad 1 \leq h < k \leq N.$

The sets $\mathcal{E}(h)$ are called the **chambers** of \mathcal{E} . The **exterior chamber** of \mathcal{E} is defined as

$$\mathcal{E}(0) = M^n \setminus \bigcup_{h=1}^N \mathcal{E}(h).$$

In particular, $\{\mathcal{E}(h)\}_{h=0}^{N}$ is a partition of M^{n} (up to a set of null volume). The **volume vector** $\mathbf{v}_{g}(\mathcal{E})$ is defined as

$$\mathsf{v}_{g}\left(\mathcal{E}
ight)=\left(\mathsf{Vol}_{g}\left(\mathcal{E}(1)
ight),\ldots,\mathsf{Vol}_{g}\left(\mathcal{E}(\mathsf{N})
ight)
ight)\in\mathbb{R}^{\mathsf{N}}.$$

We let \mathbb{R}^N_+ be the set of those $\mathbf{v} \in \mathbb{R}^N$ such that $\mathbf{v}(h) > 0$ (the *h*-th component of a vector \mathbf{v}) for every h = 1, ..., N. Notice that if \mathcal{E} is an N-cluster, then $\mathbf{v}_g(\mathcal{E}) \in (0, \mathbf{Vol}_g(M))^N \subset \mathbb{R}^N_+$ as $\mathbf{v}_g(\mathcal{E})(h) = \mathbf{Vol}_g(\mathcal{E}(h)) > 0$ for every h = 1, ..., N.

The **interfaces** of the N-cluster \mathcal{E} in (M^n, g) are the \mathcal{H}_g^{n-1} -rectifiable sets

$$\mathcal{E}(h,k) = \partial^* \mathcal{E}(h) \cap \partial^* \mathcal{E}(k), \quad 0 \leq h,k \leq N, h \neq k.$$

We define the **relative perimeter of** \mathcal{E} **in** $F \subset M^n$ as

$$\mathcal{P}_{g}\left(\mathcal{E},F\right) = \sum_{1 \leq h < k \leq N} \mathcal{H}_{g}^{n-1}\left(F \cap \mathcal{E}(h,k)\right), \tag{1}$$

where *F* is any Borelian set in (M^n, g) . The **perimeter of** \mathcal{E} is denoted $\mathcal{P}_g(\mathcal{E}) \doteq \mathcal{P}_g(\mathcal{E}, M)$.

イロト 不得 トイヨト イヨト 二日

$E(2,3) = \partial^* E(2) \cap \partial^* E(3)$ $E(3,0) = \partial^* E(3) \cap \partial^* E(0)$

Resende, R. O. (IME-USP)

Clusters in manifolds

June 22, 2022

< A > <

< ∃⇒

The flat distance in $F \subset M^n$ of two N-clusters \mathcal{E} and \mathcal{E}' of (M^n, g) is defined as

$$d_{\mathcal{F},g}^{\mathsf{F}}(\mathcal{E},\mathcal{E}') := \sum_{h=1}^{N} \mathbf{Vol}_{g}\left(\mathsf{F} \cap (\mathcal{E}(h)\Delta \mathcal{E}'(h))
ight).$$

We say that a sequence of N-clusters $\{\mathcal{E}_k\}_{k\in\mathbb{N}}$ in (M^n, g) locally converges to \mathcal{E} , and write $\mathcal{E}_k \stackrel{\text{loc}}{\to} \mathcal{E}$, if for every compact set $K \subset M^n$ we have $d_{\mathcal{F},g}^K(\mathcal{E}, \mathcal{E}_k) \to 0$ as $k \to +\infty$. If $d_{\mathcal{F},g}(\mathcal{E}, \mathcal{E}_k) \to 0$ as $k \to +\infty$, we say that \mathcal{E}_k converges to \mathcal{E} and we denote $\mathcal{E}_k \to \mathcal{E}$.

If \mathcal{E} is an N-cluster in (M^n, g) , then for every $F \subset M^n$ we have

$$\mathcal{P}_{g}(\mathcal{E};F) = \frac{1}{2} \sum_{h=0}^{N} \mathcal{P}_{g}(\mathcal{E}(h);F).$$

If \mathcal{E} is an N-cluster in (M^n, g) , then for every $F \subset M^n$ we have

$$\mathcal{P}_{g}(\mathcal{E};F) = \frac{1}{2} \sum_{h=0}^{N} \mathcal{P}_{g}(\mathcal{E}(h);F).$$

In particular, if A is open in M^n and $\mathcal{E}_k \stackrel{loc}{\to} \mathcal{E}$, then

$$\mathcal{P}_g(\mathcal{E}; A) \leq \liminf_{k \to +\infty} \mathcal{P}_g(\mathcal{E}_k; A).$$

