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Main result

Let (Mn,g) be a smooth Riemannian manifold satisfying:
I Ricg ≥ 0;
I AVR(g) > 0, where

AVR(g) := lim
r→∞

Volg(Br (x))

ωnrn .

Theorem (Antonelli-B.-Fogagnolo-Pozzetta)
If (Mn,g) satisfies a further assumption on the structure at infinity,
then for any V > V̄ there exists an isoperimetric region of volume V.

Corollary (Antonelli-B.-Fogagnolo-Pozzetta)
Let (Mn,g) be a manifold with Secg ≥ 0 and Euclidean volume growth.
Then for any V > V̄ there exists an isoperimetric region of volume V.
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Plan of the talk

I Isoperimetric sets on non-smooth manifolds: lack of
compactness and loss of mass

I The assumption on the structure at infinity
I Motivation
I Equivalent characterization

I Strategy of proof

I Open problems and related questions



Isoperimetric problem, non compact ambient space

I The family of sets with uniformly bounded mass and perimeter is
not compact in L1

loc.

I Enemy to existence: Minimizing sequences may lose mass at
infinity.

I Key tool: Generalized existence of isoperimetric sets.

I Moral: Isoperimetric sets exist whenever escaping to infinity is
not “isoperimetricaly convenient”.
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Structure at infinity

I Tangent cones at infinity: Consider limit points of(
M,

dg

Rk
,

Volg
Rn

k
, x

)
pmGH−−−−→ (X ,dX ,H

n
X , x) , Rk →∞ .

I Pointed limits at infinity: Let xk →∞, consider limits

(M,dg ,Volg , xk )
pmGH−−−−→ (Y , ρ,H n

Y , y) .

I Tangent cones to infinity and pointed limits are RCD(0,n) m.m.s.
(and not more regular in general).
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Tangent cones are metric cones

Let (X ,dX ,H
n

X , x) be a tangent cone at infinity of (Mn,g).

I Volume rigidity:

H n
X (Br (x)) = AVR(g)ωnrn , for every r > 0 .

I Volume cone implies metric cone: There exists (Z ,dZ ,H
n−1

Z ),
an RCD(n − 1,n − 2) m.m.s., such that

(X ,dX , x) ' (C(Z ),dC ,O) , O is a tip point .

[Cheeger-Colding ’96], [DePhilippis-Gigli ’16].
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The isoperimetric problem on cones

Theorem (Antonelli-Pasqualetto-Pozzetta-Semola)
Let C(Z ) be a metric cone over an RCD(n − 1,n − 2) m.m.s.
(Z ,dZ ,H

n−1
Z ). Then, E is an isoperimetric set in C(Z ) iff it coincides

with a ball centered at a tip point.

Proof.
I Let O ∈ C(Z ) a tip point, then Br (O) saturates the sharp

isoperimetric inequality for any r > 0. Hence E := Br (O) is an
isoperimetric set.

I If E ⊂ C(Z ) is isoperimetric, then it saturates the sharp
isoperimetric inequality. We can apply the rigidity in the
isoperimetric inequality in RCD(0,N) spaces
[Antonelli-Pasqualetto-Pozzetta-Semola ’22].
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The isoperimetric problem on cones

I Uniqueness: Isoperimetric sets are unique iff there exists a
unique tip point O ∈ C(Z ).
Uniqueness of the tip point iff C(Z ) does not split any line.

I ε-Stability: If C(Z ) does not split any line, then isoperimetric sets
are stable.
I Second variation: Pick B1(O), consider the perturbation

u ∈ C0(Z )→ Σu := {(u(z) + 1, z) : z ∈ Z} ⊂ C(Z ) .

The second variation of u → Per(Σu) gives the Jacobi operator

u → LZ u := −∆Z u − (n − 1)u .

I Rigidity in Obata’s theorem: If C(Z ) does not split, then LZ ≥ ε for
some ε > 0.
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What we have seen so far

Let (Mn,g) satisfy Ricg ≥ 0 and AVR(g) > 0.
I Tangent cone at infinity: At big scales, (M,dg ,Volg) is GH-close

to an RCD(0,n) cone;

I Isoperimetric problem on cones: Tangent cones at infinity to M
admit a unique and ε-stable isoperimetric set for each volume
V > 0, provided they do not split a line.

