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The Cheeger constant is defined, for an open bounded set 2 C RY, as

[ PE)

&) == inf) { LA(E) }

being P(E) the distributional perimeter of E (i.e. H~1(OE) for regular enough sets) and
£%(E) the Lebesgue measure of E.

Any set attaining

P(E) _
LUE)
is called a Cheeger set of (for) Q.

h()

1(Par'cial) list of literature include the works of: Bucur, Buttazzo, Caselles, Cheeger, Chambolle, Figalli, Fragala,
Kawhol, Leonardi, Maggi, Neumayer, Novaga, Parini, Pratelli, Saracco, Verzini, Velichkov, and ma:

ny, many others...
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CHEEGER CONSTANT AND CHEEGER SETS

The Cheeger constant is defined, for an open bounded set 2 C RY, as

o= 29)

being P(E) the distributional perimeter of E (i.e. H~1(OE) for regular enough sets) and
L£4(E) the Lebesgue measure of E.

Any set attaining

P(E) _
ziE) ~ M@

is called a Cheeger set of (for) Q.

The Cheeger constant of a domain is linked to the first eigenvalue of the Dirichlet
p-laplacian':

r
@)= (KB tim 2, (0) = b,

1(Partia1) list of literature include the works of: Bucur, Buttazzo, Caselles, Cheeger, Chambolle, Figalli, Fragala,
Kawhol, Leonardi, Maggi, Neumayer, Novaga, Parini, Pratelli, Saracco, Verzini, Velichkov, and ma:

ny, many others...
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Remark: the only set having a ball as a Cheeger set is the ball itself.?

21t can be viewed as a consequence of the regularity theory for the free boundary, or as a consequence of

Figalli, Maggi, Pratelli: A note on Cheeger sets. Proceedings of the American Mathematical Society (2009): 2057-206!

2.
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- Known properties of Cheeger sets;

- About the contact surface
- An easy bound;

- Sketch of the proof

- Main theorem: a lower bound on the (dimension of the) contact surface;
- Strategy of the proof;

- Removable singularities;

- Sharpness of the bounds
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EXISTENCE AND INTERIOR REGULARITY

If Q C R? then®
(e) there exists at least one Cheeger set E of €2;

(ir) OE N Q is an analytic hyper-surface with constant mean curvature equal to 1(2);

2015.

3Leonardi, An overview on the cheeger problem. In New trends in shape optimization, pages 117-139. Springer,
Parini, An introduction to the cheeger problem. Surv. Math. Appl., 6:9-21,2011; o

&
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faeC = frect

faoeCh = frech!

Qconvex = fp € CHL
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BOUNDARY REGULARITY

If Q C R? then®

(br.1) If E is a Cheeger set of 2 and €2 is regular enough then 9E N 2 meets 92 only in a
tangential way, namely vg(x) = vq(x) on 9E N 9Q °;

(br.2) If 92 € C! then OE has regularity of class C! in a neighbourhood of any
x € OE N 0KY7;

(br.3) If 99 € C1! then OE has regularity of class C'! in a neighbourhood of any
x € OE N 9NS;

(br.4) If © is convex then there exists a unique Cheeger set E. Moreover OE has
regularity of class C1! in a neighbourhood of any x € OE N 9Q° 10;

5Gor\zalez, Massari, Tamanini. Minimal boundaries enclosing a given volume. Manuscripta mathematica,
34(2-3):381-395, 1981.

6Leonarcli, Pratelli, On the cheeger sets in strips and non-convex domains. Calculus of Variations and Partial
Differential Equations, 55(1):15, 2016.

7Miranda, Frontiere minimali con ostacoli. Annali dell’Universita di Ferrara, 16(1):29-37, 1971

8Caselles, Chambolle, Novaga, Some remarks on uniqueness and regularity of cheeger sets. Rend. Semin. Mat. Univ.
Padova, 123:191-201, 2010

9Caselles, Chambolle, Novaga. Uniqueness of the Cheeger set of a convex body. Pacific Journal of Mathematics 232.1
(2007): 77-90.

