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Main result

Let (M", g) be a smooth Riemannian manifold satisfying:
> Ricg > 0;

> AVR(g) > 0, where

AVR(g) = lim “Ole(BX))
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Theorem (Antonelli-B.-Fogagnolo-Pozzetta)

If(M", g) satisfies a further assumption on the structure at infinity,
then for any V > V there exists an isoperimetric region of volume V.

Corollary (Antonelli-B.-Fogagnolo-Pozzetta)

Let(M", g) be a manifold with Secg > 0 and Euclidean volume growth.
Then for any V > V there exists an isoperimetric region of volume V.



Plan of the talk

> Isoperimetric sets on non-smooth manifolds: lack of
compactness and loss of mass

» The assumption on the structure at infinity

> Motivation
» Equivalent characterization

» Strategy of proof

» Open problems and related questions
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Isoperimetric problem, non compact ambient space

» The family of sets with uniformly bounded mass and perimeter is
not compact in L{

loc*

» Enemy to existence: Minimizing sequences may lose mass at
infinity.

» Key tool: Generalized existence of isoperimetric sets.

» Moral: Isoperimetric sets exist whenever escaping to infinity is
not “isoperimetricaly convenient”.
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Structure at infinity

» Tangent cones at infinity: Consider limit points of

d, Vol
(M,Ri, Igng,x) PMGH (X, dx, AP, X), Rk — o0
k

» Pointed limits at infinity: Let xx — oo, consider limits

pmGH

(Aﬂ,dg,VOb,Xk) (Yy ajf;ay)

> Tangent cones to infinity and pointed limits are RCD(0, n) m.m.s.
(and not more regular in general).
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Tangent cones are metric cones

Let (X,dx,-7##¢, x) be a tangent cone at infinity of (M", g).
» Volume rigidity:
5 (Br(x)) = AVR(Q)wnr", foreveryr>0.
> Volume cone implies metric cone: There exists (Z,dz, %’”Z’H ),
an RCD(n—1,n—2) m.m.s., such that
(X,dx,x) =~ (C(Z2),dc,0), Ois atip point.
[Cheeger-Colding '96], [DePhilippis-Gigli ’16].
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Theorem (Antonelli-Pasqualetto-Pozzetta-Semola)

Let C(Z) be a metric cone over an RCD(n—1,n—2) m.m.s.

(Z,dz, 7#5"). Then, E is an isoperimetric set in C(Z) iff it coincides
with a ball centered at a tip point.

Proof.

> Let O € C(Z) atip point, then B,(O) saturates the sharp
isoperimetric inequality for any r > 0. Hence E := B,(O) is an
isoperimetric set.

> If E C C(Z) is isoperimetric, then it saturates the sharp
isoperimetric inequality. We can apply the rigidity in the
isoperimetric inequality in RCD(0, N) spaces
[Antonelli-Pasqualetto-Pozzetta-Semola '22].
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The isoperimetric problem on cones

» Uniqueness: Isoperimetric sets are unique iff there exists a
unique tip point O € C(Z).
Uniqueness of the tip point iff C(Z) does not split any line.

> c-Stability: If C(Z) does not split any line, then isoperimetric sets
are stable.
» Second variation: Pick B;(O), consider the perturbation

ue C(Z) =%y ={(u(z)+1,z) : ze Z} C C(2).
The second variation of u — Per(X,) gives the Jacobi operator
u— Lzu:=—-Azu—(n—1)u.

> Rigidity in Obata’s theorem: If C(Z) does not split, then £z > & for
some € > 0.
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Theorem (Perturbation, rough)

Fix e > 0. If at any sufficiently big scale (M, g) is close to a model
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Write M" = N"—k x R¥, for some k < n, where N does not split any
line.

Assumption on the structure at infinity
No tangent cone at infinity to N splits a line.

Topogonov’s theorem implies the following.

Lemma
If M" = N"—k x Rk satisfies Secq > 0 and AVR(g) > 0, then the
tangent cone at infinity to N is unique and does not split any line.



Main result

Theorem (Antonelli-B.-Fogagnolo-Pozzetta)
Let (M", g) be a manifold with Ric > 0 and Euclidean volume growth,

ie.
lim VO/g(B,—(X))

r—oo wpl”

= AVR(g) € (0,1).

Write M" = N~k x Rk, 0 < k < n where N"~* does not split any line,
and assume that no tangent cone at infinity to Nk splits a line.
Then for any V > V there exists an isoperimetric region of volume V.



Main result

Theorem (Antonelli-B.-Fogagnolo-Pozzetta)
Let (M", g) be a manifold with Ric > 0 and Euclidean volume growth,

ie.
lim VO/g(B,—(X))

r—oo wpl”

= AVR(g) € (0,1).