Resende, R. O. (IME-USP)

If \mathcal{E} is an N-cluster in (M^n, g) , then for every $F \subset M^n$ we have

$$\mathcal{P}_g(\mathcal{E}; F) = \frac{1}{2} \sum_{h=0}^{N} \mathcal{P}_g(\mathcal{E}(h); F).$$

In particular, if A is open in M^n and $\mathcal{E}_k \stackrel{loc}{\to} \mathcal{E}$, then

$$\mathcal{P}_g(\mathcal{E}; A) \leq \liminf_{k \to +\infty} \mathcal{P}_g(\mathcal{E}_k; A).$$

The proof of this result is a straightforward adaptation of the Euclidean case.

What happens if we define the perimeter as

$$\mathcal{P}_g^w(\mathcal{E}, F) = \frac{1}{2} \sum_{h,k=0}^N \alpha_{hk} \mathcal{H}_g^{n-1} \left(F \cap \mathcal{E}(h,k) \right),$$

where $\alpha_{hk} = \alpha_{kh} > 0$, and $\alpha_{hh} = 0$, for any $h, k \in \{0, \dots, N\}$?

э

$$E(z) \qquad E(z) \qquad \text{arbitany} \\ \xrightarrow{\pi'_{hK} = L} \\ \xrightarrow{\forall n \neq kc} \\ \xrightarrow{\forall n \neq kc}$$

∃ ∽ へ (~

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

F. Almgren Jr in 1975 introduced the following condition.

Partitioning regular coefficients matrices

- $a_{ij} = \alpha_{ji} > 0 \text{ and } \alpha_{ii} = 0 \text{ for any } i, j \in \{1, \cdots, N\};$
- ② for each $i \in \{1, \dots, N\}$ and each vector $a = (a_1, \dots, a_N) \in \mathbb{R}^N_+$ such that $a_k > 0$ for some $k \neq i$, there exists $j \in \{1, \dots, N\} \setminus \{i\}$ such that

$$a_j \alpha_{ij} > \sum_{k=1, k \neq i, j}^N a_k \alpha_{jk}$$

The strict triangle inequality

B. White has introduced the following condition on the coefficients

 $\alpha_{hk} \le \alpha_{h\ell} + \alpha_{\ell k},$

for any $h, k, \ell \in \{0, \cdots, N\}$ with $\ell \notin \{h, k\}$.

The strict triangle inequality

B. White has introduced the following condition on the coefficients

 $\alpha_{hk} \le \alpha_{h\ell} + \alpha_{\ell k},$

for any $h, k, \ell \in \{0, \cdots, N\}$ with $\ell \notin \{h, k\}$.

 $\mathcal{I}(\mathcal{E}) = \mathcal{I}(\mathcal{F})$

 $H^{m-2}(E(1,2)) \approx H^{m-2}(\mathcal{V}(1,\beta) \cap A)$ $2 H^{m-2}(\mathcal{V}(2,3) \cap A)$

$$= \mathcal{P}(\gamma) \times \mathcal{P}(\mathcal{E})$$

$$if \quad \alpha_{12} > \alpha_{13} + \alpha_{23}$$

B. White in 1996,

Ambrosio and Braides in 1990.

Theorem

It holds that $\alpha_{hk} \leq \alpha_{h\ell} + \alpha_{\ell k}$ for any $\ell \in \{0, \dots, N\} \setminus \{h, k\}$ if, and only if, the perimeter functional is lower semicontinuous.

- B. White in 1996,
- Ambrosio and Braides in 1990.

Theorem

It holds that $\alpha_{hk} \leq \alpha_{h\ell} + \alpha_{\ell k}$ for any $\ell \in \{0, \cdots, N\} \setminus \{h, k\}$ if, and only if, the perimeter functional is lower semicontinuous.

B. White proved the existence of minimizers in 1996.

Theorem - White, 1996

If the coefficients α_{hk} satisfy $\alpha_{hk} = \alpha_{kh} > 0$, $\alpha_{hh} = 0$, for any $h, k \in \{0, \dots, N\}$, and the strict triangle inequality, then there exists a weighted isoperimetric *N*-cluster in \mathbb{R}^n .

• G. P. Leonardi prove the regularity of minimizers in 2001.

Theorem - Leonardi, 2001

If \mathcal{E} is a weighted isoperimetric *N*-cluster in \mathbb{R}^n and the coefficients satisfy the strict triangle inequality, then we have that the interfaces, up to a \mathcal{H}^{n-1} -null set, are made of smooth hypersurfaces with constant mean curvature.

