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Plan of the talk

GOAL: discuss some recent geometric inequalities in their
quantitative form for smooth Riemannian manifolds with OT
tools, more precisely using techniques coming from
non-smooth synthetic Ricci curvature lower bounds

» Quantitative Levy-Gromov isoperimetric inequality.
(with F. Cavalletti and F. Maggi)

» Quantitative Obata’s rigidity Theorem.
(with F. Cavalletti and D. Semola)



Isoperimetric problem

One of oldest problems in mathematics, roots in myths of
2000 years ago (Queen Dido's problem).

Q: Given a space X and a volume v, what is the minimal
amount of (boundary) area needed to enclose the volume
v > 07

Examples

» X = R" ~~» Euclidean isoperimetric inequality:
For all E C R" it holds |OE| > |0B| where B is a round
ball s.t. |B| = |E|.

» X = S" analogous:
For all E C S" it holds |0E| > |0B| where B is a metric
ball (i.e. a spherical cap) s.t. |B| = |E]

RK: In both of the examples the space is fixed (Euclidean
space of Sphere), such a space contains a model subset



Levy-Gromov inequality

Besides the euclidean one, probably the most famous
isoperimetric inequality is the Levy-Gromov isoperimetric
inequality:

Levy-Gromov Isoperimetric inequality

Let (M", g) be a Riemannian manifold with Ric, > (n —1)g
and E C M domain with smooth boundary JE.

Let S” be the round sphere of unit radius (in particular

Ric = n—1), and B C S" be a metric ball s.t. % = ||SB,,||.
Then

|OE| _ |0B]

! 2 RS

M|~ [Sn|

RK. (1) In the (LGI) the space is NOT fixed: any subset in
any manifold with Ric > n — 1 is compared with the model
subset (i.e. spherical cap) in the model space (i.e. the sphere).
(2) (1 G ic olobal in the cspace i e it doec not denend itict on



Equivalent way to state LG inequality in terms of

isoperimetric profile

» Given a Riemannian manifold (M, g), define its
isoperimetric profile function as

|6E| | | }
7 = inf =v,, Vvel01l]

» Levy-Gromov Inequality can be stated as: Given (M", g)
with Ricg > (n —1)g then

I(M,g)(v) > Ign(v), Yv € [0, 1]



Rigidity and almost rigidity in the Levy-Gromov

inequality

> Rigidity: If there exists E C M with £l = v € (0, 1)

(M
satisfying % = Z(m,g)(v) = Zso(v), then

1) (M", g) ~ S" isometric
2) E ~ B metric ball.

» Question: Stability? i.e. If “=" in (LG/) is almost
attained,
Q1) What can we say on (M", g)? Is it close to a sphere?
In which sense?
Q2) What can we say on E? Is it close to a metric ball?
In which sense?



About Question 1

THM 1 (Particular case of Berard-Besson-Gallot, Inv. Math.
1985) Given (M", g) with Ric; > (n—1)g and diam(M) = D
(recall from Bonnet-Myers D € (0, ]) then

T (V) - /?(cos t)"Ldt
Ten(v) D/2 1
s Jo “(cos t)n~tdt

1/n
) , Yve(0,1)

RK: 1) E. Milman improved THM 1 to a sharp version (JEMS
'15).

2) rhs is > 1 so the result sharpens the classical LGl

3) It follows that there exists C,, > 0 such that if for some

v € (0,1) it holds Zipm,g)(v) < Zso(v) + 6, then

m—D < C,,0"".

~ deu(M, S(X)) < (8) by Cheeger-Colding Almost Maximal
Diameter Thm (Annals of Math. 1996)



Answering Question 2 in Euclidean setting

Quantitative Euclidean Isoperimetric Inequality
(Fusco-Maggi-Pratelli, Annals of Math. 2008)

There exists C, > 0 such that for every E C R" there exists a
round ball B C R"” with |E| = |B| and

1/2
EAB| _ (|8E| 1>
|E] |0B|

RK: 1) Of course it implies Ell. The rhs is the so-called
“isoperimetric deficit” and is zero iff E is a ball.

2) The proof of FMP is via a “quantitative symmetrization”.
3) Alternative proof of the result via Brenier L2-Optimal
Transport map (by Figalli-Maggi-Pratelli, Inv. Math. 2010)
and via regularity theory and selection principle
(Cicalese-Leonardi, ARMA 2012).