10 Alter, Caselles Uniqueness of the Cheeger set of a convex body Nonlinear Analysis: Theory, Methods and

Applications 70.1 (2009): 32-44.
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N

If © C R? then
(br.1) If E is a Cheeger set of 2 and €2 is regular enough then 9E N 2 meets 9 only in a
tangential way, namely vg(x) = vo(x) on OE N 02 ;

(br.2) If 92 € C! then OE has regularity of class C! in a neighbourhood of any
x € OEN 9QY;

(br.3) If 9Q € C11 then OE has regularity of class Cllina neighbourhood of any
x € OEN 99

(br.4) If © is convex then there exists a unique Cheeger set E. Moreover OE has
regularity of class C1! in a neighbourhood of any x € E N 8Q;
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BOUNDARY REGULARITY

N

If Q C R? then

(br.1) If E is a Cheeger set of 2 and €2 is regular enough then 9E N 2 meets 9 only in a
tangential way, namely vg(x) = vo(x) on OE N 02 ;

(br.2) If 92 € C! then OE has regularity of class C! in a neighbourhood of any
x € OEN 9QY;

(br.3) If 9Q € C11 then OE has regularity of class Cllina neighbourhood of any
x € OEN 99

(br.4) If © is convex then there exists a unique Cheeger set E. Moreover OE has
regularity of class C1! in a neighbourhood of any x € E N 8Q;
(Dr) H=Y(OE N aQ) > 07
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BOUNDARY REGULARITY

N

If Q C R? then

(br.1) If E is a Cheeger set of 2 and €2 is regular enough then 9E N 2 meets 9 only in a
tangential way, namely vg(x) = vo(x) on OE N 02 ;

(br.2) If 92 € C! then OE has regularity of class C! in a neighbourhood of any
x € OEN 9QY;

(br.3) If 9Q € C11 then OE has regularity of class Cllina neighbourhood of any
x € OEN 99

(br.4) If © is convex then there exists a unique Cheeger set E. Moreover OE has
regularity of class C1! in a neighbourhood of any x € E N 8Q;

(Dr) H=1(OE N d€) > 0? Observe that H~1(JE N HQ) can be interpreted somehow

as lim/ |0y up|? dH1
r—1Jo0
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If Q C R? then

(br.1) If E is a Cheeger set of 2 and €2 is regular enough then OE N 2 meet 92 only in a
tangential way, namely vg(x) = vq(x) on OE N 9N
x € 0EN 0%y

br.2) If 8Q € C! then OE has regularity of class C! in a neighbourhood of any
x € OEN 0%

(br.3) If 9 € C1! then OE has regularity of class C'! in a neighbourhood of any

;

(br.4) If © is convex then there exists a unique Cheeger set E. Moreover OE has
regularity of class C"'! in a neighbourhood of any x € 9E N 99;
(Dr) H=Y(OENIQ) >0
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[

If Q C R? then

(br.1) If E is a Cheeger set of 2 and €2 is regular enough then OE N 2 meet 92 only in a
tangential way, namely vg(x) = vo(x) on OE N 02 ;
x € OEN 9QY;

br.2) If 8Q € C! then OE has regularity of class C! in a neighbourhood of any
x € OEN 09

(br.3) If 9 € C1! then OE has regularity of class C'! in a neighbourhood of any

(Dr) H*~1(OE N Q) > 0 in some cases...;

(br.4) If © is convex then there exists a unique Cheeger set E. Moreover OE has
regularity of class C1! in a neighbourhood of any x € E N 99;
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HOW SMALL CAN OE N 02 BE: AN EASY BOUND

If HO(OE N OQ) =0

h(Q) <

Suppose H°(OE N 9§2) = 0. Then thereis a A > 1such that Ey = AE C , and

P(Ey) 1 P(E)  h(®)
T LUEN)  ALYUE) A

= A=1
Thus H°(OE N 0Q) > 1.
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HOW SMALL CAN OE N 02 BE: AN EASY BOUND

If HOOENON) =1

PE+7)
LUYE+T) Q)
H(OEN Q) =0
HO(BE, N AN) = 0 and

Suppose H(OE N 0N) = 1. Then thereisa 7 € RY suchthat E; =E+7 C Q,

() < P(E-)

_ PE) _
< o) ~ o) "

Then E, Cheeger set with H°(9E, N 8Q) = 0. Then the previous argument applies.

