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INTRODUCTION (SOME) KNOWN PROPERTIES CONTACT SURFACE PROOF SHARPNESS REMARKS

CHEEGER CONSTANT AND CHEEGER SETS

The Cheeger constant is defined, for an open bounded set Ω ⊂ Rd, as

h(Ω) := inf
E⊆Ω

{
P(E)

Ld(E)

}
being P(E) the distributional perimeter of E (i.e. Hd−1(∂E) for regular enough sets) and
Ld(E) the Lebesgue measure of E.

Any set attaining
P(E)

Ld(E)
= h(Ω)

is called a Cheeger set of (for) Ω.

The Cheeger constant of a domain is linked to the first eigenvalue of the Dirichlet
p-laplacian1:

λp(Ω) ≥
(

h(Ω)

p

)p
, lim

p→1+
λp(Ω) = h(Ω).

1(Partial) list of literature include the works of: Bucur, Buttazzo, Caselles, Cheeger, Chambolle, Figalli, Fragalà,
Kawhol, Leonardi, Maggi, Neumayer, Novaga, Parini, Pratelli, Saracco, Verzini, Velichkov, and many, many others...
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SOME EXAMPLES

Remark: the only set having a ball as a Cheeger set is the ball itself.2

2It can be viewed as a consequence of the regularity theory for the free boundary, or as a consequence of
Figalli, Maggi, Pratelli: A note on Cheeger sets. Proceedings of the American Mathematical Society (2009): 2057-2062.



INTRODUCTION (SOME) KNOWN PROPERTIES CONTACT SURFACE PROOF SHARPNESS REMARKS

PLAN OF THE TALK

- Known properties of Cheeger sets;

- About the contact surface
- An easy bound;
- Main theorem: a lower bound on the (dimension of the) contact surface;

- Sketch of the proof
- Strategy of the proof;
- Removable singularities;

- Sharpness of the bounds
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EXISTENCE AND INTERIOR REGULARITY

If Ω ⊆ R2 then3 4

(e) there exists at least one Cheeger set E of Ω;

(ir) ∂E ∩ Ω is an analytic hyper-surface with constant mean curvature equal to h(Ω);

3Leonardi, An overview on the cheeger problem. In New trends in shape optimization, pages 117–139. Springer,
2015.

4Parini, An introduction to the cheeger problem. Surv. Math. Appl., 6:9–21, 2011.
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BOUNDARY REGULARITY

fΩ ∈ C1 ⇒ fE ∈ C1

fΩ ∈ C1,1 ⇒ fE ∈ C1,1

Ω convex ⇒ fE ∈ C1,1.
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BOUNDARY REGULARITY

If Ω ⊆ R2 then5

(br.1) If E is a Cheeger set of Ω and Ω is regular enough then ∂E ∩ Ω meets ∂Ω only in a
tangential way, namely νE(x) = νΩ(x) on ∂E ∩ ∂Ω 6;

(br.2) If ∂Ω ∈ C1 then ∂E has regularity of class C1 in a neighbourhood of any
x ∈ ∂E ∩ ∂Ω7;

(br.3) If ∂Ω ∈ C1,1 then ∂E has regularity of class C1,1 in a neighbourhood of any
x ∈ ∂E ∩ ∂Ω8;

(br.4) If Ω is convex then there exists a unique Cheeger set E. Moreover ∂E has
regularity of class C1,1 in a neighbourhood of any x ∈ ∂E ∩ ∂Ω9 10;

5Gonzalez, Massari, Tamanini. Minimal boundaries enclosing a given volume. Manuscripta mathematica,
34(2-3):381–395, 1981.

6Leonardi, Pratelli, On the cheeger sets in strips and non-convex domains. Calculus of Variations and Partial
Differential Equations, 55(1):15, 2016.

7Miranda, Frontiere minimali con ostacoli. Annali dell’Università di Ferrara, 16(1):29–37, 1971
8Caselles, Chambolle, Novaga, Some remarks on uniqueness and regularity of cheeger sets. Rend. Semin. Mat. Univ.