Theorem (Perturbation, rough)
Fix ε > 0. If at any sufficiently big scale (M,g) is close to a model
space admitting ε-stable isoperimetric sets of each volume, then
(M,g) admits isoperimetric regions of big volume.

Assumption on the structure at infinity
No tangent cone at infinity splits a line.
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Assumption on the structure at infinity

Write Mn = Nn−k × Rk , for some k ≤ n, where N does not split any
line.

Assumption on the structure at infinity
No tangent cone at infinity to N splits a line.

Topogonov’s theorem implies the following.

Lemma
If Mn = Nn−k × Rk satisfies Secg ≥ 0 and AVR(g) > 0, then the
tangent cone at infinity to N is unique and does not split any line.
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Main result

Theorem (Antonelli-B.-Fogagnolo-Pozzetta)
Let (Mn,g) be a manifold with Ric ≥ 0 and Euclidean volume growth,
i.e.

lim
r→∞

Volg(Br (x))

ωnrn = AVR(g) ∈ (0,1) .

Write Mn = Nn−k × Rk , 0 ≤ k < n where Nn−k does not split any line,
and assume that no tangent cone at infinity to Nn−k splits a line.
Then for any V > V̄ there exists an isoperimetric region of volume V.

“If all the models at infinity of N have ε-stable isoperimetric sets, then
(M,g) admits isoperimetric sets of big volume”.
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Characterization in terms of pointed limits at infinity

Definition (Pointed limits to infinity)

F∞(M,g) := {(Y , ρ,H n
Y , y) : “xk → y ′′} ,

i.e. F∞(M,g) is the collection of pmGH-limits

(M,dg ,Volg , xk )
pmGH−−−−→ (Y , ρ,H n

Y , y) , where xk →∞ .
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Assumption II

Assume for simplicity that M does not split any line.

Assumption II
There exists ε > 0 such that

AVR(Y ) ≥ AVR(g) + ε ∀ (Y , ρ,H n
Y ) ∈ F∞(M,g) .

AVR(Y ) := lim
r→∞

H n
Y (Br (y))

ωnrn .

Proposition
If no tangent cone at infinity of M splits a line, then Assumption II is
satisfied.



Assumption II

Assume for simplicity that M does not split any line.

Assumption II
There exists ε > 0 such that

AVR(Y ) ≥ AVR(g) + ε ∀ (Y , ρ,H n
Y ) ∈ F∞(M,g) .

AVR(Y ) := lim
r→∞

H n
Y (Br (y))

ωnrn .

Proposition
If no tangent cone at infinity of M splits a line, then Assumption II is
satisfied.



Assumption II

Assume for simplicity that M does not split any line.

Assumption II
There exists ε > 0 such that

AVR(Y ) ≥ AVR(g) + ε ∀ (Y , ρ,H n
Y ) ∈ F∞(M,g) .

AVR(Y ) := lim
r→∞

H n
Y (Br (y))

ωnrn .

Proposition
If no tangent cone at infinity of M splits a line, then Assumption II is
satisfied.



Assumption II

Assume for simplicity that M does not split any line.

Assumption II
There exists ε > 0 such that

AVR(Y ) ≥ AVR(g) + ε ∀ (Y , ρ,H n
Y ) ∈ F∞(M,g) .

AVR(Y ) := lim
r→∞

H n
Y (Br (y))

ωnrn .

Proposition
If no tangent cone at infinity of M splits a line, then Assumption II is
satisfied.



Assumption II

Assume for simplicity that M does not split any line.

Assumption II
There exists ε > 0 such that

AVR(Y ) ≥ AVR(g) + ε ∀ (Y , ρ,H n
Y ) ∈ F∞(M,g) .

AVR(Y ) := lim
r→∞

H n
Y (Br (y))

ωnrn .

Proposition
If no tangent cone at infinity of M splits a line, then Assumption II is
satisfied.



