Multi-Bubble Isoperimetric Problems - Old and New

Emanuel Milman Technion - Israel Institute of Technology and Oden Institute at UT Austin

Conference on Isoperimetric Problems Pisa June 2022

joint work (in progress) with Joe Neeman (UT Austin)

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

The Classical Isoperimetric Inequality

"Among all sets in Euclidean space \mathbb{R}^n having a given volume, Euclidean balls minimize surface area."

 $V(\Omega) = V(Ball) \implies A(\Omega) \ge A(Ball).$

 $\Omega \in \mathcal{B}(\mathbb{R}^n)$, $V = \text{Leb}^n$, A = Surface Area.

What is Surface Area? Various (non-equivalent) definitions:

- If $\partial \Omega$ smooth, $\int_{\partial \Omega} d \operatorname{Vol}_{\partial \Omega}$.
- Hausdorff measure $\mathcal{H}^{n-1}(\partial \Omega)$.
- Minkowski exterior boundary measure:
 V⁺(Ω) = lim inf_{e→0+} V(Ω_e ∧Ω)/ε, Ω_e := {y ∈ ℝⁿ; d(y, Ω) < ε}.
- De Giorgi Perimeter P(Ω) = Hⁿ⁻¹(∂^{*}Ω) = ||1_Ω||_{BV} = ||∇1_Ω||_{TV} = sup {∫_Ω ∇ · X ; X ∈ C[∞]_c(ℝⁿ; Tℝⁿ), |X| ≤ 1}.
 Stronger than rest, I.s.c., invariant under null-set modifications.

The Classical Isoperimetric Inequality

"Among all sets in Euclidean space \mathbb{R}^n having a given volume, Euclidean balls minimize surface area."

 $V(\Omega) = V(Ball) \implies A(\Omega) \ge A(Ball).$

 $\Omega \in \mathcal{B}(\mathbb{R}^n)$, $V = \text{Leb}^n$, A = Surface Area.

What is Surface Area? Various (non-equivalent) definitions:

- If $\partial \Omega$ smooth, $\int_{\partial \Omega} d \operatorname{Vol}_{\partial \Omega}$.
- Hausdorff measure $\mathcal{H}^{n-1}(\partial\Omega)$.
- Minkowski exterior boundary measure:
 V⁺(Ω) = lim inf_{ε→0+} V(Ω_ε ∨Ω)/ε (y ∈ ℝⁿ; d(y,Ω) < ε).
- De Giorgi Perimeter P(Ω) = Hⁿ⁻¹(∂*Ω) = ||1_Ω||_{BV} = ||∇1_Ω||_{TV} = sup {∫_Ω ∇ · X ; X ∈ C[∞]_c(ℝⁿ; Tℝⁿ), |X| ≤ 1}.
 Stronger than rest, I.s.c., invariant under null-set modifications.

Isoperimetric Inequalities in Metric-Measure setting

Classical isoperimetric inequality is on $\mathbb{R}^n = (\mathbb{R}^n, |\cdot|, \text{Leb}^n)$. Study in weighted-manifold setting $(M^n, g, \mu = \Psi(x)d\text{Vol}_g), \Psi > 0$.

Weighted Volume and Area:

- $V(\Omega) = \mu(\Omega) = \int_{\Omega} \Psi(x) d \operatorname{Vol}_g.$
- $\mathbf{A}(\Omega) = \mathbf{P}_{\Psi}(\Omega) = \int_{\partial^*\Omega} \Psi(\mathbf{x}) d\mathcal{H}^{n-1}(\mathbf{x}).$

Examples:

- Sⁿ = (Sⁿ, g_{can}, λ_{Sⁿ} = Volgn / Volgn / Volgn) P. Lévy, Schmidt 20-30's: geodesic balls are isoperimetric minimizers.
- (2) $\mathbb{G}^{n} = (\mathbb{R}^{n}, |\cdot|, \gamma^{n} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{|x|^{2}}{2}} dx)$ Sudakov–Tsirelson, Borell '75: half-spaces are isoperimetric minimizers.

<u>Relation</u> (Maxwell, Poincaré, Borel): $(\pi_{\mathbb{R}^n})_*(\lambda_{\sqrt{NS^N}}) \rightarrow_{N \rightarrow \infty} \gamma^n$.

Isoperimetric Inequalities in Metric-Measure setting

Classical isoperimetric inequality is on $\mathbb{R}^n = (\mathbb{R}^n, |\cdot|, \text{Leb}^n)$. Study in weighted-manifold setting $(M^n, g, \mu = \Psi(x)d\text{Vol}_g), \Psi > 0$.