Basic concepts

- 2 Multi-isoperimetric profile
 - 3 Generalized compactness and existence
 - 4 Small volumes implies small diameters
 - 5 Local Holder continuity

6 Conclusion

Let (M^n, g) be a Riemannian manifold of dimension n. We define the **isoperimetric profile** as the function $I_{(M,g)} : (0, \operatorname{Vol}_g(M)) \to (0, +\infty)$ defined by

$$I_{(M,g)}(v) := \inf \left\{ \mathcal{P}_g(E) : E \subset M, \quad \operatorname{Vol}_g(E) = v \right\},$$

where \mathcal{P}_g denotes the classical De Giorgi's perimeter.

Let (M^n, g) be a Riemannian manifold of dimension n. We define the **isoperimetric profile** as the function $I_{(M,g)} : (0, \operatorname{Vol}_g(M)) \to (0, +\infty)$ defined by

$$I_{(M,g)}(v) := \inf \left\{ \mathcal{P}_g(E) : E \subset M, \quad \operatorname{Vol}_g(E) = v \right\},$$

where \mathcal{P}_g denotes the classical De Giorgi's perimeter.

• If $M = \mathbb{R}^n$ and $g = g_{euc}$, we know that $I_{(\mathbb{R}^n, g_{eucl})}(v) = c_n v^{\frac{n-1}{n}}$.

Theorem - G. Antonelli, E. Pasqualetto, M. Pozzetta, and D. Semola, 2022

Let (X, d, \mathcal{H}^n) be an RCD (κ, n) space with isoperimetric profile function *I*. Let us assume $\inf_{x \in X} \mathcal{H}^n(\mathbf{B}_g(x, 1)) \ge v_0 > 0$. Then we have the following asymptotic for small volumes:

$$\lim_{v\to 0}\frac{I_X(v)}{v^{\frac{n-1}{n}}}=n(\omega_n\vartheta_{\infty,\min})^{\frac{1}{n}}$$

where, being $v(n, \kappa/(n-1), r)$ the volume of the ball of mdius r in the simply connected model space with constant sectional curvature $\kappa/(n-1)$ and dimension n, we have that

$$\vartheta_{\infty,\min} = \liminf_{r \to 0} \inf_{x \in X} \frac{\mathcal{H}^N(\mathbf{B}_g(x,\tau))}{v(n,\kappa/(n-1),r)} > 0.$$

< □ > < □ > < □ > < □ > < □ > < □ >

An isoperimetric cluster of volume $\mathbf{v} \in \mathbb{R}^N_+$ is an N-cluster \mathcal{E} that solves the minimizing problem below which is also known as **multi-isoperimetric** problem, i.e., such that $\mathbf{v}_g(\mathcal{E}) = \mathbf{v}$ and

$$\mathcal{P}_{g}\left(\mathcal{E}\right) = \inf\left\{\mathcal{P}_{g}(\mathcal{E}') : \mathcal{E}' \text{ is an N-cluster with } \mathbf{v}_{g}\left(\mathcal{E}'\right) = \mathbf{v}\right\}.$$

An isoperimetric cluster of volume $\mathbf{v} \in \mathbb{R}^N_+$ is an N-cluster \mathcal{E} that solves the minimizing problem below which is also known as **multi-isoperimetric** problem, i.e., such that $\mathbf{v}_g(\mathcal{E}) = \mathbf{v}$ and

$$\mathcal{P}_{g}\left(\mathcal{E}
ight) = \inf\left\{\mathcal{P}_{g}(\mathcal{E}'): \mathcal{E}' ext{ is an N-cluster with } \mathbf{v}_{g}\left(\mathcal{E}'
ight) = \mathbf{v}
ight\}.$$

The multi-isoperimetric profile is a function $I_{(M,g)}$ from $(0, \operatorname{Vol}_g(M))^N$ to $(0, +\infty)$ given by

$$\mathbf{I}_{(M,g)}(\mathbf{v}) = \inf \left\{ \mathcal{P}_g(\mathcal{E}) : \mathcal{E} \text{ is an N-cluster in } (M^n,g) \text{ with } \mathbf{v}_g(\mathcal{E}) = \mathbf{v} \right\}.$$

M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, 2002

The double bubble conjecture holds true in \mathbb{R}^3 .

M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, 2002

The double bubble conjecture holds true in \mathbb{R}^3 .

B. W. Reichardt, 2007

The double bubble conjecture holds in \mathbb{R}^n .

M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, 2002

The double bubble conjecture holds true in \mathbb{R}^3 .

B. W. Reichardt, 2007

The double bubble conjecture holds in \mathbb{R}^n .