Thus H(OE N oQ) > 2.
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HO(BEN 8Q) > 2
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Theorem (C., Ciani 2020)

If OQ has regularity of class C1*, for o € [0, 1] then
HI2T(BEN 69Q) > 0
for any E C Q Cheeger set. Moreover if oo = 0 then

HI2(DE N 0Q)
with 92 € Ch<, satisfying

Ind =2, for any o € (0, 1) there exists an open bounded set Q with a Cheeger set E C Q, and

HYOEN Q) >0, H(BENIN) =0 foranys > «
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Locally the statement is false:

NN HanoE
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STRATEGY OF THE PROOF
Step 0) Assume that €2 is not a ball.

\
=!

<
.
g

Pick x € OE N 89 (which exists since H°(JE N 9Q) > 1).
Step 1) Let fr, fo : D — R representing OE, 0€2.

¥<
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STRATEGY OF THE PROOF
Step 0) Assume that €2 is not a ball.

\
=!

<
.
g

Pick x € OE N 89 (which exists since H°(JE N 9Q) > 1).
Step 1) Let fr, fo : D — R representing OE, 0€2.

Set

v:={x € D|(x,fz(x)) € OENOQ} C R*~!

¥< Then f¢ satisfies

—div Y@ )~ o onD \ v
(\/1+\Vfg(x)|2 “ \
fe <fa

on D
D\~
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STRATEGY OF THE PROOF
Step 0) Assume that €2 is not a ball.

\
=!

<
.
g

Pick x € OE N 89 (which exists since H°(JE N 9Q) > 1).
Step 1) Let fr, fo : D — R representing OE, 0€2.

Then f satisfies

—div | —YE® ) — onD
<\/1+\Vfg<x)|2 @ \

— e "
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STRATEGY OF THE PROOF
Step 0) Assume that €2 is not a ball.

\
=!

<
.
g

Pick x € OE N 89 (which exists since H°(JE N 9Q) > 1).
Step 1) Let fr, fo : D — R representing OE, 0€2.

Then f satisfies

“div [ —YED ) — () onD\~y
<\/1+\Vfg(’f)|2 ) \

Actually here, f¢ satisfies

—div <%> =h(Q)onD.
L+ [Vfe(0)l?

=] F
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_div (VifE

VI V()2

) =h(Q) onD\~

Step 2): Suppose that +y is small enough to guarantee that if f is a solution to (1) then

0]
—div <VfE> =h(Q) onD.
1+ [Vfe(x)?

@
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_div (VifE

VI V()2

) =h(Q) onD\~

Step 2): Suppose that +y is small enough to guarantee that if f is a solution to (1) then

—div <Vf‘5> =h(Q) onD.
1+ [Vfe(x)?

- Then OF has constant mean curvature in the small cube Q,(x).

0]

@
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_div (VifE
VI V()2

) =h(Q) onD\~

Step 2): Suppose that +y is small enough to guarantee that if f is a solution to (1) then

—div (VfE> =h(Q) onD.
1+ [Vfe(x)?

- Then OF has constant mean curvature in the small cube Q,(x).
x € OEN 90N

0]

@
- But if OE N 09 is globally small, then ~ will be small around any contact point
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STRATEGY OF THE PROOF
div [ —YEe___) =
div ( 1+|Vfg(x)\2) =n(Q) onD\~y 1
Step 2): Suppose that +y is small enough to guarantee that if f is a solution to (1) then
\% SV =h(2) onD. 2)
1+ [Vfe(x)|?

