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Plan of the talk

GOAL: discuss some recent geometric inequalities in their
quantitative form for smooth Riemannian manifolds with OT
tools, more precisely using techniques coming from
non-smooth synthetic Ricci curvature lower bounds

I Quantitative Levy-Gromov isoperimetric inequality.
(with F. Cavalletti and F. Maggi)

I Quantitative Obata’s rigidity Theorem.
(with F. Cavalletti and D. Semola)



Isoperimetric problem

One of oldest problems in mathematics, roots in myths of
2000 years ago (Queen Dido’s problem).
Q: Given a space X and a volume v , what is the minimal
amount of (boundary) area needed to enclose the volume
v > 0?

Examples

I X = Rn  Euclidean isoperimetric inequality:
For all E ⊂ Rn it holds |∂E | ≥ |∂B | where B is a round
ball s.t. |B | = |E |.

I X = Sn analogous:
For all E ⊂ Sn it holds |∂E | ≥ |∂B | where B is a metric
ball (i.e. a spherical cap) s.t. |B | = |E |

RK: In both of the examples the space is fixed (Euclidean
space of Sphere), such a space contains a model subset
(metric ball), and any subset of the space is compared with
such a model subset.



Levy-Gromov inequality

Besides the euclidean one, probably the most famous
isoperimetric inequality is the Levy-Gromov isoperimetric
inequality:

Levy-Gromov Isoperimetric inequality
Let (Mn, g) be a Riemannian manifold with Ricg ≥ (n − 1)g
and E ⊂ M domain with smooth boundary ∂E .
Let Sn be the round sphere of unit radius (in particular

Ric ≡ n − 1), and B ⊂ Sn be a metric ball s.t. |E ||M| = |B|
|Sn| .

Then
|∂E |
|M |

≥ |∂B |
|Sn|

RK. (1) In the (LGI) the space is NOT fixed: any subset in
any manifold with Ric ≥ n − 1 is compared with the model
subset (i.e. spherical cap) in the model space (i.e. the sphere).
(2) (LGI) is global in the space, i.e. it does not depend just on
E but also on M \ E : if one changes the space locally outside
of E , the lhs in (LGI) may change since |M | may change.



Equivalent way to state LG inequality in terms of

isoperimetric profile

I Given a Riemannian manifold (M , g), define its
isoperimetric profile function as

I(M,g)(v) := inf

{
|∂E |
|M |

:
|E |
|M |

= v

}
, ∀v ∈ [0, 1].

I Levy-Gromov Inequality can be stated as: Given (Mn, g)
with Ricg ≥ (n − 1)g then

I(M,g)(v) ≥ ISn(v), ∀v ∈ [0, 1].



Rigidity and almost rigidity in the Levy-Gromov

inequality

I Rigidity: If there exists E ⊂ M with |E |
|M| = v ∈ (0, 1)

satisfying |∂E ||M| = I(M,g)(v) = ISn(v), then

1) (Mn, g) ' Sn isometric
2) E ' B metric ball.

I Question: Stability? i.e. If “=” in (LGI ) is almost
attained,
Q1) What can we say on (Mn, g)? Is it close to a sphere?
In which sense?
Q2) What can we say on E? Is it close to a metric ball?
In which sense?



About Question 1

THM 1 (Particular case of Berard-Besson-Gallot, Inv. Math.
1985) Given (Mn, g) with Ricg ≥ (n − 1)g and diam(M) = D
(recall from Bonnet-Myers D ∈ (0, π]) then

I(M,g)(v)

ISn(v)
≥

(∫ π/2

0
(cos t)n−1dt∫ D/2

0
(cos t)n−1dt

)1/n

, ∀v ∈ (0, 1)

RK: 1) E. Milman improved THM 1 to a sharp version (JEMS
’15).
2) rhs is ≥ 1 so the result sharpens the classical LGI
3) It follows that there exists Cn,v > 0 such that if for some
v ∈ (0, 1) it holds I(M,g)(v) ≤ ISn(v) + δ, then

π − D ≤ Cn,vδ
1/n.

 dGH(M , S(X )) ≤ ε(δ) by Cheeger-Colding Almost Maximal
Diameter Thm (Annals of Math. 1996)