Weighted Volume and Area:

- $V(\Omega) = \mu(\Omega) = \int_{\Omega} \Psi(x) d \operatorname{Vol}_g.$
- $\mathbf{A}(\Omega) = \mathbf{P}_{\Psi}(\Omega) = \int_{\partial^*\Omega} \Psi(\mathbf{x}) d\mathcal{H}^{n-1}(\mathbf{x}).$

Examples:

- Sⁿ = (Sⁿ, g_{can}, λ_{Sⁿ} = Volgn / Volgn / Volgn) P. Lévy, Schmidt 20-30's: geodesic balls are isoperimetric minimizers.
- **3** $\mathbb{G}^{n} = (\mathbb{R}^{n}, |\cdot|, \gamma^{n} = \frac{1}{(2\pi)^{n/2}} e^{-\frac{|x|^{2}}{2}} dx)$ Sudakov–Tsirelson, Borell '75: half-spaces are isoperimetric minimizers.

<u>Relation</u> (Maxwell, Poincaré, Borel): $(\pi_{\mathbb{R}^n})_*(\lambda_{\sqrt{NS^N}}) \rightarrow_{N \rightarrow \infty} \gamma^n$.

Isoperimetric Inequalities for Clusters

Cluster $\Omega = (\Omega_1, \dots, \Omega_q)$ is a partition $M = \Omega_1 \cup \dots \cup \Omega_q$ (up to null-sets) Given $V(\Omega) = (V(\Omega_1) \dots V(\Omega_q))$ minimize $A(\Omega) = \frac{1}{2} \sum_{i=1}^q A(\Omega_i) = \sum_{i < j} A_{ij}$.

Previous examples: q = 2 ($\Omega_1 = U, \Omega_2 = M \setminus U$), "Single Bubble". Would like to study $q \ge 3$, "Multi Bubble" case. Case q = 3 is called "Double Bubble" ($\Omega_1, \Omega_2, M \setminus (\Omega_1 \cup \Omega_2)$).

- Rⁿ <u>Theorem</u>: for all V(Ω) = (v₁, v₂, ∞), standard double bubble
 (3 spherical caps meeting at 120° along (n − 2)-dim sphere)
 minimizes total surface area:
 - R² F. Morgan's "SMALL" undergraduate group (Foisy–Alfaro–Brock–Hodges– Zimba) '93.
 - \mathbb{R}^3 Hass–Hutchings–Schlafly '95 $v_1 = v_2$, Hutchings–Morgan–Ritoré–Ros '00.
 - \mathbb{R}^4 SMALL (Reichardt–Heilmann–Lai– Spielman) '03, \mathbb{R}^n - Reichardt '07.

Isoperimetric Inequalities for Clusters

Cluster $\Omega = (\Omega_1, ..., \Omega_q)$ is a partition $M = \Omega_1 \cup ... \cup \Omega_q$ (up to null-sets) Given $V(\Omega) = (V(\Omega_1) \dots V(\Omega_q))$ minimize $A(\Omega) = \frac{1}{2} \sum_{i=1}^q A(\Omega_i) = \sum_{i < j} A_{ij}$.

Previous examples: q = 2 ($\Omega_1 = U, \Omega_2 = M \setminus U$), "Single Bubble". Would like to study $q \ge 3$, "Multi Bubble" case. Case q = 3 is called "Double Bubble" ($\Omega_1, \Omega_2, M \setminus (\Omega_1 \cup \Omega_2)$).

- Rⁿ <u>Theorem</u>: for all V(Ω) = (v₁, v₂, ∞), standard double bubble (3 spherical caps meeting at 120° along (n − 2)-dim sphere) minimizes total surface area:
 - R² F. Morgan's "SMALL" undergraduate group (Foisy–Alfaro–Brock–Hodges– Zimba) '93.
 - \mathbb{R}^3 Hass–Hutchings–Schlafly '95 $v_1 = v_2$, Hutchings–Morgan–Ritoré–Ros '00.
 - \mathbb{R}^4 SMALL (Reichardt–Heilmann–Lai– Spielman) '03, \mathbb{R}^n - Reichardt '07.

Isoperimetric Inequalities for Clusters

Cluster $\Omega = (\Omega_1, ..., \Omega_q)$ is a partition $M = \Omega_1 \cup ... \cup \Omega_q$ (up to null-sets) Given $V(\Omega) = (V(\Omega_1) \dots V(\Omega_q))$ minimize $A(\Omega) = \frac{1}{2} \sum_{i=1}^q A(\Omega_i) = \sum_{i < j} A_{ij}$.

Previous examples: q = 2 ($\Omega_1 = U, \Omega_2 = M \setminus U$), "Single Bubble". Would like to study $q \ge 3$, "Multi Bubble" case. Case q = 3 is called "Double Bubble" ($\Omega_1, \Omega_2, M \setminus (\Omega_1 \cup \Omega_2)$).