- Then OF has constant mean curvature in the small cube Q,(x).

- But if OE N 09 is globally small, then ~ will be small around any contact point
x € OEN 9N

- By applying the above argument on every x € 9E N 992 we conclude that JE has
constant mean curvature around any contact point.
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STRATEGY OF THE PROOF

—div [ Y =
div ( 1+|Vfg(x)\2) =n(Q) onD\~y 1
Step 2): Suppose that +y is small enough to guarantee that if f is a solution to (1) then
\% SV =h(2) onD. 2)
1+ [Vfe(x)|?

- Then OF has constant mean curvature in the small cube Q,(x).
- But if OE N 09 is globally small, then ~ will be small around any contact point
x € OEN 9N

- By applying the above argument on every x € 9E N 992 we conclude that JE has
constant mean curvature around any contact point.

- But the free boundary is also a constant mean curvature hypersurface.
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STRATEGY OF THE PROOF

—div [ Y =
div ( 1+|Vfg(x)\2) =n(Q) onD\~y 1
Step 2): Suppose that +y is small enough to guarantee that if f is a solution to (1) then
\% SV =h(2) onD. 2)
L+ [Vfe(x)?

- Then OF has constant mean curvature in the small cube Q,(x).
- But if OE N 09 is globally small, then ~ will be small around any contact point
x € OEN 9N

- By applying the above argument on every x € 9E N 992 we conclude that JE has
constant mean curvature around any contact point.

- But the free boundary is also a constant mean curvature hypersurface.

Then JE is an
hyper-surface with CMC. N Alexandrov’s Theorem N E is a ball.
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STRATEGY OF THE PROOF

—div ( ——2E__ ) =h(Q D 1
v (s ) =h®) onD\s o)
Step 2): Suppose that 7 is small enough to guarantee that if ff is a solution to (1) then
—div -V =h(2) onD. 2)
1+ |Vfe()l?

- Then OF has constant mean curvature in the small cube Q,(x).

- But if OE N 092 is globally small, then v will be small around any contact point
x € OEN 0N.

- By applying the above argument on every x € JE N 92 we conclude that OE has
constant mean curvature around any contact point.

- But the free boundary is also a constant mean curvature hypersurface.

Then JE is an
hyper-surface with CMC.

, Ei 1L
(Up to a small set %) Alexandrov’s Theorem - isaba

(revised)

11

11Delgadino, Maggi. Alexandrov’s theorem revisited. Anal. PDE (2019).
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Summarizing, if OF N 02 is small enough (in some sense) then E has to be a ball.

Contradiction: The ball can be a Cheeger set only of the ball! Therefore {2 = E is a ball.
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IDEA OF THE PROOF

Summarizing, if OF N 02 is small enough (in some sense) then E has to be a ball.
Contradiction: The ball can be a Cheeger set only of the ball! Therefore 2 = E is a ball.

Then OE N 052 cannot be too small. At least as big as it is required so that, its pre-image
7, (somewhere) cannot be removed for the CMC equation:

Vu Vu
V| ——=| =honD —div| ———= | =h onD.
<\/1+|w2> o <\/1+|Vu|2>
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IDEA OF THE PROOF

Summarizing, if OF N 02 is small enough (in some sense) then E has to be a ball.
Contradiction: The ball can be a Cheeger set only of the ball! Therefore €2 = E is a ball.

Then OE N 052 cannot be too small. At least as big as it is required so that, its pre-image
7, (somewhere) cannot be removed for the CMC equation:

Vu Vu
V| ——=| =honD —div| ———= | =h onD.
<\/1+|w2> o <\/1+|Vu|2>

Notice that the removability of v has to depend in some sense on the regularity of u in
D, i.e. the more regular is u the bigger  can be.