Answering Question 2 in spherical setting

Quantitative Spherical Isoperimetric Inequality
(Bogelein-Duzaar-Fusco, Adv. Calc. Var. 2015)

For every v € (0,1) and every n > 2 there exists C,, > 0 with
the following property.

For every E C S" with |§,|| = v there exists a metric ball

B C S" with |B| = |E| such that

(9E 1/2
|EAB| < G, (||Sn|| —zgn(v))

Proof: along the same lines of Cicalese-Leonardi's selection
principle.



Difficulties about Question 2: quantitative

Levy-Gromov inequality

The above quantitative isoperimetric inequalities are for a
fixed space (R" or S™), with the highest possible degree of
symmetry.

LGl is for any (M", g) with Ric, > (n—1)g

~+ No fixed space and no symmetry.

~ The above approaches seem not to be applicable:

» Symmetrization (FMP): since M is not symmetric it
makes little sense to speak of symmetrization in M.

> Brenier Map, L2-OT (FMP): works in R” but already in
S" it is an open problem to prove Spherical Isoperimetric
Inequality via Brenier Map.

» Selection Principle (CL): would need smooth convergence
of metrics while here the natural convergence is
Gromov-Hausdorff.



Brief history of localization

The localization technique is a way to reduce an a-priori
complicated high dimensional problem to a family of simpler
1-dimensional problems.

» In R” or S”, using the high symmetry of the space, 1-D
localizations can be usually obtained via iterative
bisections

» Roots in a paper by Payne-Weinberger '60 about sharp
estimate of 1° eigenvalue of Neumann Laplacian in
compact convex sets of R”

» Formalized by Gromov-V. Milman '87, Kannan - Lovéasz
- Simonovits '95

» Extended by B. Klartag '14 to Riemannian manifolds via
['-optimal trasport: no symmetry but still heavily using
the smoothness of the space (estimates on 2™
fundamental form of level sets of the Kantorovich
potential ¢)



The result: quantitative Levy-Gromov inequality

THM 2 (Cavalletti-Maggi-M., CPAM 2019)

For every v € (0,1) and n > 2 there exists C,, > 0 with the
following properties.

Let (M", g) be with Ric; > (n—1)g. For every E C M with

||,€,|| = v there exists a metric ball B C M with |B| = |E| such
that .
|OE]| a1
|[EAB| < G, (— — Zsn(v)
M|
In particular, if E C M is an isoperimetric subset with |W| =v,
then

|EAB| < Cn,v (I(Myg)(v) — Ign(v)) "2+"—1

RK Difference with (QEII) or (QSII): here E C M and |0E]| is
compared with Zg» (not with Z s 4)) via a “Levy-Gromov
isoperimetric deficit”.



The result holds in higher generality

Actually we prove THM1 and THM 2 more generally for
essentially non-branching CD(N — 1, N) metric measure
spaces. These are (a priori) non-smooth spaces of dimension
< N and Ricci > N — 1 in a synthetic sense via OT
(Lott-Sturm-Villani).

Examples entering this class of spaces:

» Weighted manifolds with N—Bakry—Emery Ricci tensor
bounded below by N — 1

» Measured Gromov Hausdorff limits of Riemannian
N-dimensional manifolds satisfying Ric, > (N — 1)g and
more generally the class of RCD(N — 1, N) spaces.
Finite dimensional Alexandrov spaces with curvature > 1
» Finsler manifolds satisfying CD(N — 1, N)

v



PART 2:
A QUANTITATIVE OBATA
THEOREM



Spectral gap

Sharp Lichnerowicz spectral gap: Let (M, g) be n-dim with
Ric> n—1 and let f € Lip(M) with [, f dvol, = 0 then

1
/fzdvolgg—/ |Vf[? dvol,.
M nJm

> Given (M, g), the first non-zero eigenvalue of the
Neumann Laplacian is:

(M) = inf{/ VFPdvol, : [1Fllizy = 1,/ fdvolgzo}
M M

» Lichnerowicz inequality can be stated as: let (M, g) be
n-dim with Ric> n — 1, then

M(M) > n = \y(S")