Padova, 123:191–201, 2010
9Caselles, Chambolle, Novaga. Uniqueness of the Cheeger set of a convex body. Pacific Journal of Mathematics 232.1

(2007): 77-90.
10Alter, Caselles Uniqueness of the Cheeger set of a convex body Nonlinear Analysis: Theory, Methods and

Applications 70.1 (2009): 32-44.
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(br.4) If Ω is convex then there exists a unique Cheeger set E. Moreover ∂E has
regularity of class C1,1 in a neighbourhood of any x ∈ ∂E ∩ ∂Ω;

(Dr) Hd−1(∂E ∩ ∂Ω) > 0? Observe thatHd−1(∂E ∩ ∂Ω) can be interpreted somehow

as lim
p→1

ˆ
∂Ω
|∂νup|p dHd−1.
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ONE MORE EXAMPLE
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HOW SMALL CAN ∂E ∩ ∂Ω BE: AN EASY BOUND

SupposeH0(∂E ∩ ∂Ω) = 0. Then there is a λ > 1 such that Eλ = λE ⊂ Ω, and

h(Ω) ≤
P(Eλ)

Ld(Eλ)
=

1
λ

P(E)

Ld(E)
=

h(Ω)

λ
⇒ λ = 1.

ThusH0(∂E ∩ ∂Ω) ≥ 1.
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HOW SMALL CAN ∂E ∩ ∂Ω BE: AN EASY BOUND

SupposeH0(∂E ∩ ∂Ω) = 1. Then there is a τ ∈ Rd such that Eτ = E + τ ⊂ Ω,
H0(∂Eτ ∩ ∂Ω) = 0 and

h(Ω) ≤
P(Eτ )

Ld(Eτ )
=

P(E)

Ld(E)
= h(Ω).

Then Eτ Cheeger set withH0(∂Eτ ∩ ∂Ω) = 0. Then the previous argument applies.

ThusH0(∂E ∩ ∂Ω) ≥ 2.
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H0(∂E ∩ ∂Ω) ≥ 2

Theorem (C., Ciani 2020)
If ∂Ω has regularity of class C1,α, for α ∈ [0, 1] then

Hd−2+α(∂E ∩ ∂Ω) > 0

for any E ⊂ Ω Cheeger set. Moreover if α = 0 then

Hd−2(∂E ∩ ∂Ω) = +∞.

In d = 2, for any α ∈ (0, 1) there exists an open bounded set Ω with a Cheeger set E ⊂ Ω, and
with ∂Ω ∈ C1,α, satisfying

Hα(∂E ∩ ∂Ω) > 0, Hs(∂E ∩ ∂Ω) = 0 for any s > α.
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WARNING

Locally the statement is false:
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STRATEGY OF THE PROOF

Step 0) Assume that Ω is not a ball.

Pick x ∈ ∂E ∩ ∂Ω (which exists sinceH0(∂E ∩ ∂Ω) > 1).

Step 1) Let fE, fΩ : D→ R representing ∂E, ∂Ω.
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Step 0) Assume that Ω is not a ball.

Pick x ∈ ∂E ∩ ∂Ω (which exists sinceH0(∂E ∩ ∂Ω) > 1).

Step 1) Let fE, fΩ : D→ R representing ∂E, ∂Ω.

Set

γ := {x ∈ D | (x, fE(x)) ∈ ∂E∩∂Ω} ⊂ Rd−1

Then fE satisfies −div

(
∇fE(x)√

1+|∇fE(x)|2

)
= h(Ω) on D \ γ

fE ≤ fΩ on D
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STRATEGY OF THE PROOF

−div
(

∇fE√
1+|∇fE(x)|2

)
= h(Ω) on D \ γ (1)

Step 2): Suppose that γ is small enough to guarantee that if fE is a solution to (1) then

−div

(
∇fE√

1 + |∇fE(x)|2

)
= h(Ω) on D. (2)

- Then ∂E has constant mean curvature in the small cube Qr(x).

- But if ∂E ∩ ∂Ω is globally small, then γ will be small around any contact point
x ∈ ∂E ∩ ∂Ω

.

- By applying the above argument on every x ∈ ∂E ∩ ∂Ω we conclude that ∂E has
constant mean curvature around any contact point.

- But the free boundary is also a constant mean curvature hypersurface.

Then ∂E is an
hyper-surface with CMC.

⇒ Alexandrov’s Theorem

(revised)

⇒
E is a ball.
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−div
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hyper-surface with CMC.

(Up to a small set Σ) ⇒ Alexandrov’s Theorem
(revised) ⇒

E is a ball.

11

11Delgadino, Maggi. Alexandrov’s theorem revisited. Anal. PDE (2019).
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IDEA OF THE PROOF

Summarizing, if ∂E ∩ ∂Ω is small enough (in some sense) then E has to be a ball.