For instance if we know a priori that u € C?(D) then any closed set y with
H4=1(y) = 0 is removable. (Recall that u : R?~! — R)
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IDEA OF THE PROOF

Summarizing, if OF N 02 is small enough (in some sense) then E has to be a ball.
Contradiction: The ball can be a Cheeger set only of the ball! Therefore €2 = E is a ball.

Then OE N 052 cannot be too small. At least as big as it is required so that, its pre-image
7, (somewhere) cannot be removed for the CMC equation:

Vu Vu
V| ——=| =honD —div| ———= | =h onD.
<\/1+|w2> o <\/1+|Vu|2>

Notice that the removability of v has to depend in some sense on the regularity of u in
D, i.e. the more regular is u the bigger  can be.

For instance if we know a priori that u € C?(D) then any closed set y with
H4=1(y) = 0 is removable. (Recall that u : R?~! — R)

For our purposes, we cannot rely on a regularity better than u € C11(D)
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REMOVABLE SINGULARITIES

If u a solution to
Lu=0onD)\~,

when can we conclude also
Lu=0 onD?

Typically it depends on the regularity of u € Cl(D) and on the size of ~.1?

125 very partial list of literature on this topic:
- Serrin, Isolated singularities of solutions of quasi-linear equations. Acta Mathematica, 113:219-240, 1965.

- Serrin, Removable singularities of solutions of elliptic equations II. Archive for Rational Mechanics and
Analysis,20(3):163-169, 1965

- De Giorgi, Stampacchia. Sulle singolarita eliminabili delle ipersuperficie minimali Atti Accad. Naz. Lincei Rend.
CL. Sci. Fis. Mat. Natur. (8), 38:352-357, 1965

- De Pauw, Pfeffer. The gauss—green theorem and removable sets for pdes in divergence form. Advances in
Mathematics, 183(1):155-182, 2004

- Simon On a theorem of De giorgi and Stampacchia. Mathematische Zeitschrift, 155(2):199-204, 1977.
] = = =
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:
DE GIORGI, STAMPACCHIA - SIMON THEOREM

Letu € C2(D\v),D C RY satisfy

—div (Vu(x)

V1+ [Vu@))2

> =H forallxe D\ v

and H4' 1 () = 0 then there exists a unique extension i € C2(D) such that

—div Vui(x} =H forallx € D.
1+ |Vi(x)2
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FIRST TRIAL: THE ARGUMENT WITH DG-ST-SI THEOREM

Suppose that:  is not a ball, H?~2(0E N 9Q) = 0, (9Q € C'). Pick x € HE N HQ.
d =d-1).

a) OEN AN N Qr(x) := {(x,fe(x)), x € v}
b) Hd/—l(,y) < CHd/—l(aE nNonnN Qr(x)) < Hd_z(aE n 89) =0

_div [ ™ )
d/“’( H—IVfE(x)lz),_h(Q) onDA7
HY () =0, fp: RT - R

¢) Then DG,St-Si Theorem

YD\
di ( 1+|va(x)|2> h(Q) onD

and thus OF has constant mean curvature equal to /.

d) Alexandrov’s Theorem (revised): E is a ball and thus 2 is a ball. Contradiction: we
assumed Q # B.

Theorem : H?~2(3E N &) > 0.
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POKROVSKII'S THEOREM

Letu € C2(D\ v)NC-(D), D C RY satisfies

Vu(x)
V14 |Vu(x)|?

and Hd' —1+e (7) = 0 then there exists a unique extension &z € C2(D) such that

=H forallxe D\ v

—div Vui(x) =H forallx € D.

VIt |Vi(x)]2

Pokrovskii’s removability applies to: Constant Mean Curvature equation, p-laplacian
equation, and (lately) uniformly elliptic equations in divergence form.!?

