INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

Contact surface of Cheeger sets

work in collaboration with Simone Ciani (UniFi)

Marco Caroccia Dipartimento di Matematica, Politecnico di Milano

Isoperimetric problems Dipartimento di Matematica, Università di Pisa, June 20-24, 2022

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

INTRODUCTION (SOME) KNC	OWN PROPERTIES CONTA	ACT SURFACE PROOF	Sharp	NESS REMARKS
•00000 000000	000	00000	00000 0000	000

CHEEGER CONSTANT AND CHEEGER SETS

The Cheeger constant is defined, for an open bounded set $\Omega \subset \mathbb{R}^d$, as

$$h(\Omega) := \inf_{E \subseteq \Omega} \left\{ \frac{P(E)}{\mathcal{L}^d(E)} \right\}$$

being P(E) the *distributional perimeter of* E (i.e. $\mathcal{H}^{d-1}(\partial E)$ for regular enough sets) and $\mathcal{L}^{d}(E)$ the Lebesgue measure of E.

Any set attaining

$$\frac{P(E)}{\mathcal{L}^d(E)} = h(\Omega)$$

is called a Cheeger set of (for) Ω .

Dac

¹(Partial) list of literature include the works of: Bucur, Buttazzo, Caselles, Cheeger, Chambolle, Figalli, Fragalà, Kawhol, Leonardi, Maggi, Neumayer, Novaga, Parini, Pratelli, Saracco, Verzini, Velichkov, and many, many others...

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
●0000	000000	000	0000000000	0000	000

CHEEGER CONSTANT AND CHEEGER SETS

The Cheeger constant is defined, for an open bounded set $\Omega \subset \mathbb{R}^d$, as

$$h(\Omega) := \inf_{E \subseteq \Omega} \left\{ \frac{P(E)}{\mathcal{L}^d(E)} \right\}$$

being P(E) the *distributional perimeter of* E (i.e. $\mathcal{H}^{d-1}(\partial E)$ for regular enough sets) and $\mathcal{L}^{d}(E)$ the Lebesgue measure of E.

Any set attaining

$$\frac{P(E)}{\mathcal{L}^d(E)} = h(\Omega)$$

is called a *Cheeger set of (for)* Ω .

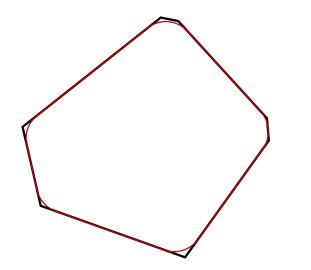
The Cheeger constant of a domain is linked to the first eigenvalue of the Dirichlet *p*-laplacian¹:

$$\lambda_p(\Omega) \ge \left(\frac{h(\Omega)}{p}\right)^p, \quad \lim_{p \to 1^+} \lambda_p(\Omega) = h(\Omega).$$

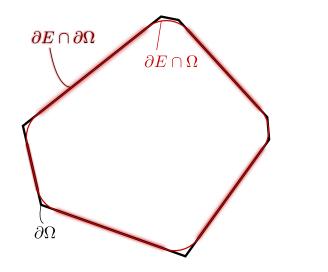
DQC

¹(Partial) list of literature include the works of: Bucur, Buttazzo, Caselles, Cheeger, Chambolle, Figalli, Fragalà, Kawhol, Leonardi, Maggi, Neumayer, Novaga, Parini, Pratelli, Saracco, Verzini, Velichkov, and many, many others.

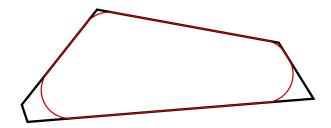
INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000



INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
0000	000000	000	00000000000	0000	000

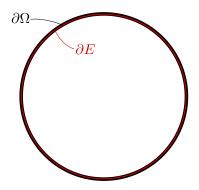


INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
0000	000000	000	0000000000	0000	000



▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000



Remark: the only set having a ball as a Cheeger set is the ball itself.²

ヘロト ヘロト ヘヨト ヘヨト

3

590

²It can be viewed as a consequence of the regularity theory for the free boundary, or as a consequence of Figalli, Maggi, Pratelli: A note on Cheeger sets. Proceedings of the American Mathematical Society (2009): 2057-2062.

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

PLAN OF THE TALK

- Known properties of Cheeger sets;
- About the contact surface
 - An easy bound;
 - Main theorem: a lower bound on the (dimension of the) contact surface;

- Sketch of the proof
 - Strategy of the proof;
 - Removable singularities;
- Sharpness of the bounds

INTRODUCTION (SOMI	E) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000 0000	000	000	0000000000	0000	000

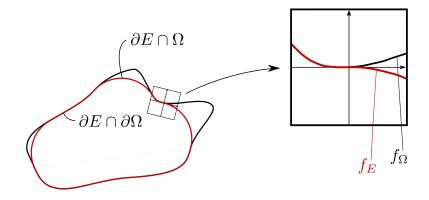
EXISTENCE AND INTERIOR REGULARITY

- (e) there exists at least one Cheeger set *E* of Ω ;
- (ir) $\partial E \cap \Omega$ is an analytic hyper-surface with constant mean curvature equal to $h(\Omega)$;

³Leonardi, An overview on the cheeger problem. In New trends in shape optimization, pages 117–139. Springer, 2015.

