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The statement

Theorem (A.–Pasqualetto–Pozzetta–Semola)

Let (X , d ,HN) be an RCD(K ,N) space, with K ∈ R and 2 ≤ N < +∞.
Assume that there exists v0 > 0 such that HN(B1(x)) ≥ v0 for every
x ∈ X.
Let I : (0,HN(X ))→ (0,∞) be the isoperimetric profile of X . Then the
inequality

−I ′′I ≥ K +
(I ′)2

N − 1
holds in the viscosity sense on (0,HN(X )) ,

? Viscosity: for all C 2 ϕ’s touching f at x0, with ϕ ≤ f around x0,
inequality holds with ϕ.

? Sharp. Equality in the models.

? In the compact case in [Bavard–Pansu, Bayle]. In the noncompact case
challenging, see, e.g., Euclidean convex bodies with bounded geometry in
[Leonardi–Ritoré–Vernadakis].
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The proof in the smooth compact case (I)

? Assume X is an N-dimensional compact manifold with Ric ≥ K .
Main ingredients: existence of isoperimetric sets, and first and second
variation of the area (with regularity theory for isoperimetric boundaries).

Step 1. Fix an isoperimetric region E of volume v . For simplicity ∂E
smooth, and I ′(v), I ′′(v) exist. Denote ν the unit normal to ∂E , II the
second fundamental form, and H the mean curvature.

Step 2. If Et is the t-enlargment, with t ∈ (−ε, ε), then

d

dt
|t=0Per(Et) =

∫
∂E

H = HPer(E )

d2

dt2
|t=0Per(Et) =

∫
∂E

(
H2 − |II |2 − Ric(ν, ν)

)
≤
(
N − 2

N − 1
H2 − K

)
Per(E )
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The proof in the smooth compact case (II)

Step 3. From the definition I (vol(Et)) ≤ Per(Et) for t ∈ (−ε, ε). Taking
the first derivative at t = 0

I ′(v) = H,

and taking the second derivative at t = 0,

I ′′(v)Per(E )2+I ′(v)HPer(E ) ≤ d2

dt2
|t=0Per(Et) ≤

(
N − 2

N − 1
H2 − K

)
Per(E ),

from which, using I (v) = Per(E ), we have

I ′′(v)I (v) +
1

N − 1
I ′(v)2 + K ≤ 0.
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Noncompact case (I): dealing with possible non-existence

Theorem (A.–Nardulli–Pozzetta after A.–Fogagnolo–Pozzetta)

Let (X , d ,HN) be a noncompact RCD(K ,N) space, with K ∈ R and N ≥ 2.
Assume HN(B1(x)) ≥ v0 > 0 for every x ∈ X and some v0 > 0.
Let {Ωi}i∈N be a minimizing sequence for the isoperimetric problem at volume
V > 0.

Then, up to subsequences in i , there is ` ∈ N such that the following hold:

Ωi = Ωc
i t Ωd

i , with Ωc
i converging in L1

loc, volume, and perimeter to an
isoperimetric set Ω, and Ωd

i diverging at infinity;

For every i ∈ N and 1 ≤ j ≤ ` there exist points pi,j ∈ X and disjoint
pi,j ∈ Ωd

i,j ⊂ Ωd
i such that, for every 1 ≤ j ≤ `, the sequences of points

{pi,j}i∈N are mutually (wrt j) diverging;

for every 1 ≤ j ≤ `, (X , d ,HN , pi,j) pmGH conv. to (Xj , dj ,HN , pj) and Ωd
i,j

converge to Zj ⊂ Xj in L1-strong (in volume + χΩd
i,j
HN ⇀ χZjHN) and

perimeter, and Zj is isoperimetric for its volume in Xj ;

V = HN(Ω) +
∑`

j=1HN(Zj), and I (V ) = Per(Ω) +
∑`

j=1 PerXj (Zj).
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Noncompact case (II): adapting variations of the area

Theorem (A.–Pasqualetto–Pozzetta–Semola)

Let (X , d ,HN) be RCD(0,N), E ⊂ X be an isop.region. Then, for some c ∈ R,

∆dE ≥
c

1 + c
N−1dE

, on E

∆dE ≤
c

1 + c
N−1dE

on X \ E .

where dE is the signed distance function from E.