Answering Question 2 in Euclidean setting

Quantitative Euclidean Isoperimetric Inequality
(Fusco-Maggi-Pratelli, Annals of Math. 2008)
There exists Cn > 0 such that for every E ⊂ Rn there exists a
round ball B ⊂ Rn with |E | = |B | and

|E∆B |
|E |

≤ Cn

(
|∂E |
|∂B |

− 1

)1/2

RK: 1) Of course it implies EII. The rhs is the so-called
“isoperimetric deficit” and is zero iff E is a ball.
2) The proof of FMP is via a “quantitative symmetrization”.
3) Alternative proof of the result via Brenier L2-Optimal
Transport map (by Figalli-Maggi-Pratelli, Inv. Math. 2010)
and via regularity theory and selection principle
(Cicalese-Leonardi, ARMA 2012).



Answering Question 2 in spherical setting

Quantitative Spherical Isoperimetric Inequality
(Bogelein-Duzaar-Fusco, Adv. Calc. Var. 2015)
For every v ∈ (0, 1) and every n ≥ 2 there exists Cn,v > 0 with
the following property.
For every E ⊂ Sn with |E |

|Sn| = v there exists a metric ball

B ⊂ Sn with |B | = |E | such that

|E∆B | ≤ Cn,v

(
|∂E |
|Sn|

− ISn(v)

)1/2

Proof: along the same lines of Cicalese-Leonardi’s selection
principle.



Difficulties about Question 2: quantitative

Levy-Gromov inequality

The above quantitative isoperimetric inequalities are for a
fixed space (Rn or Sn), with the highest possible degree of
symmetry.
LGI is for any (Mn, g) with Ricg ≥ (n − 1)g
 No fixed space and no symmetry.
 The above approaches seem not to be applicable:

I Symmetrization (FMP): since M is not symmetric it
makes little sense to speak of symmetrization in M .

I Brenier Map, L2-OT (FMP): works in Rn but already in
Sn it is an open problem to prove Spherical Isoperimetric
Inequality via Brenier Map.

I Selection Principle (CL): would need smooth convergence
of metrics while here the natural convergence is
Gromov-Hausdorff.

 our approach: localization via L1-Optimal Transport.



Brief history of localization

The localization technique is a way to reduce an a-priori
complicated high dimensional problem to a family of simpler
1-dimensional problems.

I In Rn or Sn, using the high symmetry of the space, 1-D
localizations can be usually obtained via iterative
bisections
I Roots in a paper by Payne-Weinberger ’60 about sharp

estimate of 1st eigenvalue of Neumann Laplacian in
compact convex sets of Rn

I Formalized by Gromov-V. Milman ’87, Kannan - Lovász
- Simonovits ’95

I Extended by B. Klartag ’14 to Riemannian manifolds via
L1-optimal trasport: no symmetry but still heavily using
the smoothness of the space (estimates on 2nd

fundamental form of level sets of the Kantorovich
potential ϕ)

I Extension to non-smooth spaces by Cavalletti-M. ’15.



The result: quantitative Levy-Gromov inequality

THM 2 (Cavalletti-Maggi-M., CPAM 2019)
For every v ∈ (0, 1) and n ≥ 2 there exists Cn,v > 0 with the
following properties.
Let (Mn, g) be with Ricg ≥ (n − 1)g . For every E ⊂ M with
|E |
|M| = v there exists a metric ball B ⊂ M with |B | = |E | such
that

|E∆B | ≤ Cn,v

(
|∂E |
|M |
− ISn(v)

) n
n2+n−1

In particular, if E ⊂ M is an isoperimetric subset with |E |
|M| = v ,

then
|E∆B | ≤ Cn,v

(
I(M,g)(v)− ISn(v)

) n
n2+n−1

RK Difference with (QEII) or (QSII): here E ⊂ M and |∂E | is
compared with ISn (not with I(M,g)) via a “Levy-Gromov
isoperimetric deficit”.