⁴Parini, An introduction to the cheeger problem. Surv. Math. Appl., 6:9–21, 2011/ 🗆 + (🗇 + (😇 + (😇 + (😇 + ())))

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	00000	000	00000000000	0000	000



 $f_{\Omega} \in C^{1} \Rightarrow f_{E} \in C^{1}$ $f_{\Omega} \in C^{1,1} \Rightarrow f_{E} \in C^{1,1}$ $\Omega \text{ convex } \Rightarrow f_{E} \in C^{1,1}.$

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	00000	000	0000000000	0000	000

If $\Omega \subseteq \mathbb{R}^2$ then⁵

- (br.1) If *E* is a Cheeger set of Ω and Ω is regular enough then $\partial E \cap \Omega$ meets $\partial \Omega$ only in a tangential way, namely $\nu_E(x) = \nu_{\Omega}(x)$ on $\partial E \cap \partial \Omega^6$;
- (br.2) If $\partial \Omega \in C^1$ then ∂E has regularity of class C^1 in a neighbourhood of any $x \in \partial E \cap \partial \Omega^7$;
- (br.3) If $\partial \Omega \in C^{1,1}$ then ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega^8$;
- (br.4) If Ω is convex then there exists a unique Cheeger set *E*. Moreover ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega^{9}$ ¹⁰;

⁵Gonzalez, Massari, Tamanini. *Minimal boundaries enclosing a given volume*. Manuscripta mathematica, 34(2-3):381–395, 1981.

⁶Leonardi, Pratelli, On the cheeger sets in strips and non-convex domains. Calculus of Variations and Partial Differential Equations, 55(1):15, 2016.

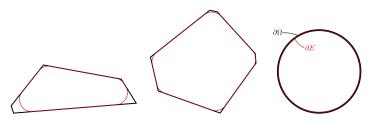
⁷Miranda, *Frontiere minimali con ostacoli*. Annali dell'Università di Ferrara, 16(1):29–37, 1971

⁸Caselles, Chambolle, Novaga, Some remarks on uniqueness and regularity of cheeger sets. Rend. Semin. Mat. Univ. Padova, 123:191–201, 2010

⁹Caselles, Chambolle, Novaga. Uniqueness of the Cheeger set of a convex body. Pacific Journal of Mathematics 232.1 (2007): 77-90.

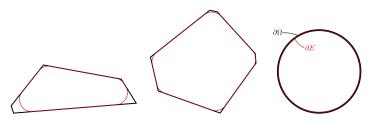
¹⁰Alter, Caselles Uniqueness of the Cheeger set of a convex body Nonlinear Analysis: Theory, Methods and Applications 70.1 (2009): 32-44.

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000



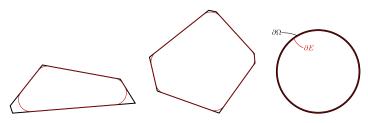
- (br.1) If *E* is a Cheeger set of Ω and Ω is regular enough then $\partial E \cap \Omega$ meets $\partial \Omega$ only in a tangential way, namely $\nu_E(x) = \nu_{\Omega}(x)$ on $\partial E \cap \partial \Omega$;
- (br.2) If $\partial \Omega \in C^1$ then ∂E has regularity of class C^1 in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.3) If $\partial \Omega \in C^{1,1}$ then ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.4) If Ω is convex then there exists a unique Cheeger set *E*. Moreover ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000



- (br.1) If *E* is a Cheeger set of Ω and Ω is regular enough then $\partial E \cap \Omega$ meets $\partial \Omega$ only in a tangential way, namely $\nu_E(x) = \nu_{\Omega}(x)$ on $\partial E \cap \partial \Omega$;
- (br.2) If $\partial \Omega \in C^1$ then ∂E has regularity of class C^1 in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.3) If $\partial \Omega \in C^{1,1}$ then ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.4) If Ω is convex then there exists a unique Cheeger set *E*. Moreover ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (Dr) $\mathcal{H}^{d-1}(\partial E \cap \partial \Omega) > 0$?

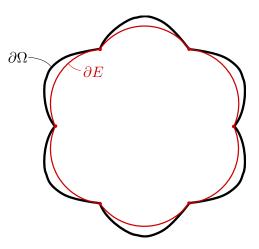
INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000



- (br.1) If *E* is a Cheeger set of Ω and Ω is regular enough then $\partial E \cap \Omega$ meets $\partial \Omega$ only in a tangential way, namely $\nu_E(x) = \nu_{\Omega}(x)$ on $\partial E \cap \partial \Omega$;
- (br.2) If $\partial \Omega \in C^1$ then ∂E has regularity of class C^1 in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.3) If $\partial \Omega \in C^{1,1}$ then ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.4) If Ω is convex then there exists a unique Cheeger set *E*. Moreover ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (Dr) $\mathcal{H}^{d-1}(\partial E \cap \partial \Omega) > 0$? Observe that $\mathcal{H}^{d-1}(\partial E \cap \partial \Omega)$ can be interpreted somehow as $\lim_{p \to 1} \int_{\partial \Omega} |\partial_{\nu} u_p|^p \, \mathrm{d}\mathcal{H}^{d-1}$.