E. Milman and J. Neeman, 2022

The multi-bubble conjecture holds in \mathbb{R}^n and \mathbb{S}^n for all combinations of N and n such that $2 \le N + 1 \le \min(5, n + 1)$. Namely:

- N = 2, then it holds for $n \ge 2$,
- 2 N = 3, then it holds for $n \ge 3$,
- N = 4, then it holds for $n \ge 4$.

Basic concepts

2 Multi-isoperimetric profile

3 Generalized compactness and existence

- 4 Small volumes implies small diameters
- 5 Local Holder continuity

6 Conclusion

Existence of isoperimetric clusters and compactness of sequences of finite perimeter sets is a subtle point in the theory of general Riemannian manifolds.

Existence of isoperimetric clusters and compactness of sequences of finite perimeter sets is a subtle point in the theory of general Riemannian manifolds.

 In fact, there are examples of manifolds which does not contain isoperimetric regions. For instance, the hyperbolic paraboloid Z has strictly negative Ricci curvature and does not contain any isoperimetric region. In fact, I_Z = I_{R²}. Existence of isoperimetric clusters and compactness of sequences of finite perimeter sets is a subtle point in the theory of general Riemannian manifolds.

- In fact, there are examples of manifolds which does not contain isoperimetric regions. For instance, the hyperbolic paraboloid \mathcal{Z} has strictly negative Ricci curvature and does not contain any isoperimetric region. In fact, $I_{\mathcal{Z}} = I_{\mathbb{R}^2}$.
- We do not have a characterization of manifolds that contains its isoperimetric sets.

A first compactness result

• We now fix
$$\alpha_{ij} = 1$$
 for $i \neq j$ and $\alpha_{ii} = 0$.

æ

• We now fix
$$\alpha_{ij} = 1$$
 for $i \neq j$ and $\alpha_{ii} = 0$.

If $\{\mathcal{E}_k\}_{k\in\mathbb{N}}$ is a sequence of N-clusters in (M^n,g) ,

$$\sup_{k\in\mathbb{N}}\mathcal{P}_{g}\left(\mathcal{E}_{k}\right)<+\infty,$$

 $\inf_{k\in\mathbb{N}}\min_{1\leq h\leq N}\operatorname{\mathsf{Vol}}_g(\mathcal{E}_k(h))>0$

and

$$\mathcal{E}_k(h) \subset \mathbf{B}_g(p, R), \ \forall k \in \mathbb{N}, h = 1, \dots, N,$$

R > 0, for some $p \in M$, then there exist an N-cluster \mathcal{E} in (M^n, g) with $\mathcal{E}(h) \subset \mathbf{B}_g(p, R)$ such that up to a subsequence $\mathcal{E}_k \to \mathcal{E}$ as $k \longrightarrow +\infty$.

Definition

We say that a smooth Riemannian manifold (M^n, g) has **bounded** geometry if there exists a constant $k \in \mathbb{R}$, such that $Ric_g \ge k(n-1)$ (i.e., $Ric_g \ge k(n-1)g$ in the sense of quadratic forms) and $\operatorname{Vol}_g(\mathbf{B}_M(p, inj_M)) \ge v_0$ for some positive constant v_0 , where $\mathbf{B}_M(p, r)$ is the geodesic ball of M centered at p and of radius $r \in (0, inj_M)$.

Definition

We say that a smooth Riemannian manifold (M^n, g) has **bounded** geometry if there exists a constant $k \in \mathbb{R}$, such that $Ric_g \ge k(n-1)$ (i.e., $Ric_g \ge k(n-1)g$ in the sense of quadratic forms) and $\operatorname{Vol}_g(\mathbf{B}_M(p, inj_M)) \ge v_0$ for some positive constant v_0 , where $\mathbf{B}_M(p, r)$ is the geodesic ball of M centered at p and of radius $r \in (0, inj_M)$.

Definition

We say that a smooth Riemannian manifold (M^n, g) has C^0 -bounded geometry if it has bounded geometry and satisfies:

• for every diverging sequence of points (p_j) , there exist a subsequence (p_{j_l}) and a pointed smooth manifold $(M_{\infty}, g_{\infty}, p_{\infty})$ with g_{∞} of class C^0 such that the sequence of pointed manifolds $(M, g, p_{j_l}) \rightarrow (M_{\infty}, g_{\infty}, p_{\infty})$, in C^0 -topology.