- Rⁿ <u>Theorem</u>: for all V(Ω) = (v₁, v₂, ∞), standard double bubble (3 spherical caps meeting at 120° along (n − 2)-dim sphere) minimizes total surface area:
 - R² F. Morgan's "SMALL" undergraduate group (Foisy–Alfaro–Brock–Hodges– Zimba) '93.
 - \mathbb{R}^3 Hass–Hutchings–Schlafly '95 $v_1 = v_2$, Hutchings–Morgan–Ritoré–Ros '00.
 - \mathbb{R}^4 SMALL (Reichardt–Heilmann–Lai– Spielman) '03, \mathbb{R}^n - Reichardt '07.

q = 3 regions in dimension $n \ge 2$:

- S^{*n*} Double-Bubble Conjecture: for all $V(\Omega) = (v_1, v_2, v_3)$, standard double bubble (3 spherical caps in S^{*n*} meeting at 120° along (n-2)-dim sphere) minimizes total surface area.
 - S² Proved by Masters '96.
 - S³ Cotton−Freeman '02, Corneli−Hoffman-HLLMS '07, partial.
 - \mathbb{S}^n Corneli–Corwin–Hoffman-HSADLVX '08, if $|v_i \frac{1}{3}| \le 0.04$.

(2) G^{*n*} - Double-Bubble Conjecture: for all $V(\Omega) = (v_1, v_2, v_3)$, standard "tripod" / "Y" (3 half-hyperplanes meeting at 120° along (n-2)-dim plane) minimizes total (Gaussian) surface area. **(G**^{*n*} - Corneli–Corwin–Hoffman-HSADLVX '08, if $|v_i - \frac{1}{3}| \le 0.04$.

Interaction between G and S:

 $\mathbb{G}^2 \Rightarrow \mathbb{S}^N \ \forall N \gg 1 \Rightarrow \mathbb{S}^n \ \forall n \ge 2 \Rightarrow \mathbb{G}^n \ \forall n \ge 2$ by projection.

q = 3 regions in dimension $n \ge 2$:

- S^{*n*} Double-Bubble Conjecture: for all $V(\Omega) = (v_1, v_2, v_3)$, standard double bubble (3 spherical caps in S^{*n*} meeting at 120° along (n-2)-dim sphere) minimizes total surface area.
 - S² Proved by Masters '96.
 - S³ Cotton–Freeman '02, Corneli–Hoffman-HLLMS '07, partial.
 - Sⁿ Corneli–Corwin–Hoffman-HSADLVX '08, if $|v_i \frac{1}{3}| \le 0.04$.
- **2 G**^{*n*} Double-Bubble Conjecture: for all $V(\Omega) = (v_1, v_2, v_3)$, standard "tripod" / "Y" (3 half-hyperplanes meeting at 120° along (n-2)-dim plane) minimizes total (Gaussian) surface area.

G^{*n*} - Corneli–Corwin–Hoffman-HSADLVX '08, if $|v_i - \frac{1}{3}| \le 0.04$.

Interaction between G and S:

 $\mathbb{G}^2 \Rightarrow \mathbb{S}^N \ \forall N \gg 1 \Rightarrow \mathbb{S}^n \ \forall n \ge 2 \Rightarrow \mathbb{G}^n \ \forall n \ge 2$ by projection.

Y cone

Higher-order cluster $\Omega = (\Omega_1, \dots, \Omega_q)$. There's no reasonable conjecture when $q \gg n$:

Image from Cox, Graner, et al.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble: Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in \mathbb{R}^n to $\mathbb{S}^n \subset \mathbb{R}^{n+1}$).

Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble:

Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in \mathbb{R}^n to $\mathbb{S}^n \subset \mathbb{R}^{n+1}$).

Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n+1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in \mathbb{R}^n (appropriately translated).

Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble:

Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all

Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^n .

Montesinos Amilibia '01 - standard bubbles exist and are uniquely determined (up to isometries) for all prescribed volumes, for all $q-1 \le n+1$.

Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 spherical-bubble

Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^n .

Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in \mathbb{R}^n to $\mathbb{S}^n \subset \mathbb{R}^{n+1}$).

Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n+1$, for all $V(\Omega) = (v_1, \ldots, v_q)$,

Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$.

Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n+1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in \mathbb{R}^n (appropriately translated).

Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^n .

Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in \mathbb{R}^n to $\mathbb{S}^n \subset \mathbb{R}^{n+1}$).

Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in \mathbb{R}^n (appropriately translated).

Higher-order cluster $\Omega = (\Omega_1, \ldots, \Omega_q)$.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble: Take Voronoi cells of q equidistant points on $\mathbb{S}^n \subset \mathbb{R}^{n+1}$ and apply all stereographic projections to \mathbb{R}^n .

Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 spherical-bubble (stereographic projection of standard q - 1 bubble in \mathbb{R}^n to $\mathbb{S}^n \subset \mathbb{R}^{n+1}$).

Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard simplicial cluster = Voronoi cells of q equidistant points in \mathbb{R}^n (appropriately translated).

q = 2 corresponds to the classical isoperimetric inqs. q = 3 is the double-bubble theorem (\mathbb{R}^n) / conjecture (\mathbb{S}^n / \mathbb{G}^n , $n \ge 3$). q = 4 and n = 2 in \mathbb{R}^n (planar triple-bubble) proved by Wichiramala '04. Not aware of any other results when $q \ge 4$ prior to 2018. Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in \mathbb{R}^n).

Gaussian Double/Multi-Bubble Thm (M.–Neeman '18)

For all $n \ge 2$ and $2 \le q \le n + 1$, the Multi-Bubble Conjecture on \mathbb{G}^n is true: "a standard simplicial *q*-cluster is a Gaussian minimizer".

Gaussian Double/Multi-Bubble

(M.–Neeman '18)

For all $n \ge 2$ and $2 \le q \le n + 1$, simplicial *q*-clusters are the *unique* minimizers of Gaussian perimeter, up to null-sets.

Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n+1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in \mathbb{R}^n).

Gaussian Double/Multi-Bubble Thm (M.–Neeman '18)

For all $n \ge 2$ and $2 \le q \le n+1$, the Multi-Bubble Conjecture on \mathbb{G}^n is true: "a standard simplicial *q*-cluster is a Gaussian minimizer".

Gaussian Double/Multi-Bubble

(M.–Neeman '18)

For all $n \ge 2$ and $2 \le q \le n + 1$, simplicial *q*-clusters are the *unique* minimizers of Gaussian perimeter, up to null-sets.

Multi-Bubble Conjecture on \mathbb{G}^n : If $q \le n+1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard simplicial cluster (Voronoi cells of q equidistant points in \mathbb{R}^n).

Gaussian Double/Multi-Bubble Thm (M.–Neeman '18)

For all $n \ge 2$ and $2 \le q \le n+1$, the Multi-Bubble Conjecture on \mathbb{G}^n is true: "a standard simplicial *q*-cluster is a Gaussian minimizer".

Gaussian Double/Multi-Bubble Uniqueness (M.–Neeman '18)

For all $n \ge 2$ and $2 \le q \le n + 1$, simplicial *q*-clusters are the *unique* minimizers of Gaussian perimeter, up to null-sets.

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 bubble. \Rightarrow Equal volume case?

1-2-3-4-5-Bubble Thm on ℝⁿ / Sⁿ (M.–Neeman '22)

For all $n \ge 2$ and $2 \le q \le \min(6, n + 1)$, the Multi-Bubble Conjecture on $\mathbb{R}^n / \mathbb{S}^n$ is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble $(n \ge 2)$, Triple-Bubble $(n \ge 3)$, Quadruple-Bubble $(n \ge 4)$, Quintuple-Bubble $(n \ge 5)$.

Additional partial results valid for all $q \le n + 1$ later on.

Multi-Bubble Uniqueness on Rⁿ / Sⁿ (M.–Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^n for $2 \le q \le \min(6, n+1)$. Uniqueness (up to null-sets) on \mathbb{R}^n for $2 \le q \le \min(5, n+1)$.

Q: Why is \mathbb{S}^n case harder than \mathbb{G}^n ? And \mathbb{R}^n case even more so? A1: $\mathbb{S}^N \Rightarrow \mathbb{G}^n$ by projection; $\mathbb{S}^n \Rightarrow \mathbb{R}^n$ by scale-invariance and

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 bubble.

1-2-3-4-5-Bubble Thm on **ℝ**^{*n*} / **S**^{*n*} (M.–Neeman '22)

For all $n \ge 2$ and $2 \le q \le \min(6, n + 1)$, the Multi-Bubble Conjecture on $\mathbb{R}^n / \mathbb{S}^n$ is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble $(n \ge 2)$, Triple-Bubble $(n \ge 3)$, Quadruple-Bubble $(n \ge 4)$, Quintuple-Bubble $(n \ge 5)$.

Additional partial results valid for all $q \le n + 1$ later on.

Multi-Bubble Uniqueness on Rⁿ / Sⁿ (M.–Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^n for $2 \le q \le \min(6, n+1)$. Uniqueness (up to null-sets) on \mathbb{R}^n for $2 \le q \le \min(5, n+1)$.

Q: Why is \mathbb{S}^n case harder than \mathbb{G}^n ? And \mathbb{R}^n case even more so? A1: $\mathbb{S}^N \Rightarrow \mathbb{G}^n$ by projection; $\mathbb{S}^n \Rightarrow \mathbb{R}^n$ by scale-invariance and shrinking to a point, but uniqueness is lost in both cases.

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 bubble.