Rigidity and Stability of Lichnerowicz inequality

» Rigidity: Obata's Theorem 1962
Let (M, g) be n-dim with Ric> n — 1.
Then \;(M) = niff (M, g) is isometric to S".
Note: First eigenfunction on S” is v/n + 1 cos(d),
Vx € 8"

» Stability? i.e. if “ =" in spectral gap is almost attained:
» Cheng '75, Croke '82: \i(M) ~ n iff diam(M) ~ =
> Berard-Besson-Gallot '85:
M (M) —n > Cy(m — diam(M))"
» Bertrand '07: stability of eigenfunctions: there exists a
function 7(t) - 0 as t — 0 s.t.
if \i(M) < n+e¢, then ||f —+/n+ 1cos(dy)||ec < 7(€)
for f first eigenfunction.
» Question: can we make quantitative Bertrand's result and
generalize it to a function with almost optimal Rayleigh
quotient (but non-necessarily eigenfunction)?

- C



The result: Quantitative Obata’s Theorem

THM(Cavalletti-M.-Semola, Analysis & PDE 2022)

For every n > 2 there exists C, > 0 with the following
properties.

Let (M, g) be n-dim with Ric> n— 1. For every f € Lip(M)

with
/ f dvol, =0, / f? dvol; =1,
M i

there exists a point x € M such that

1
nid
If — VAt Tcos(d)s < G, (/ VF[2 dvol, — n) |
M
In particular, if f is a first eigenfunction, then

If —v/n+ 1cos(dy)|ls < Co (A (M) — Ay(S"))57 .

RK: Proved more generally for essentially non branching
CD(N — 1, N) spaces.



PART 3:
SOME IDEAS OF THE
PROOFS



Technique: 1-D localization

Let (X,d, m) be en.b. CD(K, N), with m(X) = 1. Given
E C X we can find a “1-D localization” {X,}acq of X, i.e.

1. {X,}aeq is (essentially) a partition of X, i.e.
m(X\ Uy qXe) = 0

2. Disintegration of m wrt {X,}acq (kind of non-straight
Fubini Thm): m = [, m, q(da), with q(Q) =1 and
my(X,) =my(X) =1for g-ae. € Q

3. X, is a geodesic in X and (X,,|-|,m,) is a CD(K, N)
space

4. my(ENX,)=m(E), for gra.e. a € Q

How to obtain a localization: Consider the OT-problem with
c(x,y) = d(x,y) between

po = (xe/m(E))m and p1:= (xxe/m(X\ E))m
X, will be integral curve of —V ¢, with ¢ Kantorovich



More on how to construct a 1-D localization

» Recall that m(X) =1, fix E C X with m(E) € (0, 1),
._ 1 X
> Let pio = gymand py o= g m = m(;&) m

» Consider the ['-optimal transport problem

inf {/ d(x,y)dvy : v € P(X x X),(m1)sy = po, (m2)sy = 1
XxX

Y

» By Optimal Transport techniques there exists a minimizer
v € P(X x X) and a 1-Lipschitz function ¢ : X — R
called Kantorovich potential such that, denoted

M=A{(xy) € X x X : ¢(x) = ¢(y) =d(x,y)},
7 is concentrated on .

» The relation ~ on X given by x ~ y iff (x,y) € T or
(v, x) €T is an equivalence relation on X (up to an
m-negligible subset) and the equivalence classes are
geodesics. ~» partition of X into geodesics driven by E



Why L -trasport?

» It is more standard to consider the L?-optimal transport
problem: given pig, 11 € P(X) let

inf {/ d(x,y)>dv : v € P(X x X), (m1)s7 = o, (m2)s7 =
XxX

Y

Which defines a metric W, on P(X).

> If (pe)eepo,1) is @ Wha-geod from pg to pq, then fi,
concentrates on t-intermediate points of geodesics from
supp(jio) to supp(pir):
pe({7(t) : v geod,v(0) € supp(uo),7(1) €
supp(p1)}) = 1,

» moreover, from d?-monotonicity, if 71 and 7, are such
geodesics with 71(0) # 72(0) then 1 (t) # v2(t) in a.e.
sense. ~ the [%-transport at time t is given by an ess.
inj. map.