Contradiction: The ball can be a Cheeger set only of the ball! Therefore Ω = E is a ball.

Then ∂E ∩ ∂Ω cannot be too small. At least as big as it is required so that, its pre-image
γ, (somewhere) cannot be removed for the CMC equation:

−div

(
∇u√

1 + |∇u|2

)
= h on D \ γ 6⇒ −div

(
∇u√

1 + |∇u|2

)
= h on D.

Notice that the removability of γ has to depend in some sense on the regularity of u in
D, i.e. the more regular is u the bigger γ can be.

For instance if we know a priori that u ∈ C2(D) then any closed set γ with
Hd−1(γ) = 0 is removable. (Recall that u : Rd−1 → R)

For our purposes, we cannot rely on a regularity better than u ∈ C1,1(D)
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Summarizing, if ∂E ∩ ∂Ω is small enough (in some sense) then E has to be a ball.

Contradiction: The ball can be a Cheeger set only of the ball! Therefore Ω = E is a ball.

Then ∂E ∩ ∂Ω cannot be too small. At least as big as it is required so that, its pre-image
γ, (somewhere) cannot be removed for the CMC equation:

−div

(
∇u√

1 + |∇u|2

)
= h on D \ γ 6⇒ −div

(
∇u√

1 + |∇u|2

)
= h on D.

Notice that the removability of γ has to depend in some sense on the regularity of u in
D, i.e. the more regular is u the bigger γ can be.

For instance if we know a priori that u ∈ C2(D) then any closed set γ with
Hd−1(γ) = 0 is removable. (Recall that u : Rd−1 → R)

For our purposes, we cannot rely on a regularity better than u ∈ C1,1(D)
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IDEA OF THE PROOF
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D, i.e. the more regular is u the bigger γ can be.

For instance if we know a priori that u ∈ C2(D) then any closed set γ with
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REMOVABLE SINGULARITIES

If u a solution to
Lu = 0 on D \ γ,

when can we conclude also
Lu = 0 on D?

Typically it depends on the regularity of u ∈ Cl(D) and on the size of γ.12

12A very partial list of literature on this topic:

- Serrin, Isolated singularities of solutions of quasi-linear equations. Acta Mathematica, 113:219–240, 1965.

- Serrin, Removable singularities of solutions of elliptic equations II. Archive for Rational Mechanics and
Analysis,20(3):163–169, 1965

- De Giorgi, Stampacchia. Sulle singolarità eliminabili delle ipersuperficie minimali Atti Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur. (8), 38:352–357, 1965

- De Pauw, Pfeffer. The gauss–green theorem and removable sets for pdes in divergence form. Advances in
Mathematics, 183(1):155–182, 2004

- Simon On a theorem of De giorgi and Stampacchia. Mathematische Zeitschrift, 155(2):199–204, 1977.
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DE GIORGI, STAMPACCHIA - SIMON THEOREM

Let u ∈ C2(D \ γ), D ⊂ Rd′ satisfy

−div

(
∇u(x)√

1 + |∇u(x)|2

)
= H for all x ∈ D \ γ

andHd′−1(γ) = 0 then there exists a unique extension ũ ∈ C2(D) such that

−div

(
∇ũ(x)√

1 + |∇ũ(x)|2

)
= H for all x ∈ D.
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FIRST TRIAL: THE ARGUMENT WITH DG-ST-SI THEOREM

Suppose that: Ω is not a ball,Hd−2(∂E ∩ ∂Ω) = 0, (∂Ω ∈ C1). Pick x ∈ ∂E ∩ ∂Ω.
(d′ = d− 1).

a) ∂E ∩ ∂Ω ∩ Qr(x) := {(x, fE(x)), x ∈ γ};

b) Hd′−1(γ) ≤ CHd′−1(∂E ∩ ∂Ω ∩ Qr(x)) ≤ Hd−2(∂E ∩ ∂Ω) = 0 −div
(

∇fE(x)√
1+|∇fE(x)|2

)
= h(Ω) on D \ γ

Hd′−1(γ) = 0, fE : Rd′ → R

c) Then DG,St-Si Theorem

−div

(
∇fE(x)√

1 + |∇fE(x)|2

)
= h(Ω) on D

and thus ∂E has constant mean curvature equal to h.

d) Alexandrov’s Theorem (revised): E is a ball and thus Ω is a ball. Contradiction: we
assumed Ω 6= B.