The result holds in higher generality

Actually we prove THM1 and THM 2 more generally for
essentially non-branching CD(N − 1,N) metric measure
spaces. These are (a priori) non-smooth spaces of dimension
≤ N and Ricci ≥ N − 1 in a synthetic sense via OT
(Lott-Sturm-Villani).
Examples entering this class of spaces:

I Weighted manifolds with N-Bakry-Émery Ricci tensor
bounded below by N − 1

I Measured Gromov Hausdorff limits of Riemannian
N-dimensional manifolds satisfying Ricg ≥ (N − 1)g and
more generally the class of RCD(N − 1,N) spaces.

I Finite dimensional Alexandrov spaces with curvature ≥ 1

I Finsler manifolds satisfying CD(N − 1,N)



PART 2:
A QUANTITATIVE OBATA
THEOREM



Spectral gap

Sharp Lichnerowicz spectral gap: Let (M , g) be n-dim with
Ric≥ n − 1 and let f ∈ Lip(M) with

∫
M
f dvolg = 0 then∫

M

f 2 dvolg ≤
1

n

∫
M

|∇f |2 dvolg .

I Given (M , g), the first non-zero eigenvalue of the
Neumann Laplacian is:

λ1(M) := inf

{∫
M

|∇f |2dvolg : ‖f ‖L2(M) = 1,

∫
M

f dvolg = 0

}
I Lichnerowicz inequality can be stated as: let (M , g) be

n-dim with Ric≥ n − 1, then

λ1(M) ≥ n = λ1(Sn)



Rigidity and Stability of Lichnerowicz inequality

I Rigidity: Obata’s Theorem 1962
Let (M , g) be n-dim with Ric≥ n − 1.
Then λ1(M) = n iff (M , g) is isometric to Sn.
Note: First eigenfunction on Sn is

√
n + 1 cos(dx),

∀x ∈ Sn

I Stability? i.e. if “ =′′ in spectral gap is almost attained:
I Cheng ’75, Croke ’82: λ1(M) ' n iff diam(M) ' π
I Berard-Besson-Gallot ’85:

λ1(M)− n ≥ Cn(π − diam(M))n

I Bertrand ’07: stability of eigenfunctions: there exists a
function τ(t)→ 0 as t → 0 s.t.
if λ1(M) ≤ n + ε, then ‖f −

√
n + 1 cos(dx)‖∞ ≤ τ(ε)

for f first eigenfunction.
I Question: can we make quantitative Bertrand’s result and

generalize it to a function with almost optimal Rayleigh
quotient (but non-necessarily eigenfunction)?
i.e. if
f ∈ Lip(M), ‖f ‖2 = 1,

∫
M
f = 0,

∫
M
|∇f |2 dvolg ' n

is it true that f '
√
n + 1 cos(dx) for some x ∈ M?

I Difficulty: a key step in Bertrand’s paper is max principle
using that f is eigenfunction. Here we do not have a
PDE!



The result: Quantitative Obata’s Theorem

THM(Cavalletti-M.-Semola, Analysis & PDE 2022)
For every n ≥ 2 there exists Cn > 0 with the following
properties.
Let (M , g) be n-dim with Ric≥ n − 1. For every f ∈ Lip(M)
with ∫

M

f dvolg = 0,

∫
M

f 2 dvolg = 1,

there exists a point x ∈ M such that

‖f −
√
n + 1 cos(dx)‖2 ≤ Cn

(∫
M

|∇f |2 dvolg − n

) 1
6n+4

.

In particular, if f is a first eigenfunction, then

‖f −
√
n + 1 cos(dx)‖2 ≤ Cn (λ1(M)− λ1(Sn))

1
6n+4 .

RK: Proved more generally for essentially non branching
CD(N − 1,N) spaces.



PART 3:
SOME IDEAS OF THE
PROOFS



Technique: 1-D localization

Let (X , d,m) be e.n.b. CD(K ,N), with m(X ) = 1. Given
E ⊂ X we can find a “1-D localization” {Xα}α∈Q of X , i.e.