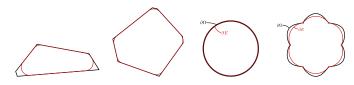
INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

ONE MORE EXAMPLE



・ロト・西ト・ヨー シック・ロト

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000



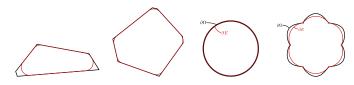
If $\Omega \subseteq \mathbb{R}^2$ then

(br.1) If *E* is a Cheeger set of Ω and Ω is regular enough then $\partial E \cap \Omega$ meet $\partial \Omega$ only in a tangential way, namely $\nu_E(x) = \nu_{\Omega}(x)$ on $\partial E \cap \partial \Omega$;

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- br.2) If $\partial \Omega \in C^1$ then ∂E has regularity of class C^1 in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.3) If $\partial \Omega \in C^{1,1}$ then ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.4) If Ω is convex then there exists a unique Cheeger set *E*. Moreover ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (Dr) $\mathcal{H}^{d-1}(\partial E \cap \partial \Omega) > 0$

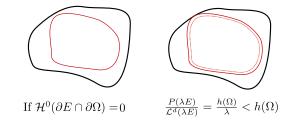
INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000



- (br.1) If *E* is a Cheeger set of Ω and Ω is regular enough then $\partial E \cap \Omega$ meet $\partial \Omega$ only in a tangential way, namely $\nu_E(x) = \nu_{\Omega}(x)$ on $\partial E \cap \partial \Omega$;
- br.2) If $\partial \Omega \in C^1$ then ∂E has regularity of class C^1 in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.3) If $\partial \Omega \in C^{1,1}$ then ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (br.4) If Ω is convex then there exists a unique Cheeger set *E*. Moreover ∂E has regularity of class $C^{1,1}$ in a neighbourhood of any $x \in \partial E \cap \partial \Omega$;
- (Dr) $\mathcal{H}^{d-1}(\partial E \cap \partial \Omega) > 0$ in some cases...;

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	•00	00000000000	0000	000

How small can $\partial E \cap \partial \Omega$ be: An easy bound



Suppose $\mathcal{H}^0(\partial E \cap \partial \Omega) = 0$. Then there is a $\lambda > 1$ such that $E_{\lambda} = \lambda E \subset \Omega$, and

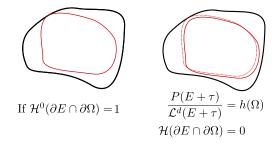
$$h(\Omega) \le \frac{P(E_{\lambda})}{\mathcal{L}^{d}(E_{\lambda})} = \frac{1}{\lambda} \frac{P(E)}{\mathcal{L}^{d}(E)} = \frac{h(\Omega)}{\lambda} \implies \lambda = 1.$$

Thus $\mathcal{H}^0(\partial E \cap \partial \Omega) \geq 1$.

・ロト・4回ト・4回ト・4回ト・4回ト

INTRODUCTION (SOM	ME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000 000	0000	000	0000000000	0000	000

How small can $\partial E \cap \partial \Omega$ be: An easy bound



Suppose $\mathcal{H}^0(\partial E \cap \partial \Omega) = 1$. Then there is a $\tau \in \mathbb{R}^d$ such that $E_\tau = E + \tau \subset \Omega$, $\mathcal{H}^0(\partial E_\tau \cap \partial \Omega) = 0$ and

$$h(\Omega) \leq \frac{P(E_{\tau})}{\mathcal{L}^d(E_{\tau})} = \frac{P(E)}{\mathcal{L}^d(E)} = h(\Omega).$$

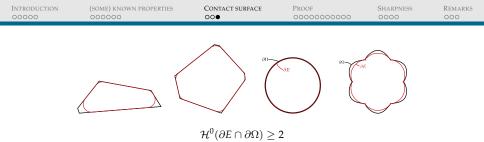
Then E_{τ} Cheeger set with $\mathcal{H}^0(\partial E_{\tau} \cap \partial \Omega) = 0$. Then the previous argument applies.

Thus $\mathcal{H}^0(\partial E \cap \partial \Omega) \geq 2$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = □ = ○ ○ ○ ○

INTRODUCTION 00000	(SOME) KNOWN PROPERTIES 000000	CONTACT SURFACE 00●	Proof 00000000000	Sharpness 0000	Remarks 000
		$\mathcal{H}^0(\partial E \cap \partial \Omega) \geq$	2		

シック 正 エル・エット 中国・エロ・



Theorem (C., Ciani 2020) If $\partial\Omega$ has regularity of class $C^{1,\alpha}$, for $\alpha \in [0,1]$ then