イロト イポト イヨト イヨト

Theorem - R., 2019

Suppose that (M^n, g) has C^0 -bounded geometry. Let $\{\mathcal{E}_k\}_{k\in\mathbb{N}}$ be a sequence of *N*-clusters in (M^n, g) with $\mathcal{P}_g(\mathcal{E}_k) \leq P$ and $\mathbf{v}_g(\mathcal{E}_k)(h) \leq \mathbf{v}(h)$, for $h \in \{1, ..., N\}$. Then, up to a subsequence, there exists $J \in \mathbb{N} \cup \{+\infty\}$ such that, for all $j \in \{1, ..., J\}$, there exist a sequence of points $(p_{jk}^h)_{k\in\mathbb{N}} \subset M$, a manifold $(M_{\infty}(h), g_{\infty}), (p_{j\infty}^h)_{k\in\mathbb{N}} \subset M_{\infty}(h)$ and a finite perimeter set $\mathcal{E}_{\infty}(h) \subset M_{\infty}(h), 1 \leq h \leq N$, such that

$$(\mathcal{E}_k(h), g, p_{jk}^h)$$
 converges to $(\mathcal{E}_\infty(h), g_\infty, p_{j\infty}^h)$

in the multipointed C^0 -topology. Moreover, if we define the *N*-cluster $\mathcal{E}_{\infty} = \{\mathcal{E}_{\infty}(h)\}_{h=1}^{N}$ in the manifold $M \cup (\bigcup_{h=1}^{N} M_{\infty}(h))$, then $\mathbf{v}_{g_{\infty}}(\mathcal{E}_{\infty}) = \lim_{k \to +\infty} \mathbf{v}_{g}(\mathcal{E}_{k})$ and $\mathcal{P}_{g_{\infty}}(\mathcal{E}_{\infty}) = \lim_{k \to +\infty} \mathcal{P}_{g}(\mathcal{E}_{k})$.

イロト 不得下 イヨト イヨト 二日

Theorem - *R., 2019*

Suppose that (M^n, g) has C^0 -bounded goemetry. Let $\{\mathcal{E}_k\}_{k\in\mathbb{N}}$ be a minimizing sequence of *N*-clusters for $\mathbf{v} \in \mathbb{R}^N_+$. Then, up to a subsequence, there exists $J \in \mathbb{N}$, a manifold (M_∞, g_∞) , J sequences of points $(p_{jk}^h)_{k\in\mathbb{N}} \subset M$, $(p_{j\infty}^h)_{k\in\mathbb{N}} \subset M_\infty$ and a *N*-cluster \mathcal{E}_∞ in (M_∞, g_∞) such that

$$(\mathcal{E}_k(h), g, p_{jk}^h)$$
 converges to $(\mathcal{E}_{\infty}(h), g_{\infty}, p_{j\infty}^h)$,
for $h \in \{1, ..., N\}$, in the multipointed C^0 -topology. Moreover,
 $\mathbf{v}_{g_{\infty}}(E_{\infty}) = \mathbf{v}$ and $\mathcal{P}_{g_{\infty}}(\mathcal{E}_{\infty}) = \mathbf{I}_{(M_{\infty}, g_{\infty})}(\mathbf{v}) = \mathbf{I}_{(M,g)}(\mathbf{v})$.

Resende, R. O. (IME-USP)

Definition

We say that (M^n, g) is C^0 -locally asymptotically a space form, if it has C^0 -bounded geometry and for every diverging sequence of points (p_k) we have

$$(M,g,p_k) \rightarrow (\mathbb{M}^n_\kappa, g_{\text{standard}}, x)$$

in the C^0 -topology, where \mathbb{M}_{κ}^n is a *n*-dimensional space form of curvature κ and x is any point in \mathbb{M}_{κ}^n .

For this special kind of manifolds, we do have the existence of isoperimetric cluster in M itself.

Theorem - *R., 2019*

Let (M^n, g) be C^0 -locally asymptotically the *n*-dimensional space form \mathbb{M}_k^n of curvature k, $Ric_g \ge k(n-1)$. Then, for every $\mathbf{v} \in \mathbb{R}^N_+$, there exist an isoperimetric cluster, i.e. an *N*-cluster \mathcal{E} with

$$\mathbf{I}_{(M,g)}(\mathbf{v}) = \mathcal{P}_g(\mathcal{E}).$$

• F. Morgan proved the boundedness of isoperimetric cluster in Euclidean spaces.

Theorem - Morgan's book

Let (M^n, g) be a Riemannian manifold with bounded geometry, then isoperimetric clusters are bounded.

Basic concepts

- 2 Multi-isoperimetric profile
- 3 Generalized compactness and existence
- 4 Small volumes implies small diameters
 - 5 Local Holder continuity

6 Conclusion

Theorem - S. Nardulli and L. E. O. Acevedo, 2018

Let (M^n, g) be a complete Riemannian manifold with bounded bounded geometry satisfying, for some positive constant $\lambda > 0$, that

$$\lim_{v\to 0^+}\frac{I(v)}{v^{\frac{n-1}{n}}}=\lambda.$$

Then there exist two positive constants $\mu^* = \mu^*(n, \kappa, inj_M, \lambda) > 0$ and $v^* = v^*(n, \kappa, inj_M, \lambda) > 0$ such that whenever $\Omega \subseteq M$ is an isoperimetric region of volume $0 \le v \le v^*$ it holds that

$$\operatorname{diam}_{g}(\Omega) \leq \mu^{*} v^{\frac{1}{n}}.$$

• We say that (X, d, \mathcal{H}^n) is a ncRCD (κ, n) , if (X, d, \mathcal{H}^n) and $\mathcal{H}^n(\mathbf{B}_g(x, 1)) \ge v_0 > 0$ for any $x \in X$.