Pokrovskii, Removable singularities of p-harmonic functions. Differential Equations, 41(7):941-952, 2005

Pokrovskii, Removable singularities of solutions of second-order divergence-form elliptic equations. Mathematical
Notes, 77(3-4):391-399, 2005;

Pokrovskii, Removable singularities of solutions of the minimal surface equation. Functional Analysis and Its
Applications, 39(4):296-300, 2005;

Pokrovskii, Removable singularities of solutions of elliptic equations. Journal of Mathematical Sciences,
160(1):61-83,2009.

] = =
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POKROVSKII'S THEOREM AS A DIVERGENCE PROPERTY

C.C. observation 2020'*: the structure of quasi-linear elliptic equation is not required
Indeed if F € C®%(D; Rd/) satisfies

/ div(¢)Fdx = / ¢gdx forallp € C°(D\ «), —Div(F)=gonD\~
Jb
and ~y closed set with H4 —1+e (v) = 0 then

/dw Fdx = / ¢gdx forall ¢ € C>°(D), —Div(F) =gonD
D

Flrstly observed, for a = 0, in:

Mathematics Journal, pages 1055-1074, 2013

Ponce, Singularities of the divergence of continuous vector fields and uniform hausdorff estimates Indiana Umversuy

[m]
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SECOND TRIAL: THE ARGUMENT WITH POKROVSKII'S THEOREM
Suppose that: 2 is not a ball, Hd*Z“*(BE noQ) =0, € CL). Pick x € 8E N 9N
@ =d-1)
a.0) OEN QN Qr(x) := {(x,fe(x)), x €~};
a.l) If 90 € Cb@ = 9E € CL around x € OE N 9N13;
b) HY' —1Fe(5) < CHI=2+*(HE N 9N) = 0 and

_di V() _
{ d/1v ( 1+|Vfg(x)|2) h(Q) onD\ v
HE 14 (y) =0, fp € C2(D)

¢) Then, Pokrovskii’s Theorem

div Ve (x) _
‘ ( 1+|fo<x>|2> 1 ot

and thus OF has constant mean curvature equal to /.

d) Alexandrov’s Theorem (revised): E is a ball and thus 2 is a ball. Contradiction: we
assumed €2 # B.

Theorem : H~2T%(9E N d%2) > 0.

151t can be derived as an adaptation of
Giaquinta. Remarks on the regularity of weak solutions to some variational inequalities. Mathematische
Zeitschrift,177(1):15-31, 1981.
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CL@ such that

For any a € (0, 1] there exists an open bounded set 2 C R? with regularity of class
dimy (OE N ON) = «

(H™(BE N AR > 0, H(OE N 9Q) = 0 fors > a.)
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HOW IS IT BUILT
D = (0,1) and C,; Cantor type construction;
t t
sn(r) — Hr 1
un(t) == (5n(r) ) 7y sn(t) := 27/ Ic,(r)dr
1 — (sn(r) — Hr)? L2(Cn) Jo

/C"

e
Uy (1)

/
1+|u;<t>|2) =H, onDA Gy
Uy € CLa (D)

,(’7

<(D\ Cu)

Y= m Cu,
neN
Uy — U
dlm'H (’Y) =,
H*(y) >0
By playing with the construction of Cy,
any o € (0,1) can be reached

( u' (t

Moreover: u},(0) = u;,(1) =0 = u’/(0) = u'(1)

1+|u’(t)\2) =H, onD\~v
ueCh(D)n

D\v)

[m]




INTRODUCTION (SOME) KNOWN PROPERTIES CONTACT SURFACE PROOF SHARPNESS REMARKS
00000 000000 000 00000000000 0000 000

Che CASE

05 05
0 04
03 03
02 02
o 01
o of="— — )
o1 01
o3 02
o1 oz 03 o4 05 08 07 08 05 1 o1 oz 03 o1 05 08 07 o8 09

u]
]

I

w
i
N)
yel
2



INTRODUCTION (SOME) KNOWN PROPERTIES CONTACT SURFACE PROOF SHARPNESS REMARKS
00000 000000 000 00000000000 [e]e]e] ) 000

Cle casgle

We can build €2 around, so that (locally)
OEN Q= (Id,u)(y) and

P(E
h(Q) = z:z(( E)).