1. {Xα}α∈Q is (essentially) a partition of X , i.e.

m(X \
⋃̊
α∈QXα) = 0

2. Disintegration of m wrt {Xα}α∈Q (kind of non-straight
Fubini Thm): m =

∫
Q
mα q(dα), with q(Q) = 1 and

mα(Xα) = mα(X ) = 1 for q-a.e. α ∈ Q
3. Xα is a geodesic in X and (Xα, | · |,mα) is a CD(K ,N)

space
4. mα(E ∩ Xα) = m(E ), for q-a.e. α ∈ Q

How to obtain a localization: Consider the OT-problem with
c(x , y) = d(x , y) between

µ0 := (χE/m(E ))m and µ1 := (χX\E/m(X \ E ))m.

Xα will be integral curve of −∇ϕ, with ϕ Kantorovich
potential.



More on how to construct a 1-D localization

I Recall that m(X ) = 1, fix E ⊂ X with m(E ) ∈ (0, 1),
I Let µ0 := χE

m(E)
m and µ1 := 1−χE

1−m(E)
m =

χX\E
m(X\E)

m

I Consider the L1-optimal transport problem

inf
γ

{∫
X×X

d(x , y) dγ : γ ∈ P(X × X ), (π1)]γ = µ0, (π2)]γ = µ1

}
I By Optimal Transport techniques there exists a minimizer
γ ∈ P(X × X ) and a 1-Lipschitz function ϕ : X → R
called Kantorovich potential such that, denoted

Γ := {(x , y) ∈ X × X : ϕ(x)− ϕ(y) = d(x , y)},
γ is concentrated on Γ.

I The relation ∼ on X given by x ∼ y iff (x , y) ∈ Γ or
(y , x) ∈ Γ is an equivalence relation on X (up to an
m-negligible subset) and the equivalence classes are
geodesics.  partition of X into geodesics driven by E

I More work to prove properties 3. and 4.



Why L1-trasport?

I It is more standard to consider the L2-optimal transport
problem: given µ0, µ1 ∈ P(X ) let

inf
γ

{∫
X×X

d(x , y)2 dγ : γ ∈ P(X × X ), (π1)]γ = µ0, (π2)]γ = µ1

}
.

Which defines a metric W2 on P(X ).
I If (µt)t∈[0,1] is a W2-geod from µ0 to µ1, then µt

concentrates on t-intermediate points of geodesics from
supp(µ0) to supp(µ1):
µt({γ(t) : γ geod , γ(0) ∈ supp(µ0), γ(1) ∈
supp(µ1)}) = 1,

I moreover, from d2-monotonicity, if γ1 and γ2 are such
geodesics with γ1(0) 6= γ2(0) then γ1(t) 6= γ2(t) in a.e.
sense.  the L2-transport at time t is given by an ess.
inj. map.

I BUT it may happen γ1(s) = γ2(t) for s 6= t
 L2-transport does not induce an equivalence relation.

I On the other hand L1 transport does induce an
equivalence relation into rays where the transport is
performed
 partition of the space into 1D objects.



Levy-Gromov inequality via Localization

Let (X , d,m) be an e.n.b. CD(N − 1,N) space.
Assume that for E ⊂ X we can find a 1-D localization as above then

m+(E ) := lim inf
ε→0+

m(E ε)−m(E )

ε

= lim inf
ε→0+

∫
Q

mα(E ε)−mα(E )

ε
q(dα) by 2.

≥
∫
Q

lim inf
ε→0+

mα(E ε ∩ Xα)−mα(E ∩ Xα)

ε
q(dα) by 2.

≥
∫
Q

lim inf
ε→0+

mα((E ∩ Xα)ε ∩ Xα)−mα(E ∩ Xα)

ε
q(dα),

by E ε ∩ Xα ⊃ (E ∩ Xα)ε ∩ Xα

≥
∫
Q

m+
α(E ∩ Xα) q(dα)

≥
∫
Q

ISN (mα(E ∩ Xα)) q(dα) by 3.+Smooth LGI in 1D

=

∫
Q

ISN (m(E )) q(dα) by 4. = ISN (m(E )).

 Levy-Gromov inequality for e.n.b. CD(N − 1,N) spaces.



Quantitative Levy-Gromov: one dimensional

estimates
I Let (Mn, g) be with Ric≥ n − 1 and let m = volg/|M |.