• We say that (X, d, \mathcal{H}^n) is a ncRCD (κ, n) , if (X, d, \mathcal{H}^n) and $\mathcal{H}^n(\mathbf{B}_g(x, 1)) \ge v_0 > 0$ for any $x \in X$.

Theorem - G. Antonelli, E. Pasqualetto, M. Pozzetta, and D. Semola, 2022

There exist constants $\bar{v} = \bar{v}(\kappa, n, v_0) > 0$ and $C = C(K, N, v_0) > 0$ such that the following holds. Let (X, d, \mathcal{H}^n) be an ncRCD (κ, n) space. Let $E \subseteq X$ be an isoperimetric region. Then

diam $E \leq C\mathcal{H}^n(E)^{\frac{1}{n}}$ whenever $\mathcal{H}^n(E) \leq \bar{v}$.

Theorem - G. Antonelli, S. Nardulli, and M. Pozzetta, 2022

Let $(X_i, d_i, \mathcal{H}^n)$ be a sequence of $ncRCD(\kappa, n)$ spaces, and let $E_i \subset X_i$ be bounded sets of finite perimeter such that $\sup_i (P(E_i) + \mathcal{H}^n(E_i)) < +\infty$. Then, up to subsequence, there exist a nondecreasing, possibly unboundend, sequence $\{J_i\}_{i \in \mathbb{N}} \subseteq \mathbb{N}$, points $p_{i,j} \in X_i$, with $1 \leq j \leq J_i$ for any *i*, and pairwise disjoint subsets $E_{i,j} \subset E_i$ such that

- $\lim_{i} d_i(p_{i,j}, p_{i,\ell}) = +\infty$, for any $j \neq \ell < \overline{J} + 1$, where $\overline{J} := \lim_{i} J_i \in \mathbb{N} \cup \{+\infty\}$;
- For every 1 ≤ j < J
 <p>+ 1, the sequence (X_i, d_i, Hⁿ, p_{i,j}) converges in the pmGH sense to a pointed RCD(κ, n) space (Y_j, d_{Y_j}, Hⁿ, p_j) as i → +∞;
- there exist sets $F_j \subset Y_j$ such that $E_{i,j} \rightarrow_i F_j$ in L^1 -strong and there holds

$$\lim_{i} \mathcal{H}^{n}(E_{i}) = \sum_{j=1}^{\overline{J}} \mathcal{H}^{n}(F_{j}), \quad \sum_{j=1}^{\overline{J}} P(F_{j}) \leq \liminf_{i} P(E_{i}).$$

イロト イヨト イヨト イヨト

Theorem - G. Antonelli, S. Nardulli, and M. Pozzetta, 2022 Moreover, if E_i is an isoperimetric set in X_i for any i, then F_j is an isoperimetric set in Y_i for any $j < \overline{J} + 1$ and

$$P(F_j) = \lim_i P(E_{i,j}),$$

for any $j < \overline{J} + 1$.

 L^1 -strong: Let $\{(X_i, d_i, m_i, x_i)\}_{i \in \mathbb{N}}$ be a sequence of pointed metric measure spaces converging in the pmGH sense to a pointed metric measure space (Y, d_Y, μ, y) and let (Z, d_Z) be a complete separable metric space where every (X_i, d_i) and (Y, d_Y) can be isometrically embedded. We say that a sequence of Borel sets $E_i \subset X_i$ such that $m_i(E_i) < +\infty$ for any $i \in \mathbb{N}$ converges in the L^1 -strong sense to a Borel set $F \subset Y$ with $\mu(F) < +\infty$ if $m_i(E_i) \to \mu(F)$ and $\chi_{E_i}m_i \to \chi_F\mu$ with respect to the duality with continuous bounded functions with bounded support on Z.