I Let yk ∈ M, yk →∞ such that

(M,dg ,Volg , yk )
pmGH−−−−→ (Y , ρ,H n

Y , y) , k →∞ .

Fix x ∈ M, set Rk := d(yk , x), up to subsequence(
M,

dg

Rk
,

Volg
Rn

k
, x

)
pmGH−−−−→ (C(Z ),dC(Z ),H

n
C(Z ),O) , yk → y∞ ∈ C(Z ) .

Notice that dC(Z )(y∞,O) = 1, hence y∞ is not a tip point.

I Volume monotonicity:

lim
r→0

H n
C(Z )(Br (y∞))

ωnrn ≤ AVR(Y ) .

I Cone splitting, Gromov’s compactness theorem: there exists
ε > 0 such that, for any tangent cone at infinity (C(Z ),O) it holds

lim
r→0

H n
C(X)(Br (y∞))

ωnrn > lim
r→0

H n
C(X)(Br (O))

ωnrn + ε = AVR(g) + ε

since y∞ is not a tip point.
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Ingredients of proof

I Generalized existence theorem

I Concavity of the isoperimetric profile

I Sharp Isoperimetric inequality on RCD(0,N) spaces



Strategy of proof

Fix V > 0. Let Ek ⊂ M be a minimizing sequence of volume V .

Theorem (Generalized existence)
There exist (Y1, ρ1, y1), . . . , (Ym, ρm, ym), pointed limits at infinity, and
isoperimetric sets

E0 ⊂ M , E1 ⊂ Y1 , . . . ,Em ⊂ Ym ,

such that

Ek → E0 ∪ E1 ∪ . . . ∪ Em in L1 as k →∞ .

Moreover
|E0|+ |E1|+ . . .+ |Em| = V ,

and
Per(E0) + Per(E1) + . . .+ Per(Em) ≤ IM(V ) .
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Concavity of the isoperimetric profile

Theorem (Antonelli-B.-Fogagnolo-Pozzetta)
If (Mn,g) is non-collapsed and Ric ≥ 0 then I

n
n−1
M is concave. In

particular IM is strictly subadditive.

IM(V )≤IM(|E0|) + . . .+ IM(|Em|) ≤ Per(E0) + . . .+ Per(Em) ≤ IM(V )

Corollary
There exists 0 ≤ i ≤ m such that E j = ∅ for j 6= i .

[Bavard, Pansu ’86], [Bayle ’03], [Mondino, Nardulli ’16], [Antonelli, B.,
Fogagnolo, Pozzetta ’21].
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I If i = 0, then we have done

I If not, we assume wlog Ek → E1 ⊂ Y1. We have

|E1| = V , Per(E1) ≤ IM(V ) .

I Sharp isoperimetric inequality:

Per(E1) ≥ nω
1
n
n AVR(Y1)

1
n |E1|

n−1
n = nω

1
n
n AVR(Y1)

1
n V

n−1
n .

I Assumption II:

Per(E1) ≥ nω
1
n
n AVR(Y1)

1
n V

n−1
n ≥ nω

1
n
n (AVR(g) + ε)

1
n V

n−1
n ,

I Conclusion:

IM(V ) ≥ nω
1
n
n (AVR(g) + ε)

1
n V

n−1
n ,

false for V big enough! The ball BR(p) ⊂ M is a better
competitor when R →∞.
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Is our assumption sharp?

[Kasue and Washio, ’90]: there exists a metric g on Rn, n ≥ 4 such
that:
I Ricg ≥ 0 and (Rn,g) does not split any line;
I (Rn,g) has Euclidean volume growth and the tangent cone at

infinity is R× C(Sn−2
r );

I (Rn,g) does not satisfy our assumption;
I (Rn,g) admits isoperimetric regions of any volume.

Question
Does any manifold with nonnegative Ricci curvature and Euclidean
volume growth admit isoperimetric regions of large volume?
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Open questions

I Can we describe Isoperimetric sets of big volume?

I How do they relate to cross-sections of cones at infinity?

I Under our assumption, are isoperimetric set of big volume
unique? Stable? Do they foliate the space?

Thank you for your attention!
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