 $\mathcal{H}^{d-2+\alpha}(\partial E \cap \partial \Omega) > 0$

for any $E \subset \Omega$ Cheeger set. Moreover if $\alpha = 0$ then

$$\mathcal{H}^{d-2}(\partial E \cap \partial \Omega) = +\infty.$$

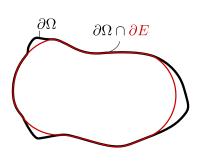
In d = 2, for any $\alpha \in (0, 1)$ there exists an open bounded set Ω with a Cheeger set $E \subset \Omega$, and with $\partial \Omega \in C^{1, \alpha}$, satisfying

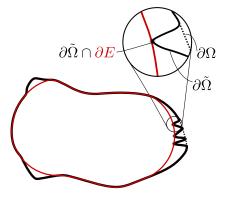
 $\mathcal{H}^{\alpha}(\partial E \cap \partial \Omega) > 0, \ \mathcal{H}^{s}(\partial E \cap \partial \Omega) = 0 \ \text{for any } s > \alpha.$

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	•0000000000	0000	000

WARNING

Locally the statement is false:

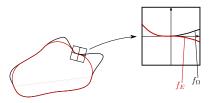




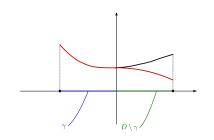
▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

Step 0) Assume that Ω is not a ball.



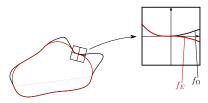
Pick $x \in \partial E \cap \partial \Omega$ (which exists since $\mathcal{H}^0(\partial E \cap \partial \Omega) > 1$). **Step 1**) Let $f_E, f_\Omega : D \to \mathbb{R}$ representing $\partial E, \partial \Omega$.



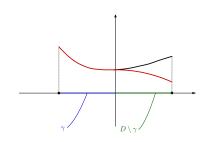
◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆日 ト

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

Step 0) Assume that Ω is not a ball.



Pick $x \in \partial E \cap \partial \Omega$ (which exists since $\mathcal{H}^0(\partial E \cap \partial \Omega) > 1$). **Step 1**) Let $f_E, f_\Omega : D \to \mathbb{R}$ representing $\partial E, \partial \Omega$.



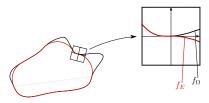
Set $\gamma := \{x \in D \mid (x, f_E(x)) \in \partial E \cap \partial \Omega\} \subset \mathbb{R}^{d-1}$

Then f_E satisfies

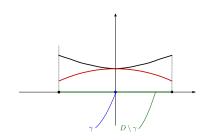
$$\begin{pmatrix} -\operatorname{div}\left(\frac{\nabla f_E(x)}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma \\ f_E \leq f_\Omega & \text{on } D \\ + \Box \vdash + \langle \overline{\Box} \vdash + \langle \overline{\Box} \vdash + \langle \overline{\Box} \vdash + \langle \overline{\Box} \vdash - \overline{\Box} - \overline{\Box} \rangle \leq C \end{pmatrix}$$

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

Step 0) Assume that Ω is not a ball.



Pick $x \in \partial E \cap \partial \Omega$ (which exists since $\mathcal{H}^0(\partial E \cap \partial \Omega) > 1$). **Step 1**) Let $f_E, f_\Omega : D \to \mathbb{R}$ representing $\partial E, \partial \Omega$.



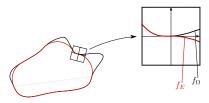
Then f_E satisfies

$$\begin{pmatrix} -\operatorname{div}\left(\frac{\nabla f_E(x)}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) & \text{ on } D \setminus \gamma \\ f_E \le f_\Omega & \text{ on } D \end{cases}$$

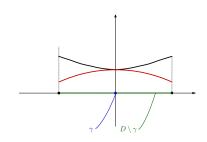
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

Step 0) Assume that Ω is not a ball.



Pick $x \in \partial E \cap \partial \Omega$ (which exists since $\mathcal{H}^0(\partial E \cap \partial \Omega) > 1$). **Step 1**) Let $f_E, f_\Omega : D \to \mathbb{R}$ representing $\partial E, \partial \Omega$.



Then f_E satisfies

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla f_E(x)}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) & \text{ on } D \setminus \gamma\\ f_E \leq f_\Omega & \text{ on } D \end{cases}$$

Actually here, *f*_E satisfies

$$-\operatorname{div}\left(\frac{\nabla f_E(x)}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \text{ on } D.$$

INTRODUCTION (SO	DME) KNOWN PROPERTIES (CONTACT SURFACE	PROOF	SHARPNESS	Remarks
00000 00	00000	000	0000000000	0000	000

•

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma \tag{1}$$

Step 2): Suppose that γ is small enough to guarantee that if f_E is a solution to (1) then

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D.$$
(2)

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

INTRODUCTION (SO	DME) KNOWN PROPERTIES (CONTACT SURFACE	PROOF	SHARPNESS	Remarks
00000 00	00000	000	0000000000	0000	000

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma$$
(1)

Step 2): Suppose that γ is small enough to guarantee that if f_E is a solution to (1) then

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D.$$
(2)

< □ > < @ > < E > < E > E のQ@

- Then ∂E has constant mean curvature in the small cube $Q_r(x)$.