1-2-3-4-5-Bubble Thm on **R**^{*n*} / **S**^{*n*} (M.–Neeman '22)

For all $n \ge 2$ and $2 \le q \le \min(6, n + 1)$, the Multi-Bubble Conjecture on $\mathbb{R}^n / \mathbb{S}^n$ is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble $(n \ge 2)$, Triple-Bubble $(n \ge 3)$, Quadruple-Bubble $(n \ge 4)$, Quintuple-Bubble $(n \ge 5)$.

Multi-Bubble Uniqueness on Rⁿ / Sⁿ (M.–Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^n for $2 \le q \le \min(6, n+1)$. Uniqueness (up to null-sets) on \mathbb{R}^n for $2 \le q \le \min(5, n+1)$.

Q: Why is \mathbb{S}^n case harder than \mathbb{G}^n ? And \mathbb{R}^n case even more so? A1: $\mathbb{S}^N \Rightarrow \mathbb{G}^n$ by projection; $\mathbb{S}^n \Rightarrow \mathbb{R}^n$ by scale-invariance and shrinking to a point, but uniqueness is lost in both cases. A2: TBD; Moral: we were lucky to have started with \mathbb{G}^n ...

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 bubble.

1-2-3-4-5-Bubble Thm on **R**^{*n*} / **S**^{*n*} (M.–Neeman '22)

For all $n \ge 2$ and $2 \le q \le \min(6, n + 1)$, the Multi-Bubble Conjecture on $\mathbb{R}^n / \mathbb{S}^n$ is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble $(n \ge 2)$, Triple-Bubble $(n \ge 3)$, Quadruple-Bubble $(n \ge 4)$, Quintuple-Bubble $(n \ge 5)$.

Multi-Bubble Uniqueness on Rⁿ / Sⁿ (M.–Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^n for $2 \le q \le \min(6, n+1)$. Uniqueness (up to null-sets) on \mathbb{R}^n for $2 \le q \le \min(5, n+1)$.

Q: Why is \mathbb{S}^n case harder than \mathbb{G}^n ? And \mathbb{R}^n case even more so? A1: $\mathbb{S}^N \Rightarrow \mathbb{G}^n$ by projection; $\mathbb{S}^n \Rightarrow \mathbb{R}^n$ by scale-invariance and shrinking to a point, but uniqueness is lost in both cases. A2: TBD: Moral: we were lucky to have started with \mathbb{G}^n ...

Multi-Bubble Conjecture on \mathbb{R}^n (J. Sullivan '95): If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_{q-1}, \infty)$, the minimizer is a standard q - 1 bubble. Multi-Bubble Conjecture on \mathbb{S}^n : If $q - 1 \le n + 1$, for all $V(\Omega) = (v_1, \ldots, v_q)$, the minimizer is a standard q - 1 bubble.

1-2-3-4-5-Bubble Thm on **R**^{*n*} / **S**^{*n*} (M.–Neeman '22)

For all $n \ge 2$ and $2 \le q \le \min(6, n + 1)$, the Multi-Bubble Conjecture on $\mathbb{R}^n / \mathbb{S}^n$ is true: "A standard q - 1 bubble is an isoperimetric minimizer". In other words, Double-Bubble $(n \ge 2)$, Triple-Bubble $(n \ge 3)$, Quadruple-Bubble $(n \ge 4)$, Quintuple-Bubble $(n \ge 5)$.

Multi-Bubble Uniqueness on **R**ⁿ / **S**ⁿ (M.–Neeman '22)

Uniqueness (up to null-sets) on \mathbb{S}^n for $2 \le q \le \min(6, n+1)$. Uniqueness (up to null-sets) on \mathbb{R}^n for $2 \le q \le \min(5, n+1)$.

Q: Why is \mathbb{S}^n case harder than \mathbb{G}^n ? And \mathbb{R}^n case even more so? A1: $\mathbb{S}^N \Rightarrow \mathbb{G}^n$ by projection; $\mathbb{S}^n \Rightarrow \mathbb{R}^n$ by scale-invariance and shrinking to a point, but uniqueness is lost in both cases. A2: TBD; Moral: we were lucky to have started with \mathbb{G}^n ...

Single Bubble (q = 2):

- Sⁿ symmetrization, GMT, Localization.
- Gⁿ Projection of S^N, symmetrization (Ehrhard), Brunn-Minkowski (Borell), Localization, heat-flow, GMT.

Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):

Emanuel Milman

Multi-Bubble Isoperimetric Problems - Old and New

Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):

Extension to \mathbb{S}^n by Cotton–Freeman '02: If all Ω_i are connected then Ω is standard double-bubble

Meta-Calibrations / Unification (Lawlor) - alternative proof on ℝⁿ.
 We proceed rather differently in our work.

Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):

Extension to \mathbb{S}^n by Cotton–Freeman '02: If all Ω_i are connected then Ω is standard double-bubble

Meta-Calibrations / Unification (Lawlor) - alternative proof on ℝⁿ.
 We proceed rather differently in our work.

Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):

Extension to S^n by Cotton–Freeman '02: If all Ω_i are connected then Ω is standard double-bubble.

• Meta-Calibrations / Unification (Lawlor) - alternative proof on \mathbb{R}^n . We proceed rather differently in our work.

Double-Bubble (q = 3):

- Geometric Measure Theory (De Giorgi, Federer, Almgren, ...) existence and regularity of isoperimetric minimizers.
- Symmetrization (White, Hutchings).
- Connected component analysis (Hutchings); Ruling out cases (Hutchings–Morgan–Ritoré–Ros):

Extension to \mathbb{S}^n by Cotton–Freeman '02: If all Ω_i are connected then Ω is standard double-bubble.

Meta-Calibrations / Unification (Lawlor) - alternative proof on ℝⁿ.
 We proceed rather differently in our work.

On smooth (M^n , g, $\mu^n = e^{-W} dvol$), finite volume, GMT guarantees:

- Minimizing $\Omega = (\Omega_1, \dots, \Omega_q)$ exists (Almgren: also on \mathbb{R}^n).
- Interfaces: $\Sigma_{ij} \coloneqq \partial^* \Omega_i \cap \partial^* \Omega_j$.
- Almgren 70's: Σ_{ij} are C[∞] embedded mnflds w/ good properties.
 Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_c^{\infty}(M^n; TM^n)$, $\frac{d}{dt}F_t = X \circ F_t$ diffeomorphism, $\Omega_t = F_t(\Omega)$. $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E^(q-1) = {v ∈ ℝ^q ; Σ^q_{i=1} v_i = 0}, s.t.:
 - Ω is "stationary" (critical point) $\delta_X^1 A \langle \lambda, \delta_X^1 V \rangle = 0.$

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then H_{Σ_{ii},μ} = λ_i - λ_j is constant on Σ_{ij}.
- $\Sigma^1 = \bigcup_{i < j} \Sigma_{ij}$ has no boundary in weak sense $(\int_{\Sigma^1} d\omega = 0)$. So if $\Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$ meet in threes, it must be in 120° angles.

On smooth (M^n , g, $\mu^n = e^{-W} dvol$), finite volume, GMT guarantees:

- Minimizing $\Omega = (\Omega_1, \dots, \Omega_q)$ exists (Almgren: also on \mathbb{R}^n).
- Interfaces: $\Sigma_{ij} \coloneqq \partial^* \Omega_i \cap \partial^* \Omega_j$.
- Almgren 70's: Σ_{ij} are C[∞] embedded mnflds w/ good properties.
 Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_c^{\infty}(M^n; TM^n)$, $\frac{d}{dt}F_t = X \circ F_t$ diffeomorphism, $\Omega_t = F_t(\Omega)$. $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E^(q-1) = {v ∈ ℝ^q ; Σ^q_{i=1} v_i = 0}, s.t.:
 - Ω is "stationary" (critical point) $\delta_X^1 A (\lambda, \delta_X^1 V) = 0.$

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then H_{Σ_i, μ} = λ_i - λ_j is constant on Σ_{ij}.
- $\Sigma^1 = \bigcup_{i < j} \Sigma_{ij}$ has no boundary in weak sense $(\int_{\Sigma^1} d\omega = 0)$. So if $\Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$ meet in threes, it must be in 120° angles.

On smooth (M^n , g, $\mu^n = e^{-W} dvol$), finite volume, GMT guarantees:

- Minimizing $\Omega = (\Omega_1, \dots, \Omega_q)$ exists (Almgren: also on \mathbb{R}^n).
- Interfaces: $\Sigma_{ij} := \partial^* \Omega_i \cap \partial^* \Omega_j$.
- Almgren 70's: Σ_{ij} are C[∞] embedded mnflds w/ good properties.
 Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_c^{\infty}(M^n; TM^n)$, $\frac{d}{dt}F_t = X \circ F_t$ diffeomorphism, $\Omega_t = F_t(\Omega)$. $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E^(q-1) = {v ∈ ℝ^q ; Σ^q_{i=1} v_i = 0}, s.t.:
 - Ω is "stationary" (critical point) $\delta_X^1 A \langle \lambda, \delta_X^1 V \rangle = 0.$

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then H_{Σ_i, μ} = λ_i - λ_j is constant on Σ_{ij}.
- $\Sigma^1 = \bigcup_{i < j} \Sigma_{ij}$ has no boundary in weak sense $(\int_{\Sigma^1} d\omega = 0)$. So if $\Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$ meet in threes, it must be in 120° angles.