Theorem : Hd−2(∂E ∩ ∂Ω) > 0.
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POKROVSKII’S THEOREM

Let u ∈ C2(D \ γ)∩C1,α(D), D ⊂ Rd′ satisfies

−div

(
∇u(x)√

1 + |∇u(x)|2

)
= H for all x ∈ D \ γ

andHd′−1+α(γ) = 0 then there exists a unique extension ũ ∈ C2(D) such that

−div

(
∇ũ(x)√

1 + |∇ũ(x)|2

)
= H for all x ∈ D.

Pokrovskii’s removability applies to: Constant Mean Curvature equation, p-laplacian
equation, and (lately) uniformly elliptic equations in divergence form.13

13

- Pokrovskii, Removable singularities of p-harmonic functions. Differential Equations, 41(7):941–952, 2005

- Pokrovskii, Removable singularities of solutions of second-order divergence-form elliptic equations. Mathematical
Notes, 77(3-4):391–399, 2005;

- Pokrovskii, Removable singularities of solutions of the minimal surface equation. Functional Analysis and Its
Applications, 39(4):296–300, 2005;

- Pokrovskii, Removable singularities of solutions of elliptic equations. Journal of Mathematical Sciences,
160(1):61–83,2009.
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POKROVSKII’S THEOREM AS A DIVERGENCE PROPERTY

C.C. observation 202014: the structure of quasi-linear elliptic equation is not required.
Indeed if F ∈ C0,α(D;Rd′ ) satisfies

ˆ
D

div(φ)F dx =

ˆ
D
φg dx for all φ ∈ C∞c (D \ γ), −Div(F) = g on D \ γ

and γ closed set withHd′−1+α(γ) = 0 then
ˆ

D
div(φ)F dx =

ˆ
D
φg dx for all φ ∈ C∞c (D), −Div(F) = g on D.

14Firstly observed, for α = 0, in:
Ponce, Singularities of the divergence of continuous vector fields and uniform hausdorff estimates Indiana University
Mathematics Journal, pages 1055–1074, 2013
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SECOND TRIAL: THE ARGUMENT WITH POKROVSKII’S THEOREM
Suppose that: Ω is not a ball,Hd−2+α(∂E ∩ ∂Ω) = 0, (∂Ω ∈ C1,α). Pick x ∈ ∂E ∩ ∂Ω
(d′ = d− 1)

a.0) ∂E ∩ ∂Ω ∩ Qr(x) := {(x, fE(x)), x ∈ γ};
a.1) If ∂Ω ∈ C1,α ⇒ ∂E ∈ C1,α around x ∈ ∂E ∩ ∂Ω15;

b) Hd′−1+α(γ) ≤ CHd−2+α(∂E ∩ ∂Ω) = 0 and −div
(

∇fE(x)√
1+|∇fE(x)|2

)
= h(Ω) on D \ γ

Hd′−1+α(γ) = 0, fE ∈ C1,α(D)

c) Then, Pokrovskii’s Theorem

−div

(
∇fE(x)√

1 + |∇fE(x)|2

)
= h(Ω) on D

and thus ∂E has constant mean curvature equal to h.

d) Alexandrov’s Theorem (revised): E is a ball and thus Ω is a ball. Contradiction: we
assumed Ω 6= B.

Theorem : Hd−2+α(∂E ∩ ∂Ω) > 0.

15It can be derived as an adaptation of
Giaquinta. Remarks on the regularity of weak solutions to some variational inequalities. Mathematische
Zeitschrift,177(1):15–31, 1981.
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SHARPNESS IN d = 2

For any α ∈ (0, 1] there exists an open bounded set Ω ⊂ R2 with regularity of class
C1,α such that

dimH(∂E ∩ ∂Ω) = α (Hα(∂E ∩ ∂Ω) > 0, Hs(∂E ∩ ∂Ω) = 0 for s > α.)
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HOW IS IT BUILT

D = (0, 1) and Cn Cantor type construction;

un(t) :=

ˆ t

0

(sn(r)− Hr)√
1− (sn(r)− Hr)2

dr, sn(t) :=
1

L2(Cn)

ˆ t

0
1Cn (r) dr


−
(

u′n(t)√
1+|u′n(t)|2

)′
= H, on D \ Cn

un ∈ C1,α(D) ∩ C∞(D \ Cn)

γ :=
⋂

n∈N
Cn,

un → u

dimH(γ) = α,

Hα(γ) > 0

By playing with the construction of Cn
any α ∈ (0, 1) can be reached


−
(

u′(t)√
1+|u′(t)|2

)′
= H, on D \ γ

u ∈ C1,α(D) ∩ C∞(D \ γ)

Moreover: u′n(0) = u′n(1) = 0⇒ u′(0) = u′(1) = 0
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C1,α CASE
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C1,α CASE16

We can build Ω around, so that (locally)
∂E ∩ ∂Ω = (Id , u)(γ) and

h(Ω) =
P(E)

L2(E)
.