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma$$
(1)

Step 2): Suppose that γ is small enough to guarantee that if f_E is a solution to (1) then

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D.$$
(2)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Then ∂E has constant mean curvature in the small cube $Q_r(x)$.

- But if $\partial E \cap \partial \Omega$ is globally small, then γ will be small around any contact point $x \in \partial E \cap \partial \Omega$.

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma$$
(1)

Step 2): Suppose that γ is small enough to guarantee that if f_E is a solution to (1) then

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D.$$
(2)

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Then ∂E has constant mean curvature in the small cube $Q_r(x)$.

- But if $\partial E \cap \partial \Omega$ is globally small, then γ will be small around any contact point $x \in \partial E \cap \partial \Omega$.

- By applying the above argument on every $x \in \partial E \cap \partial \Omega$ we conclude that ∂E has constant mean curvature around any contact point.

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma$$
(1)

Step 2): Suppose that γ is small enough to guarantee that if f_E is a solution to (1) then

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D.$$
(2)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Then ∂E has constant mean curvature in the small cube $Q_r(x)$.

- But if $\partial E \cap \partial \Omega$ is globally small, then γ will be small around any contact point $x \in \partial E \cap \partial \Omega$.

- By applying the above argument on every $x \in \partial E \cap \partial \Omega$ we conclude that ∂E has constant mean curvature around any contact point.

- But the free boundary is also a constant mean curvature hypersurface.

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma$$
(1)

Step 2): Suppose that γ is small enough to guarantee that if f_E is a solution to (1) then

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D.$$
(2)

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

- Then ∂E has constant mean curvature in the small cube $Q_r(x)$.

- But if $\partial E \cap \partial \Omega$ is globally small, then γ will be small around any contact point $x \in \partial E \cap \partial \Omega$.

- By applying the above argument on every $x \in \partial E \cap \partial \Omega$ we conclude that ∂E has constant mean curvature around any contact point.

- But the free boundary is also a constant mean curvature hypersurface.

Then
$$\partial E$$
 is an hyper-surface with CMC. \Rightarrow Alexandrov's Theorem \Rightarrow E is a ball.

INTRODUCTION (SOM	ME) KNOWN PROPERTIES C	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000 000	0000 0	000	0000000000	0000	000

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D \setminus \gamma$$
(1)

Step 2): Suppose that γ is small enough to guarantee that if f_E is a solution to (1) then

$$-\operatorname{div}\left(\frac{\nabla f_E}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \quad \text{on } D.$$
(2)

- Then ∂E has constant mean curvature in the small cube $Q_r(x)$.

- But if $\partial E \cap \partial \Omega$ is globally small, then γ will be small around any contact point $x \in \partial E \cap \partial \Omega$.

- By applying the above argument on every $x \in \partial E \cap \partial \Omega$ we conclude that ∂E has constant mean curvature around any contact point.

- But the free boundary is also a constant mean curvature hypersurface.

Then
$$\partial E$$
 is an
hyper-surface with CMC.
(Up to a small set Σ) \Rightarrow Alexandrov's Theorem
(revised) \Rightarrow E is a ball.

11 Delgadino, Maggi. Alexandrov's theorem revisited. Anal. PDE (2019).

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

IDEA OF THE PROOF

Summarizing, if $\partial E \cap \partial \Omega$ is small enough (in some sense) then *E* has to be a ball.

Contradiction: The ball can be a Cheeger set only of the ball! Therefore $\Omega = E$ is a ball.

INTRODUCTION (SOM	ME) KNOWN PROPERTIES (Contact surface	PROOF	SHARPNESS	Remarks
00000 000	0000 (000	0000000000	0000	000

IDEA OF THE PROOF

Summarizing, if $\partial E \cap \partial \Omega$ is small enough (in some sense) then *E* has to be a ball.

Contradiction: The ball can be a Cheeger set only of the ball! Therefore $\Omega = E$ is a ball.

Then $\partial E \cap \partial \Omega$ cannot be too small. At least as big as it is required so that, its pre-image γ , (somewhere) cannot be removed for the CMC equation:

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = h \text{ on } D \setminus \gamma \quad \not\Rightarrow \quad -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = h \text{ on } D.$$

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

IDEA OF THE PROOF

Summarizing, if $\partial E \cap \partial \Omega$ is small enough (in some sense) then *E* has to be a ball.

Contradiction: The ball can be a Cheeger set only of the ball! Therefore $\Omega = E$ is a ball.

Then $\partial E \cap \partial \Omega$ cannot be too small. At least as big as it is required so that, its pre-image γ , (somewhere) cannot be removed for the CMC equation:

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = h \text{ on } D \setminus \gamma \quad \not\Rightarrow \quad -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = h \text{ on } D.$$

Notice that the removability of γ has to depend in some sense on the regularity of u in D, i.e. the more regular is u the bigger γ can be.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

For instance if we know a priori that $u \in C^2(D)$ then any closed set γ with $\mathcal{H}^{d-1}(\gamma) = 0$ is removable. (Recall that $u : \mathbb{R}^{d-1} \to \mathbb{R}$)

Introduction 00000	(SOME) KNOWN PROPERTIES 000000	CONTACT SURFACE	Proof 0000000000	Sharpness 0000	Remarks 000

IDEA OF THE PROOF

Summarizing, if $\partial E \cap \partial \Omega$ is small enough (in some sense) then *E* has to be a ball.