Thence E is a Cheeger set of Q2 with
contact surface:

dimy (OEN 0N) = «

16Tools required and other interesting literature about pathological Cheeger sets:

- Leonardi, Neumayer, Saracco. The cheeger constant of a jordan domain without necks. Calculus of Variations and
Partial Differential Equations, 56(6):164, 2017

- Saracco. A sufficient criterion to determine planar self-cheeger sets Journal of Convex Analysis, 28(3), 951-958.

- Leonardi, Saracco,Two examples of minimal Cheeger sets in the plane. Annali di Matematica 197, 1511-1531 (2018)
o = = = E
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2 sanoE

a) Are the bounds H?—2+%(9E N &Q) > 0, sharp also ind > 3?
(Missing a.1) The couple (u, ) with the required geometry;

(Missing a.2) Instruments, like the planar one, to build the ambient space ;7
b) The argument is sensible to the regularity of OF more than to the regularity of 0.
That is why, for Q convex set we can infer H*~1(0E N 9Q) > 0.
¢) Given a convex set 2, are the bounds true also locally? We expect that either
HIHOENINNA) >00r JENINNA =0

7More on these topics:

- Leonardi, Saracco. Minimizers of the prescribed curvature functional in a Jordan domain with no necks .” ESAIM:
Control, Optimisation and Calculus of Variations 26 (2020): 76;

- Leonardi, Saracco. The prescribed mean curvature equation in weakly regular domains. Nonlinear Differential
Equations and Applications NoDEA 25.2 (2018): 9.

[m]
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A (VERY) PARTIAL LIST OF LITERATURE ON CHEEGER SETS

1968 The relation between the laplacian and the diameter for manifolds of non-negative curvature. J. Cheeger. (Archiv der
Mathematik);

1969 A lower bound for the smallest eigenvalue of the laplacian. J. Cheeger. (Proceedings of the Princeton conference in
honor of Professor S.Bochner);

2007 On the selection of maximal cheeger sets. G. Buttazzo, G. Carlier, and M. Comte. (Differential and Integral
Equations);

2007 Uniqueness of the cheeger set of a convex body. V. Caselles, A. Chambolle, and M. Novaga. (Pacific . Math.);
2009 A note on Cheeger sets. A. Figalli, F. Maggi, A. Pratelli. (Proceedings of the American Mathematical Society);

2010 Some remarks on uniqueness and regularity of cheeger sets. V. Caselles, A. Chambolle, and M. Novaga. (Rend.
Semin. Mat. Univ. Padova);

2011 An introduction to the cheeger problem. E. Parini. (Surv.Math.Appl.);
2015 An overview on the Cheeger problem. G. P. Leonardi. (In New trends in shape optimization, Springer);

2016 A faber-krahn inequality for the cheeger constant of n-gons, D. Bucur, 1. Fragala. (The Journal of Geometric
Analysis);

2016 On the cheeger sets in strips and non-convex domains. G. P. Leonardi and A. Pratelli. (Calculus of Variations and
Partial Differential Equations) ;

2017 The cheeger constant of a jordan domain without necks. G. P. Leonardi, R. Neumayer, and G. Saracco. (Calculus of
Variations and Partial Differential Equations);

2018 On the honeycomb conjecture for a class of minimal convex partitions. D. Bucur, I. Fragala, B. Velichkov, and G.
Verzini. (Transactions of the American Mathematical Society);

2018 The prescribed mean curvature equation in weakly regular domains. G. P. Leonardi and G. Saracco. (Non linear
Differential Equations and Applications NoDEA) ;

2018 Two examples of minimal cheeger sets in the plane. G. P.Leonardi and G. Saracco. (Annali di Matematica Pura ed
Applicata);
[m] = = =
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Thank you for your attention
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