In addition, being Et the
t-enlargement for t ∈ (−ε, ε), we have

Per(Et) ≤
(

1 +
c

N − 1
t

)N−1

Per(E )

If K ∈ R, the analogous inequality yields that if t 7→ Per(Et) is twice

differentiable at t = 0, then d
dt |t=0Per(Et) = cPer(E ) and

d2

dt2 |t=0Per(Et) ≤
(

N−2
N−1c

2 − K
)
Per(E ).
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Noncompact case (III): proof

Step 1. Fix v > 0 and take Ω,Z1, . . . ,Z` as in the asymptotic mass
decomposition when minimizing at volume v . Take ϕ ∈ C 2(v − ε, v + ε)
with ϕ ≤ I and ϕ(v) = I (v).

From I (v) = Per(Ω) +
∑`

i=1 Per(Zi ), the regularity of ϕ, and the previous
inequality on Per(Ωt),Per((Zi )t) we first get that t 7→ Per(Ωt), and
t 7→ Per((Zi )t) are differentiable at t = 0, and we may choose the same c
for all the sets Ω,Z1, . . . ,Z`;

Step 2. Calling β(t) := HN(Ωt) +
∑`

i=1HN((Zi )t) we have for
t ∈ (−ε, ε)

ϕ(β(t)) ≤ I (β(t)) ≤ Per(Ωt) +
∑̀
i=1

Per((Zi )t) ≤
(

1 +
c

N − 1
t

)N−1

I (v),

and taking the second derivative in t = 0 gives the sought conclusion.
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(Some) consequences of the
sharp differential inequality
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Differentiability properties of the isoperimetric profile

Corollary (A.–Pasqualetto–Pozzetta–Semola)

Let (X , d ,HN) be an RCD(K ,N) space, with K ∈ R and 2 ≤ N < +∞.
Assume that there exists v0 > 0 such that HN(B1(x)) ≥ v0 for every
x ∈ X.
Let I : (0,HN(X ))→ (0,∞) be the isoperimetric profile of X . The
following hold:

I is locally C-concave. Namely, for every v ∈ (0,HN(X )) and for
every δ ∈ (0,HN(X )− v) there exists C > 0 such that the function
I (x)− Cx2 is concave on (v − δ, v + δ);

I has right and left derivatives defined for every v ∈ (0,HN(X ));

I is differentiable in a co-countable subset of (0,HN(X )), it is locally
Lipschitz, it is twice differentiable almost-everywhere, and the Sharp
Differential Inequality for I holds pointwise almost everywhere.
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(Some) concavity properties of the isoperimetric profile

Corollary (A.–Pasqualetto–Pozzetta–Semola)

Let (X , d ,HN) be an RCD(K ,N) space, with K ∈ R and 2 ≤ N < +∞.
Assume that there exists v0 > 0 such that HN(B1(x)) ≥ v0 for every
x ∈ X.
Let I : (0,HN(X ))→ (0,∞) be the isoperimetric profile of X , and let

ψ := I
N

N−1 . The the following hold:

The inequality

−ψ′′ ≥ KN

N − 1
ψ

2−N
N holds in the visc. sense and a.e. on (0,HN(X ));

There exist C := C (K ,N, v0) and v1 := v1(K ,N, v0) such that

v 7→ ψ(v)− Cv
2+N
N is concave on [0, v1];

The quantity v 7→ I (v)/v
N−1
N has limit as v → 0.
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Isoperimetric sets and connectedness

Corollary (A.–Pasqualetto–Pozzetta–Semola)

Let (X , d ,HN) be an RCD(0,N) space, with 2 ≤ N < +∞. Assume that
there exists v0 > 0 such that HN(B1(x)) ≥ v0 for every x ∈ X.
Let E ⊂ X be an isoperimetric set. Then E is connected.

Proof. We have
(I

N
N−1 )′′ ≤ 0,

hence I is strictly subadditive.

If E = E1 ∪ E2 with
HN(E ) = HN(E1) +HN(E2) and Per(E ) = Per(E1) + Per(E2) we have

I (HN(E )) < I (HN(E1)) + I (HN(E2)) ≤ Per(E ).

From indecomposability to conn. use [Bonicatto–Pasqualetto–Rajala].

? For arbitrary lower bounds K the same holds for small volumes.
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Lipschitz properties of the isoperimetric profile

Corollary (A.–Pasqualetto–Pozzetta–Semola)

Let 0 < V1 < V2 < V3, and let K ∈ R,N ≥ 2, v0 > 0. Then there exists
L,Λ,R > 0 depending on K ,N, v0,V1,V2,V3 such that:

If (X , d ,HN) is RCD(K ,N) with infx∈X HN(B1(x)) ≥ v0 > 0 and
HN(X ) ≥ V3, then

v 7→ I (v) is L-Lipschitz on [V1,V2] .