Thence E is a Cheeger set of Ω with
contact surface:

dimH(∂E ∩ ∂Ω) = α

16Tools required and other interesting literature about pathological Cheeger sets:

- Leonardi, Neumayer, Saracco. The cheeger constant of a jordan domain without necks. Calculus of Variations and
Partial Differential Equations, 56(6):164, 2017

- Saracco. A sufficient criterion to determine planar self-cheeger sets Journal of Convex Analysis, 28(3), 951-958.

- Leonardi, Saracco,Two examples of minimal Cheeger sets in the plane. Annali di Matematica 197, 1511–1531 (2018)
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FINAL CONSIDERATION

a) Are the boundsHd−2+α(∂E ∩ ∂Ω) > 0, sharp also in d ≥ 3?

(Missing a.1) The couple (u, γ) with the required geometry;
(Missing a.2) Instruments, like the planar one, to build the ambient space Ω;17

b) The argument is sensible to the regularity of ∂E more than to the regularity of ∂Ω.
That is why, for Ω convex set we can inferHd−1(∂E ∩ ∂Ω) > 0.

c) Given a convex set Ω, are the bounds true also locally? We expect that either
Hd−1(∂E ∩ ∂Ω ∩ A) > 0 or ∂E ∩ ∂Ω ∩ A = ∅

17More on these topics:
- Leonardi, Saracco. Minimizers of the prescribed curvature functional in a Jordan domain with no necks .” ESAIM:

Control, Optimisation and Calculus of Variations 26 (2020): 76;
- Leonardi, Saracco. The prescribed mean curvature equation in weakly regular domains. Nonlinear Differential

Equations and Applications NoDEA 25.2 (2018): 9.
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A (VERY) PARTIAL LIST OF LITERATURE ON CHEEGER SETS
1968 The relation between the laplacian and the diameter for manifolds of non-negative curvature. J. Cheeger. (Archiv der

Mathematik);

1969 A lower bound for the smallest eigenvalue of the laplacian. J. Cheeger. (Proceedings of the Princeton conference in
honor of Professor S.Bochner);

2007 On the selection of maximal cheeger sets. G. Buttazzo, G. Carlier, and M. Comte. (Differential and Integral
Equations);

2007 Uniqueness of the cheeger set of a convex body. V. Caselles, A. Chambolle, and M. Novaga. (Pacific J. Math.);

2009 A note on Cheeger sets. A. Figalli, F. Maggi, A. Pratelli. (Proceedings of the American Mathematical Society);

2010 Some remarks on uniqueness and regularity of cheeger sets. V. Caselles, A. Chambolle, and M. Novaga. (Rend.
Semin. Mat. Univ. Padova);

2011 An introduction to the cheeger problem. E. Parini. (Surv.Math.Appl.);

2015 An overview on the Cheeger problem. G. P. Leonardi. (In New trends in shape optimization, Springer);

2016 A faber–krahn inequality for the cheeger constant of n-gons, D. Bucur, I. Fragalà. (The Journal of Geometric
Analysis);

2016 On the cheeger sets in strips and non-convex domains. G. P. Leonardi and A. Pratelli. (Calculus of Variations and
Partial Differential Equations) ;

2017 The cheeger constant of a jordan domain without necks. G. P. Leonardi, R. Neumayer, and G. Saracco. (Calculus of
Variations and Partial Differential Equations);

2018 On the honeycomb conjecture for a class of minimal convex partitions. D. Bucur, I. Fragalà, B. Velichkov, and G.
Verzini. (Transactions of the American Mathematical Society);

2018 The prescribed mean curvature equation in weakly regular domains. G. P. Leonardi and G. Saracco. (Non linear
Differential Equations and Applications NoDEA) ;

2018 Two examples of minimal cheeger sets in the plane. G. P.Leonardi and G. Saracco. (Annali di Matematica Pura ed
Applicata);
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Thank you for your attention
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