イロト 不得 トイヨト イヨト

Let $(X_i, d_i, \mathcal{H}^n)$ be a sequence of ncRCD (κ, n) spaces, and let $\mathcal{E}_i \subset X_i$ be bounded *N*-clusters such that $\sup_i \left(\mathcal{P}_g(\mathcal{E}_i) + \sum_{h=1}^N \mathbf{v}(\mathcal{E}_i)(h) \right) < +\infty$. Then, up to subsequence, there exist a nondecreasing, possibly unboundend, sequence $\{J_i\}_{i\in\mathbb{N}} \subseteq \mathbb{N}$, points $p_{i,j} \in X_i$, with $1 \leq j \leq J_i$ for any *i*, and pairwise disjoint subclusters $\mathcal{E}_{i,j}$ such that $\mathcal{E}_{i,j}(h) \subset \mathcal{E}_i(h), \forall h \in \{1, \dots, N\}$, such that

- $\lim_{i} d_i(p_{i,j}, p_{i,\ell}) = +\infty$, for any $j \neq \ell < \overline{J} + 1$, where $\overline{J} := \lim_{i} J_i \in \mathbb{N} \cup \{+\infty\}$;
- For every 1 ≤ j < J
 <p>+ 1, the sequence (X_i, d_i, Hⁿ, p_{i,j}) converges in the pmGH sense to a pointed RCD(κ, n) space (Y_j, d_{Y_j}, Hⁿ, p_j) as i → +∞;
- there exist clusters \mathcal{F}_j in Y_j such that $\mathcal{E}_{i,j} \to_i \mathcal{F}_j$ in L^1 -strong and there holds

$$\lim_{i} \mathbf{v}_{g} \left(\mathcal{E}_{i} \right) = \sum_{j=1}^{\bar{J}} \mathbf{v}_{g} \left(\mathcal{F}_{j} \right), \quad \sum_{j=1}^{\bar{J}} \mathcal{P}_{g} \left(\mathcal{F}_{j} \right) \leq \liminf_{i} \mathcal{P}_{g} \left(\mathcal{E}_{i} \right).$$

Resende, R. O. (IME-USP)

Moreover, if \mathcal{E}_i is an isoperimetric set in X_i for any i, then \mathcal{F}_j is an isoperimetric set in Y_j for any $j < \overline{J} + 1$ and

$$\mathcal{P}_{g}(\mathcal{F}_{j}) = \lim_{i} \mathcal{P}_{g}(\mathcal{E}_{i,j}),$$

for any $j < \overline{J} + 1$.

Let (M^n, g) be a closed Riemannian manifold and N = 2, i.e. the double bubble case. There exist two constants $\mu^* = \mu^*(M, g), v^* = v^*(M, g) > 0$ such that for any isoperimetric cluster \mathcal{E} satisfying $v_g(\mathcal{E}) \in (0, v^*]$, it follows

$$\operatorname{diam}_{g}(\mathcal{E}(1)\cup\mathcal{E}(2))\leqslant \mu^{*}\left(\sum_{h=1}^{N}\operatorname{v}_{g}(\mathcal{E}(h))\right)^{1/n}$$

Let (M^n, g) be a closed Riemannian manifold and N = 2, i.e. the double bubble case. There exist two constants $\mu^* = \mu^*(M, g), v^* = v^*(M, g) > 0$ such that for any isoperimetric cluster \mathcal{E} satisfying $v_g(\mathcal{E}) \in (0, v^*]$, it follows

$$\operatorname{diam}_{g}(\mathcal{E}(1)\cup\mathcal{E}(2))\leqslant \mu^{*}\left(\sum_{h=1}^{N}\operatorname{v}_{g}(\mathcal{E}(h))\right)^{1/n}$$

Proof: We apply the last theorem to

$$(X_i, \mathrm{d}_i, \mathcal{H}_i^n) := \left(M^n, \mathrm{v}_i^{-rac{1}{n}} \mathrm{d}_g, \mathcal{H}_{g_i}^n\right), \forall i \in \mathbb{N}.$$

Resende, R. O. (IME-USP)

Proof

We obtain that $(Y_j^{\infty}, d_{Y_j^{\infty}}) = (\mathbb{R}^n, g_{euc})$ for every $j \in [1, \overline{J} + 1) \cap \mathbb{N}$ and the existence of a isoperimetric 2-cluster in \mathbb{R}^n as follows

$$\mathcal{E}^\infty := \left(\cup_{j=1}^{ar{J}}\mathcal{E}^\infty_k(1),\cup_{j=1}^{ar{J}}\mathcal{E}^\infty_k(2)
ight).$$