If E ⊂ X is an isoperimetric region with HN(E ) ∈ [V1,V2], then E is
a (Λ,R)-minimizer, i.e., for any F ⊂ X such that F∆E ⊂ BR(x) for
some x ∈ X, then

Per(E ) ≤ Per(F ) + ΛHN(F∆E ) .

? Uniform density estimates on isoperimetric boundaries.
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Sharp and rigid isoperimetric
inequality for

nonnegatively curved spaces
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Sharp isoperimetric inequality in nonnegative curvature

Theorem (Balogh–Kristaly)

Let (X , d,m) be a CD(0,N) space. Let us assume

AVR(X , d,m) := lim
r→+∞

m(Br (x))

ωN rN
> 0,

for x ∈ X, ωN being the volume of the unit ball in RN . Hence for every
set E of finite perimeter in X , it holds

Per(E ) ≥ N(ωNAVR)
1
N m(E )

N−1
N .

Moreover if X is a smooth Riemannian manifold and E has a C 1 boundary
(always if N ≤ 7), equality above holds if and only if X is isometric to RN

and E is isometric to a ball.

? Sharp because reached on balls with radius R → +∞.
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Brief overview of the literature

(i) [Agostiniani–Fogagnolo–Mazzieri] → Proof of the sharp and rigid
inequality for 3-dimensional Riemannian manifolds;

(ii) [Brendle] → Proof of the sharp inequality for Riemannian manifolds,
and rigidity assuming regularity of the isoperimetric boundary.
[Fogagnolo–Mazzieri] → Proof of sharp and rigid inequality for
n-dimensional Riemannian manifolds with n ≤ 7.
[Johne] Proof of the sharp inequality for manifolds with density and
non-negative Bakry-Émery Ricci curvature;

(iii) [Balogh–Kristály] Proof of the sharp inequality for CD(0,N) spaces
and rigidity for Riemannian manifolds assuming regularity of the
isoperimetric boundary;

(iv) [Cavalletti–Manini] Extension of the sharp inequality to MCP(0,N)
spaces.
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Metric cones

Definition (Metric cone)

Let (X , d) be a metric space.
Let C (X ) := [0,+∞)× X/{0} × X , and for (t, p), (s, q) ∈ C (X ) consider

dc((t, p), (s, q)) :=
√

t2 + s2 − 2ts cos(min{d(p, q), π}).

We say that (C (X ), dc) is the metric cone over (X , d). The collapsed
point relative to {0} × X is called a tip of the cone.

Remark. From [Ketterer] we have that if N ≥ 2, (C (Z ), dc ,HN) is an
RCD(0,N) space if and only if (Z , d ,HN−1) is an RCD(N − 2,N − 1)
space with diam(Z ) ≤ π.
An arbitrary RCD(0,N) space (C (Z ), dc ,HN) will be called Euclidean
metric measure cone of dimension N.
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Rigidity for N-dimensional RCD(0,N) spaces

Theorem (A.–Pasqualetto–Pozzetta–Semola)

Let (X , d ,HN) be an RCD(0,N) metric measure space, for some N ≥ 2,
with AVR(X , d ,HN) > 0.
Then a set E with HN(E ) ∈ (0,∞) reaches equality in the sharp
isoperimetric inequality if and only if

X is isometric to a Euclidean metric measure cone of dimension N,

and E is isometric to a ball centered at one of the tips of X .

? No assumptions on the regularity of ∂E ,
? If X is a Riemannian manifold, it gives the rigidity with the model Rn

without assuming the regularity of ∂E .
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Proof (I): Rigid upper bound on the mean curvature barrier

Recall. In the hypotheses, E ⊂ X is an isoperimetric region. Then, for
some c ∈ R,

∆dE ≥
c

1 + c
N−1dE

on E

∆dE ≤
c

1 + c
N−1dE

on X \ E .

From the second c ≥ 0, and by the first rE := supx∈Ed(x ,X \ E ) ≤ N−1
c .

Proposition (A.–Pasqualetto–Pozzetta–Semola)

If rE = N−1
c , then E is isometric to a ball of radius rE in a tip of a

Euclidean metric measure cone of dimension N.

Idea of proof. Take x0 reaching maximum, consider dE + dxo .
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Proof (II): Rigid upper bound on the mean curv. barrier

Proposition (A.–Pasqualetto–Pozzetta–Semola)

For the isoperimetric region E ⊂ X in the hypotheses, and for (one of) its
mean curvature barrier(s) c, we have

c ≤ N − 1

N

Per(E )

HN(E )
,

and the equality holds if and only if E is isometric to a ball of radius N−1
c

in a tip of a Euclidean metric measure cone of dimension N.