» BUT it may happen 71(s) = 7»(t) for s # t

o 12,+r1ncnnr+ AnAac A nAd i i~Aa An AadtiivrAalan~a vAlAF AR



Levy-Gromov inequality via Localization

Let (X,d, m) be an e.n.b. CD(N — 1, N) space.
Assume that for E C X we can find a 1-D localization as above then

E¢) —m(E
mT(E) = Iiminfu
e—0+
_ m, (E (E)
= ILnlBQf/ q(da) by 2.
> /Iiminf ma(E mX“) Ma(EOXa) 0y by 2.
Q e—0t S
> /hmmf ((ENXQ)FNXy) —me(ENX,) a(da),
Q e—07t g
by ESN X, D (ENX,) N X,
> [ mi(ENX)a(da)
Q
>

/ Zsv(ma (E N X,)) q(da) by 3.4+Smooth LGl in 1D

/ISN q(da) by 4. = Zsn(m(E)).



Quantitative Levy-Gromov: one dimensional

estimates

> Let (M", g) be with Ric> n—1 and let m = vol, /| M]|.

Given E C M with m(E) = v € (0,1), we have:

0<0 :=m"(E)—Zs(v) “Levy-Gromov isoperimetric defici

> Jo (Mg (ENXa) = Zsn(v)) a(da) = [ daa(da).

» Since (X,,d,m,) is CD(n—1,n) and

my(ENX,) =m(E)=v (by 4.)

= 0< 0, :=mI(ENX,)— Zs(v) = “1-dim Isop.

Deficit”
» The 1-dim deficit d,, controls ™ — | X,|:

[ (7= 1X.I) a(da) < C(0,v)5
Q

» RK: so far, also in the proof of Levy Gromov, no role of
OT: works for any 1-D localization.



Quantitative Levy-Gromov: set of long rays

» Fix the set of long rays
Quong = {0 € Q: (T—|Xa|)" < VO} = {a € Q:6, < V6},

so that (from last slide) q(Qiong) > 1 — C(n, v)V6

» Problem: we know that most rays have length ~ 7, but
how do they combine together?
Is there are a “common south/north pole”?
NO for a general 1-D localization. However in our case
Exploit the variational character of the localization via
OoT.



Quantitative Levy-Gromov: structure of transport

set

» Recall that for the set of long rays
q(QIong) >1-— C(n; V)\/53

Qong = {a € Q: (1—|Xa|)" < Vo} = {a € Q: b0 < V3},

» From cyclical d-monotonicity of the transport set, we get
2r — d(a(Xa), b(Xa)) — d(a(Xa), b(X5))
> 27 —d(a(X,), b(Xz)) — d(a(Xa). b(X.))
Rearranging, for o, &@ € Qjong gives

207 > (m — d(a(Xa), b(Xz))) + (7 — d(a(Xz), b(X.)))

» Using Ric> n — 1, setting Py := a(X3), Ps := b(Xz), we
get



Quantitative Levy-Gromov: constructing the

metric ball

» Using 1-dim (LGI), for o € Qiong, calling E, := X, N E it
holds

min{mq(E.A[0, 1]) ma(En A Xal =1, [Xall)} < b0 < V6

where r, is s.t. mgn(B,,) = v.
» So we can write E = Ey U Es U E,,, with:
m(Eer) < C(n, v)V5,
Ey ={x€E, E,~][0,r]},
Es:={x€E, E, ~[|Xs| — r, | X]
» Using relative isoperimetric inequality inside B.(Py) (or in
B.(Ps)) with ¢ < r,, we get

min{m(Ey), m(Es)} < C(n, v)5

» Putting all together:
I'd Y 1



Quantitative Obata’'s Theorem

» Given (M" g) with Ric>n—1, and f : M — R with
Jyufm=0, [, f2m = 1, associate a 1D-localization:

m= /maq da), /fma— (X,d,m,) € CD(n—1,n)

» Recalling that m(M) =1, \(S") = n, let

0<§ = / (|VF> — n)m = “Spectral deficit"
M

- (/a«frxa)') - m, ) a(do) = [ dca(e

where ¢, = ||f||2(m.)-

» New difficulties:
1) show that ¢, > ¢ > 0 for “most” «, up to g-meas< §
2) show that ¢, =~ c5 for “most” «, up to g-meas< 0.
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