Contradiction: The ball can be a Cheeger set only of the ball! Therefore $\Omega = E$ is a ball.

Then $\partial E \cap \partial \Omega$ cannot be too small. At least as big as it is required so that, its pre-image γ , (somewhere) cannot be removed for the CMC equation:

$$-\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = h \text{ on } D \setminus \gamma \quad \not\Rightarrow \quad -\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = h \text{ on } D.$$

Notice that the removability of γ has to depend in some sense on the regularity of u in D, i.e. the more regular is u the bigger γ can be.

For instance if we know a priori that $u \in C^2(D)$ then any closed set γ with $\mathcal{H}^{d-1}(\gamma) = 0$ is removable. (Recall that $u : \mathbb{R}^{d-1} \to \mathbb{R}$)

For our purposes, we cannot rely on a regularity better than $u \in C^{1,1}(D)$

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

REMOVABLE SINGULARITIES

If *u* a solution to

Lu = 0 on $D \setminus \gamma$,

when can we conclude also

Lu = 0 on D?

Typically it depends on the regularity of $u \in Cl(D)$ and on the size of γ .¹²

¹²A very partial list of literature on this topic:

- Serrin, Isolated singularities of solutions of quasi-linear equations. Acta Mathematica, 113:219-240, 1965.
- Serrin, Removable singularities of solutions of elliptic equations II. Archive for Rational Mechanics and Analysis,20(3):163–169, 1965
- De Giorgi, Stampacchia. Sulle singolarità eliminabili delle ipersuperficie minimali Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 38:352–357, 1965
- De Pauw, Pfeffer. The gauss-green theorem and removable sets for pdes in divergence form. Advances in Mathematics, 183(1):155–182, 2004
- Simon On a theorem of De giorgi and Stampacchia. Mathematische Zeitschrift, 155(2):199–204, 1977.

INTRODUCTION ((SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

DE GIORGI, STAMPACCHIA - SIMON THEOREM

Let $u \in C^2(D \setminus \gamma)$, $D \subset \mathbb{R}^{d'}$ satisfy

$$-\operatorname{div}\left(\frac{\nabla u(x)}{\sqrt{1+|\nabla u(x)|^2}}\right) = H \text{ for all } x \in D \setminus \gamma$$

and $\mathcal{H}^{d'-1}(\gamma) = 0$ then there exists a unique extension $\tilde{u} \in C^2(D)$ such that

$$-\operatorname{div}\left(\frac{\nabla \tilde{u}(x)}{\sqrt{1+|\nabla \tilde{u}(x)|^2}}\right) = H \text{ for all } x \in D.$$

< □ > < @ > < E > < E > E のQ@

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	000000000000	0000	000

FIRST TRIAL: THE ARGUMENT WITH DG-ST-SI THEOREM

Suppose that: Ω is not a ball, $\mathcal{H}^{d-2}(\partial E \cap \partial \Omega) = 0$, $(\partial \Omega \in C^1)$. Pick $x \in \partial E \cap \partial \Omega$. (d' = d - 1).

a) $\partial E \cap \partial \Omega \cap Q_r(x) := \{(x, f_E(x)), x \in \gamma\};$ b) $\mathcal{H}^{d'-1}(\gamma) \leq C \mathcal{H}^{d'-1}(\partial E \cap \partial \Omega \cap Q_r(x)) \leq \mathcal{H}^{d-2}(\partial E \cap \partial \Omega) = 0$

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla f_E(x)}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \text{ on } D \setminus \gamma \\ \mathcal{H}^{d'-1}(\gamma) = 0, f_E: \mathbb{R}^{d'} \to \mathbb{R} \end{cases}$$

c) Then DG,St-Si Theorem

$$-\operatorname{div}\left(\frac{\nabla f_E(x)}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \text{ on } D$$

and thus ∂E has constant mean curvature equal to *h*.

d) Alexandrov's Theorem (revised): *E* is a ball and thus Ω is a ball. Contradiction: we assumed $\Omega \neq B$.

```
Theorem : \mathcal{H}^{d-2}(\partial E \cap \partial \Omega) > 0.
```

- ロ > - 4 日 > - 4 日 > - 4 日 > - 9 0 0

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	000000000000	0000	000

POKROVSKII'S THEOREM

Let $u \in C^2(D \setminus \gamma) \cap C^{1,\alpha}(D)$, $D \subset \mathbb{R}^{d'}$ satisfies

$$-\operatorname{div}\left(\frac{\nabla u(x)}{\sqrt{1+|\nabla u(x)|^2}}\right) = H \text{ for all } x \in D \setminus \gamma$$

and $\mathcal{H}^{d'-1+\alpha}(\gamma) = 0$ then there exists a unique extension $\tilde{u} \in C^2(D)$ such that

$$-\operatorname{div}\left(\frac{\nabla \tilde{u}(x)}{\sqrt{1+|\nabla \tilde{u}(x)|^2}}\right) = H \text{ for all } x \in D.$$