Proof. From co-area and the perimeter estimate of the enlargements

HN({x ∈ E : d(x ,X \ E ) ≤ r}) ≤ Per(E )

∫ r

0

(
1− c

N − 1
s

)N−1

ds

for every r ≤ N−1
c . Putting r = N−1

c and using rE ≤ N−1
c we have

HN(E ) ≤ Per(E )
N − 1

cN
, and the rigidity follows by the rigidity of rE .
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Proof (III): Lower bound on the mean curvature barrier

Proposition (A.–Pasqualetto–Pozzetta–Semola)

For the isoperimetric region E ⊂ X in the hypotheses, and for (one of) its
mean curvature barrier(s) c, we have

c ≥ (N − 1)

(
NωNAVR(X )

Per(E )

) 1
N−1

.

Proof. By co-area and the estimates of the perimeter of the enlargements

HN({x ∈ X \ E : d(x ,E ) ≤ r}) ≤ Per(E )

∫ r

0

(
1 +

c

N − 1
s

)N−1

ds

= Per(E )
N − 1

Nc

[(
1 +

cr

N − 1

)N

− 1

]
∼r→+∞ Per(E )

cN−1

N(N − 1)N−1
rN .

This, together with HN({x ∈ X \ E : d(x ,E ) ≤ r}) ∼r→+∞ AVR(X )ωN r
N ,

concludes the proof.

Gioacchino Antonelli (SNS) Isoperimetric problem and curvature June 22, 2022 21 / 24



Proof (III): Lower bound on the mean curvature barrier

Proposition (A.–Pasqualetto–Pozzetta–Semola)

For the isoperimetric region E ⊂ X in the hypotheses, and for (one of) its
mean curvature barrier(s) c, we have

c ≥ (N − 1)

(
NωNAVR(X )

Per(E )

) 1
N−1

.

Proof. By co-area and the estimates of the perimeter of the enlargements

HN({x ∈ X \ E : d(x ,E ) ≤ r}) ≤ Per(E )

∫ r

0

(
1 +

c

N − 1
s

)N−1

ds

= Per(E )
N − 1

Nc

[(
1 +

cr

N − 1

)N

− 1

]
∼r→+∞ Per(E )

cN−1

N(N − 1)N−1
rN .

This, together with HN({x ∈ X \ E : d(x ,E ) ≤ r}) ∼r→+∞ AVR(X )ωN r
N ,

concludes the proof.

Gioacchino Antonelli (SNS) Isoperimetric problem and curvature June 22, 2022 21 / 24



Proof (IV): End of the proof

Proof. We have

(?) c ≥ (N − 1)

(
NωNAVR(X )

Per(E )

) 1
N−1

, (??) c ≤ N − 1

N

Per(E )

HN(E )
.

Thus,

Per(E ) ≥ max

{
NHN(E )c

(N − 1)
,AVR(X )ωN ·

N(N − 1)N−1

cN−1

}
,

and then

Per(E ) ≥
(
NHN(E )c

(N − 1)

)N−1
N
(
AVR(X )ωN ·

N(N − 1)N−1

cN−1

) 1
N

= N(ωNAVR)
1
NHN(E )

N−1
N .

If = holds, by ineq. on rE we have E ⊃ BN−1
c

(x), and since the LHS of

(?), (??) are equal, we have by Bishop–Gromov that E = B, and B
saturates the AVR ratio. Hence by volume cone implies metric cone [De
Philippis–Gigli] we get the conclusion.
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An alternative proof of the sharp isoperimetric inequality

Remark. We proved the isoperimetric inequality on isoperimetric sets of
RCD(0,N) spaces (X , d ,HN) with AVR > 0. By means of the
asymptotic mass decomposition theorem (AMDT) we can thus recover the
sharp isoperimetric inequality on arbitrary sets.

Take E ⊂ X of finite perimeter, with V := HN(E ). Take Ωi a minim.
sequence for volume V . In the setting of AMDT

Per(E ) ≥ I (V ) = Per(Ω) +
∑̀
j=1

PerXj (Zj)

≥ Nω
1
N

N

AVR(X )
1
NHN(Ω)

N−1
N +

∑̀
j=1

AVR(Xj)
1
NHN(Zj)

N−1
N


≥ N(ωNAVR(X ))

1
N

HN(Ω) +
∑̀
j=1

HN(Zj)


N−1
N

= N(ωNAVR(X ))
1
N V

N−1
N .
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Thank you for the attention
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