Given E ⊂ M with m(E ) = v ∈ (0, 1), we have:

0 ≤ δ := m+(E )− ISn(v) “Levy-Gromov isoperimetric deficit”

≥
∫
Q

(m+
α (E ∩ Xα)− ISn(v)) q(dα) =

∫
Q
δαq(dα).

I Since (Xα, d,mα) is CD(n − 1, n) and
mα(E ∩ Xα) = m(E ) = v (by 4.)
⇒ 0 ≤ δα := m+

α (E ∩ Xα)− ISn(v) = “1-dim Isop.
Deficit”

I The 1-dim deficit δα controls π − |Xα|:∫
Q

(π − |Xα|)n q(dα) ≤ C (n, v)δ.

I RK: so far, also in the proof of Levy Gromov, no role of
OT: works for any 1-D localization.



Quantitative Levy-Gromov: set of long rays

I Fix the set of long rays

Qlong := {α ∈ Q : (π−|Xα|)n ≤
√
δ} ' {α ∈ Q : δα ≤

√
δ},

so that (from last slide) q(Qlong ) ≥ 1− C (n, v)
√
δ

I Problem: we know that most rays have length ∼ π, but
how do they combine together?
Is there are a “common south/north pole”?
NO for a general 1-D localization. However in our case
Exploit the variational character of the localization via
OT.



Quantitative Levy-Gromov: structure of transport

set
I Recall that for the set of long rays

q(Qlong ) ≥ 1− C (n, v)
√
δ:

Qlong := {α ∈ Q : (π−|Xα|)n ≤
√
δ} ' {α ∈ Q : δα ≤

√
δ},

I From cyclical d-monotonicity of the transport set, we get

2π − d(a(Xα), b(Xα))− d(a(Xᾱ), b(Xᾱ))

≥ 2π − d(a(Xα), b(Xᾱ))− d(a(Xᾱ), b(Xα))

Rearranging, for α, ᾱ ∈ Qlong gives

2δ
1

2n ≥ (π − d(a(Xα), b(Xᾱ))) + (π − d(a(Xᾱ), b(Xα)))

I Using Ric≥ n − 1, setting PN := a(Xᾱ),PS := b(Xᾱ), we
get

d(a(Xα),PN) + d(b(Xα),PS) ≤ C (n, v)δ
1

2n , ∀α ∈ Qlong



Quantitative Levy-Gromov: constructing the

metric ball
I Using 1-dim (LGI), for α ∈ Qlong , calling Eα := Xα ∩ E it

holds

min{mα(Eα∆[0, rv ]),mα(Eα∆[|Xα|−rv , |Xα|])} ≤ δα ≤
√
δ

where rv is s.t. mSn(Brv ) = v .
I So we can write E = EN ∪ ES ∪ Eerr with:

m(Eerr ) ≤ C (n, v)
√
δ,

EN := {x ∈ Eα Eα ' [0, rv ]},
ES := {x ∈ Eα Eα ' [|Xα| − rv , |Xα|]

I Using relative isoperimetric inequality inside Bε(PN) (or in
Bε(PS)) with ε� rv , we get

min{m(EN),m(ES)} ≤ C (n, v)δ
1
n

I Putting all together:

min
{
m(E∆Br(v)(PN)),m(E∆Br(v)(PS))

}
≤ C (n, v)δ

1
n



Quantitative Obata’s Theorem

I Given (Mn, g) with Ric≥ n − 1, and f : M → R with∫
M
f m = 0,

∫
M
f 2 m = 1, associate a 1D-localization:

m =

∫
Q

mαq(dα),

∫
f mα = 0, (X , d,mα) ∈ CD(n−1, n)

I Recalling that m(M) = 1, λ1(Sn) = n, let

0 ≤ δ :=

∫
M

(|∇f |2 − n)m = “Spectral deficit”

≥
∫
Q

(∫
Xα

((f |Xα)′)
2 − n)mα

)
q(dα) =

∫
Q

δαc
2
αq(dα)

where cα = ‖f ‖L2(mα).
I New difficulties:

1) show that cα ≥ c > 0 for “most” α, up to q-meas≤ δ
2) show that cα ' cᾱ for “most” α, up to q-meas≤ δ.



!!THANK YOU FOR THE
ATTENTION!!