Write M" = N~k x Rk, 0 < k < n where N"~* does not split any line,
and assume that no tangent cone at infinity to Nk splits a line.
Then for any V > V there exists an isoperimetric region of volume V.

“If all the models at infinity of N have e-stable isoperimetric sets, then
(M, g) admits isoperimetric sets of big volume”.
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Characterization in terms of pointed limits at infinity

Definition (Pointed limits to infinity)

Foo(M,9) :={(Y,p, 27, y) = "Xk =y},
i.e. Foo(M, g) is the collection of pmGH-limits

(M, dg, Volg, x) 275 (Y, p, 2,y),  where x — oo.
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Assumption Il

Assume for simplicity that M does not split any line.

Assumption I
There exists € > 0 such that

AVR(Y) > AVR(g) +e  Y(Y,p, HY) € F(M, Q).

AVR(Y) = fim 2 BW))

r—oo wpt”

Proposition
If no tangent cone at infinity of M splits a line, then Assumption Il is
satisfied.
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> Let yx € M, yx — oo such that

(M anVO|gayk) (Y pa%Yvy)a kK — oco.

Fix x € M, set Ry := d(y«, x), up to subsequence

d, Vol GH
(M,Riv R,'ggvx) 5 (C(2), Aoy, #(2) O Yk = Yoo € C(2).

Notice that d¢(z)(Veo, O) = 1, hence y.. is not a tip point.
» Volume monotonicity:

lim %&Z)(Br(}’oo))

r—0 Wnrn

< AVR(Y).

» Cone splitting, Gromov’s compactness theorem: there exists
e > 0 such that, for any tangent cone at infinity (C(Z), O) it holds

o e B2 L HGp0(BAO))

r—0 wpt” r—0 wpl”

e =AVR(g) +¢

since y is not a tip point.
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» Concavity of the isoperimetric profile

> Sharp Isoperimetric inequality on RCD(0, N) spaces
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Strategy of proof

Fix V > 0. Let Ex ¢ M be a minimizing sequence of volume V.

Theorem (Generalized existence)

There exist (Y1, p1,¥1),-- -, (Ym, pm, ¥m), pointed limits at infinity, and
isoperimetric sets

EScM, E'cYy,...,E™"C Yp,

such that
Ex - E°UE'U...UE™ inl'ask — .
Moreover
[EO| 4+ |E[+...+|ET| =V,
and

Per(E®) + Per(E") + ... + Per(E™) < Iy(V).
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Concavity of the isoperimetric profile

Theorem (Antonelli-B.-Fogagnolo-Pozzetta)

If (M", g) is non-collapsed and Ric > 0 then Ij, ' is concave. In
particular Iy is strictly subadditive.

In(V)<Iu(|1E®)) + ... 4+ Iu(|E™]) < Per(E®) + ... + Per(E™) < Iy(V)

Corollary
There exists 0 < i < m such that E/ = () forj # i.

[Bavard, Pansu '86], [Bayle '03], [Mondino, Nardulli 16], [Antonelli, B.,
Fogagnolo, Pozzetta '21].



» If i = 0, then we have done
» If not, we assume wlog Ex — E' C Yj. We have

E' =V, Per(E") < Iu(V).
» Sharp isoperimetric inequality:
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If i = 0, then we have done
If not, we assume wlog Ex — E' C Y. We have

IE' =V, Per(E') < Iy(V).

Sharp isoperimetric inequality:

n—1

Per(E') > nwjAVR(Y;)*|Ei|"7 = nwjAVR(Y;)* Vo .

Assumption II:

n—1

Per(E') > nwi AVR(Y1)} V" > nwi (AVR(g) + £)s V"

Conclusion:
(V) > nwi (AVR(g) + ) V7" |

false for V big enough! The ball Bg(p) C M is a better
competitor when R — oo.
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Is our assumption sharp?

[Kasue and Washio, '90]: there exists a metric g on R", n > 4 such
that:

» Ricg > 0 and (R”, g) does not split any line;

» (R", g) has Euclidean volume growth and the tangent cone at
infinity is R x C(S7~2);

» (R”", g) does not satisfy our assumption;

> (R", g) admits isoperimetric regions of any volume.

Question
Does any manifold with nonnegative Ricci curvature and Euclidean
volume growth admit isoperimetric regions of large volume?
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Open questions

» Can we describe Isoperimetric sets of big volume?
» How do they relate to cross-sections of cones at infinity?

» Under our assumption, are isoperimetric set of big volume
unique? Stable? Do they foliate the space?

Thank you for your attention!