So, we proceed with the following computations

$$\begin{aligned} \mathcal{P}_{g_{euc}}\left(\mathcal{E}^{\infty}\right) &\leq \liminf_{k \to +\infty} \mathcal{P}_{g_{k}}\left(\mathcal{E}_{k}\right) = \liminf_{k \to +\infty} \frac{\mathcal{P}_{g}\left(\mathcal{E}_{k}\right)}{\frac{n-1}{v_{k}^{n}}} \\ &= \liminf_{k \to +\infty} \frac{\mathbf{I}_{\left(M,g\right)}\left(\mathbf{v}_{g}\left(\mathcal{E}_{k}\right)\right)}{\frac{n-1}{v_{k}^{n}}} \\ &\leq \liminf_{k \to +\infty} \frac{\mathbf{I}_{\left(\mathbb{R}^{n},g_{euc}\right)}\left(\mathbf{v}_{g}\left(\mathcal{E}_{k}\right)\right)}{\frac{n-1}{v_{k}^{n}}} \\ &= \liminf_{k \to +\infty} \mathbf{I}_{\left(\mathbb{R}^{n},g_{euc}\right)}\left(\frac{\mathbf{v}_{g}\left(\mathcal{E}_{k}\right)}{v_{k}}\right) = \mathbf{I}_{\left(\mathbb{R}^{n},g_{euc}\right)}\left(\lambda,\mu\right), \end{aligned}$$

Resende, R. O. (IME-USP)

where, up to a subsequence,

$$\lambda = \lim_{k \to +\infty} \frac{\mathrm{v}_g\left(\mathcal{E}_k(1)\right)}{\mathrm{v}_k} \text{ and } \mu = \lim_{k \to +\infty} \frac{\mathrm{v}_g\left(\mathcal{E}_k(2)\right)}{\mathrm{v}_k}.$$

We assume by contradiction that $\overline{J} > 1$, then we have that \mathcal{E}^{∞} is an isoperimetric 2-cluster in \mathbb{R}^n such that $\mathcal{E}^{\infty}(1) \cup \mathcal{E}^{\infty}(2)$ is a disconnected set. So, it is clearly a contradiction with either the double bubble conjecture, if $\lambda, \mu > 0$, or the classical solution of the Euclidean isoperimetric problem, if $\lambda = 0$ or $\mu = 0$. Therefore, $\overline{J} = 1$ which is solvable using the technique called 'selecting a large subdomain'.

Conjecture (working in progress - Nardulli and R.)

Let (M^n, g) be a closed Riemannian manifold and N = 2, i.e. the double bubble case. There exist two constants $\mu^* = \mu^*(n, N, \kappa, v_0), v^* = v^*(n, N, \kappa, v_0) > 0$ such that for any isoperimetric cluster \mathcal{E} satisfying $v_g(\mathcal{E}) \in (0, v^*]$, it follows

$$\operatorname{diam}_{g}(\mathcal{E}(1)\cup\mathcal{E}(2))\leqslant \mu^{*}\left(\sum_{h=1}^{N}\operatorname{v}_{g}(\mathcal{E}(h))\right)^{1/n}$$

Basic concepts

- 2 Multi-isoperimetric profile
- 3 Generalized compactness and existence
- 4 Small volumes implies small diameters
- 5 Local Holder continuity

6 Conclusion

Theorem

Let (M^n, g) be a manifold with bounded geometry. Then there exists a constant $C(n, N, \kappa, v_0) > 0$ such that for every $\mathbf{v}, \mathbf{v}' \in]0, \mathbf{Vol}_g(M)[^N$ satisfying $\mathbf{v}' \in \mathbf{B}_{\mathbb{R}^N}(\mathbf{v}, R_{\mathbf{v}})$, where

$$R_{\mathbf{v}} = \frac{1}{C(n,N,k)} \min\left\{v_0, \sum_{h=1}^{N} \left(\frac{\mathbf{v}(h)}{I_M(\mathbf{v}) + C(n,k)}\right)^n\right\},\,$$

we have that

$$|\mathbf{I}_{(M,g)}(\mathbf{v}) - \mathbf{I}_{(M,g)}(\mathbf{v}')| \le C(n,k) \left(\frac{|\mathbf{v} - \mathbf{v}'|}{v_0}\right)^{\frac{n-1}{n}}$$

Basic concepts

- 2 Multi-isoperimetric profile
- 3 Generalized compactness and existence
- 4 Small volumes implies small diameters
- 5 Local Holder continuity

- Generalize the results for the nonsmooth case, i.e., consider a RCD space instead of smooth manifolds (M^n, g) .
- Extend the results for the weighted perimeter of clusters.

- Resende de Oliveira, R. (2022). On Clusters and the Multi-isoperimetric Profile in Riemannian Manifolds with Bounded Geometry. Journal of Dynamical and Control Systems.
- J.H. Andrade, J. Conrado, S. Nardulli, P. Piccione, and R. Resende (2022). Multiplicity of solutions to the multiphasic Allen-Cahn-Hilliard system with a small volume constraint on closed parallelizable manifolds. Forthcoming revised version.

Thank you for your attention!

э