On smooth (M^n , g, $\mu^n = e^{-W} dvol$), finite volume, GMT guarantees:

- Minimizing $\Omega = (\Omega_1, \dots, \Omega_q)$ exists (Almgren: also on \mathbb{R}^n).
- Interfaces: $\Sigma_{ij} \coloneqq \partial^* \Omega_i \cap \partial^* \Omega_j$.
- Almgren 70's: Σ_{ij} are C[∞] embedded mnflds w/ good properties.
 Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_c^{\infty}(M^n; TM^n)$, $\frac{d}{dt}F_t = X \circ F_t$ diffeomorphism, $\Omega_t = F_t(\Omega)$. $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E^(q-1) = {v ∈ ℝ^q ; Σ^q_{i=1} v_i = 0}, s.t.:

Ω is "stationary" (critical point) $\delta_X^1 A - \langle \lambda, \delta_X^1 V \rangle = 0.$

- Since the first-variation of (weighted) area is (weighted) mean-curvature, then H_{Σii},μ = λ_i - λ_j is constant on Σ_{ij}.
- $\Sigma^1 = \bigcup_{i < j} \Sigma_{ij}$ has no boundary in weak sense $(\int_{\Sigma^1} d\omega = 0)$. So if $\Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$ meet in threes, it must be in 120° angles.

On smooth (M^n , g, $\mu^n = e^{-W} dvol$), finite volume, GMT guarantees:

- Minimizing $\Omega = (\Omega_1, \dots, \Omega_q)$ exists (Almgren: also on \mathbb{R}^n).
- Interfaces: $\Sigma_{ij} := \partial^* \Omega_i \cap \partial^* \Omega_j$.
- Almgren 70's: Σ_{ij} are C[∞] embedded mnflds w/ good properties.
 Great books on clusters by F. Morgan and F. Maggi.
- Test against competitors by flowing along vector-field. If $X \in C_c^{\infty}(M^n; TM^n)$, $\frac{d}{dt}F_t = X \circ F_t$ diffeomorphism, $\Omega_t = F_t(\Omega)$. $V = V(\Omega_t), A = A(\Omega_t), \delta_X^k V = (\frac{d}{dt})^k|_{t=0} V(\Omega_t), \delta_X^k A = (\frac{d}{dt})^k|_{t=0} A(\Omega_t)$.
- Since Ω (globally) minimizes area under volume constraint, there are Lagrange multipliers λ ∈ E^(q-1) = {v ∈ ℝ^q ; Σ^q_{i=1} v_i = 0}, s.t.:

Ω is "stationary" (critical point) $\delta_X^1 A - \langle \lambda, \delta_X^1 V \rangle = 0.$

Ω is "stable" (local minimizer) $\delta_X^1 V = 0 \Rightarrow \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle \ge 0.$

 Since the first-variation of (weighted) area is (weighted) mean-curvature, then H_{Σii}, μ = λ_i - λ_j is constant on Σ_{ij}.

• $\Sigma^1 = \bigcup_{i < j} \Sigma_{ij}$ has no boundary in weak sense $(\int_{\Sigma^1} d\omega = 0)$. So if $\Sigma_{ij}, \Sigma_{jk}, \Sigma_{ki}$ meet in threes, it must be in 120° angles.

Stability: $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$ (the "index-form").

<u>Idea</u>: use stability for vector-fields X_{α} chosen from an appropriate family, so that $\delta_{X_{\alpha}}^{1} V = 0$ and $\mathbb{E}_{\alpha}Q(X_{\alpha}) \leq 0$. Read off information on II.

On \mathbb{G}^n : $q \le n+1 \implies$ minimizer is flat II = 0. Maximal case q = n+1: separate argument, $Q(\text{Translations}) \le 0$.

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical $|I_0 = |I - \frac{H}{n-1}|d = 0$. Cannot handle maximal case q = n+2, because $Q(Möbius) \le 0$?

This is harder on $\mathbb{S}^n/\mathbb{R}^n$ since $H_{ij} = \lambda_i - \lambda_j$ is unknown, and we need to combine several fields & discover integration by parts formulas.

Step 1 is the critical step – before which we were completely stuck.

Stability: $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$ (the "index-form").

<u>Idea</u>: use stability for vector-fields X_{α} chosen from an appropriate family, so that $\delta_{X_{\alpha}}^{1} V = 0$ and $\mathbb{E}_{\alpha}Q(X_{\alpha}) \leq 0$. Read off information on II.

On \mathbb{G}^n : $q \le n+1 \implies$ minimizer is flat II = 0. Maximal case q = n+1: separate argument, $Q(\text{Translations}) \le 0$.

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical $|I_0 = |I - \frac{H}{n-1}|d = 0$. Cannot handle maximal case q = n+2, because $Q(M\"obius) \le 0$?

This is harder on $\mathbb{S}^n/\mathbb{R}^n$ since $H_{ij} = \lambda_i - \lambda_j$ is unknown, and we need to combine several fields & discover integration by parts formulas.

Step 1 is the critical step – before which we were completely stuck.