Pokrovskii's removability applies to: Constant Mean Curvature equation, p-laplacian equation, and (lately) uniformly elliptic equations in divergence form.¹³

13

⁻ Pokrovskii, Removable singularities of p-harmonic functions. Differential Equations, 41(7):941–952, 2005

Pokrovskii, Removable singularities of solutions of second-order divergence-form elliptic equations. Mathematical Notes, 77(3-4):391–399, 2005;

Pokrovskii, Removable singularities of solutions of the minimal surface equation. Functional Analysis and Its Applications, 39(4):296–300, 2005;

Pokrovskii, Removable singularities of solutions of elliptic equations. Journal of Mathematical Sciences, 160(1):61–83,2009.

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

POKROVSKII'S THEOREM AS A DIVERGENCE PROPERTY

C.C. observation 2020¹⁴: the structure of quasi-linear elliptic equation is not required. Indeed if $F \in C^{0,\alpha}(D; \mathbb{R}^{d'})$ satisfies

$$\int_{D} \operatorname{div}(\phi) F \, \mathrm{d}x = \int_{D} \phi g \, \mathrm{d}x \text{ for all } \phi \in C_{c}^{\infty}(D \setminus \gamma), \quad -\operatorname{Div}(F) = g \text{ on } D \setminus \gamma$$

and γ closed set with $\mathcal{H}^{d'-1+\alpha}(\gamma)=0$ then

$$\int_{D} \operatorname{div}(\phi) F \, \mathrm{d}x = \int_{D} \phi g \, \mathrm{d}x \text{ for all } \phi \in C_{c}^{\infty}(D), \quad -\operatorname{Div}(F) = g \text{ on } D$$

¹⁴Firstly observed, for $\alpha = 0$, in:

Ponce, Singularities of the divergence of continuous vector fields and uniform hausdorff estimates Indiana University Mathematics Journal, pages 1055–1074, 2013

-

Dac

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	000000000	0000	000

SECOND TRIAL: THE ARGUMENT WITH POKROVSKII'S THEOREM

Suppose that: Ω is not a ball, $\mathcal{H}^{d-2+\alpha}(\partial E \cap \partial \Omega) = 0$, $(\partial \Omega \in C^{1,\alpha})$. Pick $x \in \partial E \cap \partial \Omega$ (d' = d - 1)

- a.0) $\partial E \cap \partial \Omega \cap Q_r(x) := \{(x, f_E(x)), x \in \gamma\};$
- a.1) If $\partial \Omega \in C^{1,\alpha} \Rightarrow \partial E \in C^{1,\alpha}$ around $x \in \partial E \cap \partial \Omega^{15}$;
 - b) $\mathcal{H}^{d'-1+\alpha}(\gamma) \leq C\mathcal{H}^{d-2+\alpha}(\partial E \cap \partial \Omega) = 0$ and

$$\begin{cases} -\operatorname{div}\left(\frac{\nabla f_{E}(x)}{\sqrt{1+|\nabla f_{E}(x)|^{2}}}\right) = h(\Omega) \text{ on } D \setminus \gamma\\ \mathcal{H}^{d'-1+\alpha}(\gamma) = 0, f_{E} \in C^{1,\alpha}(D) \end{cases}$$

c) Then, Pokrovskii's Theorem

$$-\operatorname{div}\left(\frac{\nabla f_E(x)}{\sqrt{1+|\nabla f_E(x)|^2}}\right) = h(\Omega) \text{ on } D$$

and thus ∂E has constant mean curvature equal to *h*.

d) Alexandrov's Theorem (revised): *E* is a ball and thus Ω is a ball. Contradiction: we assumed $\Omega \neq B$.

Theorem :
$$\mathcal{H}^{d-2+\alpha}(\partial E \cap \partial \Omega) > 0.$$

Giaquinta. Remarks on the regularity of weak solutions to some variational inequalities. Mathematische Zeitschrift,177(1):15–31, 1981.

¹⁵It can be derived as an adaptation of

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

Sharpness in d = 2

For any $\alpha \in (0,1]$ there exists an open bounded set $\Omega \subset \mathbb{R}^2$ with regularity of class $C^{1,\alpha}$ such that

 $\dim_{\mathcal{H}}(\partial E \cap \partial \Omega) = \alpha \quad (\mathcal{H}^{\alpha}(\partial E \cap \partial \Omega) > 0, \ \mathcal{H}^{s}(\partial E \cap \partial \Omega) = 0 \text{ for } s > \alpha.)$

< ロ > < 同 > < 三 > < 三 > 、 三 、 の < ()</p>

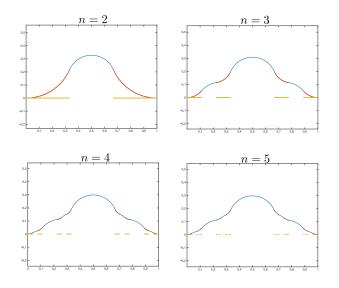
INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

HOW IS IT BUILT

D = (0, 1) and C_n Cantor type construction;

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	00000000000	0000	000

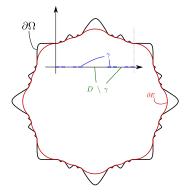
$C^{1,lpha}$ case



・ロト < 団 > < 三 > < 三 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

 $C^{1,\alpha}$ CASE¹⁶



We can build Ω around, so that (locally) $\partial E \cap \partial \Omega = (\mathrm{Id}\,, u)(\gamma)$ and

 $h(\Omega) = \frac{P(E)}{\mathcal{L}^2(E)}.$

Thence *E* is a Cheeger set of Ω with contact surface:

 $\dim_{\mathcal{H}}(\partial E \cap \partial \Omega) = \alpha$

¹⁶Tools required and other interesting literature about pathological Cheeger sets:

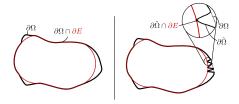
Leonardi, Neumayer, Saracco. The cheeger constant of a jordan domain without necks. Calculus of Variations and Partial Differential Equations, 56(6):164, 2017

⁻ Saracco. A sufficient criterion to determine planar self-cheeger sets Journal of Convex Analysis, 28(3), 951-958.

⁻ Leonardi, Saracco, Two examples of minimal Cheeger sets in the plane. Annali di Matematica 197, 1511–1531 (2018)

INTRODUCTION 00000	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof 0000000000	Sharpness 0000	Remarks •00

FINAL CONSIDERATION



a) Are the bounds $\mathcal{H}^{d-2+\alpha}(\partial E \cap \partial \Omega) > 0$, sharp also in $d \geq 3$?

(*Missing a.1*) The couple (u, γ) with the required geometry;

(*Missing a.2*) Instruments, like the planar one, to build the ambient space Ω_r^{17}

- b) The argument is sensible to the regularity of ∂E more than to the regularity of $\partial \Omega$. That is why, for Ω convex set we can infer $\mathcal{H}^{d-1}(\partial E \cap \partial \Omega) > 0$.
- c) Given a convex set Ω , are the bounds true also locally? We expect that either $\mathcal{H}^{d-1}(\partial E \cap \partial \Omega \cap A) > 0$ or $\partial E \cap \partial \Omega \cap A = \emptyset$

¹⁷More on these topics:

Leonardi, Saracco. Minimizers of the prescribed curvature functional in a Jordan domain with no necks." ESAIM: Control, Optimisation and Calculus of Variations 26 (2020): 76;

Leonardi, Ŝaracco. The prescribed mean curvature equation in weakly regular domains. Nonlinear Differential Equations and Applications NoDEA 25.2 (2018): 9.

A (VERY) PARTIAL LIST OF LITERATURE ON CHEEGER SETS

- 1968 The relation between the laplacian and the diameter for manifolds of non-negative curvature. J. Cheeger. (Archiv der Mathematik);
- 1969 A lower bound for the smallest eigenvalue of the laplacian. J. Cheeger. (Proceedings of the Princeton conference in honor of Professor S.Bochner);
- 2007 On the selection of maximal cheeger sets. G. Buttazzo, G. Carlier, and M. Comte. (Differential and Integral Equations);
- 2007 Uniqueness of the cheeger set of a convex body. V. Caselles, A. Chambolle, and M. Novaga. (Pacific J. Math.);
- 2009 A note on Cheeger sets. A. Figalli, F. Maggi, A. Pratelli. (Proceedings of the American Mathematical Society);
- 2010 Some remarks on uniqueness and regularity of cheeger sets. V. Caselles, A. Chambolle, and M. Novaga. (Rend. Semin. Mat. Univ. Padova);
- 2011 An introduction to the cheeger problem. E. Parini. (Surv.Math.Appl.);
- 2015 An overview on the Cheeger problem. G. P. Leonardi. (In New trends in shape optimization, Springer);
- 2016 A faber-krahn inequality for the cheeger constant of n-gons, D. Bucur, I. Fragalà. (The Journal of Geometric Analysis);
- 2016 On the cheeger sets in strips and non-convex domains. G. P. Leonardi and A. Pratelli. (Calculus of Variations and Partial Differential Equations);
- 2017 The cheeger constant of a jordan domain without necks. G. P. Leonardi, R. Neumayer, and G. Saracco. (Calculus of Variations and Partial Differential Equations);
- 2018 On the honeycomb conjecture for a class of minimal convex partitions. D. Bucur, I. Fragalà, B. Velichkov, and G. Verzini. (Transactions of the American Mathematical Society);
- 2018 The prescribed mean curvature equation in weakly regular domains. G. P. Leonardi and G. Saracco. (Non linear Differential Equations and Applications NoDEA);
- 2018 Two examples of minimal cheeger sets in the plane. G. P.Leonardi and G. Saracco. (Annali di Matematica Pura ed Applicata);

INTRODUCTION	(SOME) KNOWN PROPERTIES	CONTACT SURFACE	Proof	SHARPNESS	Remarks
00000	000000	000	0000000000	0000	000

Thank you for your attention

< □ > < @ > < E > < E > E のQ@