Stability: $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$ (the "index-form").

<u>Idea</u>: use stability for vector-fields X_{α} chosen from an appropriate family, so that $\delta_{X_{\alpha}}^{1} V = 0$ and $\mathbb{E}_{\alpha}Q(X_{\alpha}) \leq 0$. Read off information on II.

On \mathbb{G}^n : $q \le n+1 \implies$ minimizer is flat II = 0. Maximal case q = n+1: separate argument, $Q(\text{Translations}) \le 0$.

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical $|I_0 = |I - \frac{H}{n-1}|d = 0$. Cannot handle maximal case q = n+2, because $Q(M\"obius) \le 0$?

This is harder on $\mathbb{S}^n/\mathbb{R}^n$ since $H_{ij} = \lambda_i - \lambda_j$ is unknown, and we need to combine several fields & discover integration by parts formulas.

Step 1 is the critical step – before which we were completely stuck.

Stability: $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$ (the "index-form").

<u>Idea</u>: use stability for vector-fields X_{α} chosen from an appropriate family, so that $\delta_{X_{\alpha}}^{1} V = 0$ and $\mathbb{E}_{\alpha}Q(X_{\alpha}) \leq 0$. Read off information on II.

On \mathbb{G}^n : $q \le n+1 \implies$ minimizer is flat II = 0. Maximal case q = n+1: separate argument, $Q(\text{Translations}) \le 0$.

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical $II_0 = II - \frac{H}{n-1}Id = 0$. Cannot handle maximal case q = n+2, because $Q(M\"{o}bius) \le 0$?

This is harder on $\mathbb{S}^n/\mathbb{R}^n$ since $H_{ij} = \lambda_i - \lambda_j$ is unknown, and we need to combine several fields & discover integration by parts formulas.

Step 1 is the critical step – before which we were completely stuck.

Stability: $\delta_X^1 V = 0 \implies 0 \le Q(X) := \delta_X^2 A - \langle \lambda, \delta_X^2 V \rangle$ (the "index-form").

<u>Idea</u>: use stability for vector-fields X_{α} chosen from an appropriate family, so that $\delta_{X_{\alpha}}^{1} V = 0$ and $\mathbb{E}_{\alpha}Q(X_{\alpha}) \leq 0$. Read off information on II.

On \mathbb{G}^n : $q \le n+1 \implies$ minimizer is flat II = 0. Maximal case q = n+1: separate argument, $Q(\text{Translations}) \le 0$.

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical $II_0 = II - \frac{H}{n-1}Id = 0$. Cannot handle maximal case q = n+2, because $Q(M\"{o}bius) \le 0$?

This is harder on $\mathbb{S}^n/\mathbb{R}^n$ since $H_{ij} = \lambda_i - \lambda_j$ is unknown, and we need to combine several fields & discover integration by parts formulas.

Step 1 is the critical step – before which we were completely stuck.

On Gⁿ: These steps not needed; jump to Step 4!

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical Voronoi cluster: There exist $\{c_i\}_{i=1,...,q} \in \mathbb{R}^{n+1}/\mathbb{R}^n$ and $\{\kappa_i\}_{i=1,...,q} \in \mathbb{R}$ so that:

For every Σ_{ij} ≠ Ø, Σ_{ij} lies on a (generalized) geodesic sphere S_{ij} with quasi-center c_{ij} = c_i - c_j and curvature κ_{ij} = κ_i - κ_j. The quasi-center c := n - κp is constant on a sphere S ⊂ Sⁿ/ℝⁿ.

2 On \mathbb{S}^n , the following Voronoi representation holds:

$$\Omega_{j} = \operatorname{int}\left\{p \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,\ldots,q}\left(\mathfrak{c}_{j},p\right) + \kappa_{j} = i\right\} = \bigcap_{j \neq i}\left\{p \in \mathbb{S}^{n} ; \left(\mathfrak{c}_{ij},p\right) + \kappa_{ij} < 0\right\}.$$

Similarly on \mathbb{R}^n , after stereographic projection to \mathbb{S}^n .

Furthermore, each Ω_i is connected.

Step 2 involves simplicial homology of $\{\Omega_i\}_{i=1,...,q}$, Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

On Gⁿ: These steps not needed; jump to Step 4!

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \Rightarrow$ minimizer is spherical Voronoi cluster: There exist $\{c_i\}_{i=1,...,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$ and $\{\kappa_i\}_{i=1,...,q} \subset \mathbb{R}$ so that:

For every Σ_{ij} ≠ Ø, Σ_{ij} lies on a (generalized) geodesic sphere S_{ij} with quasi-center c_{ij} = c_i - c_j and curvature κ_{ij} = κ_i - κ_j. The quasi-center c := n - κp is constant on a sphere S ⊂ Sⁿ/ℝⁿ.

2 On \mathbb{S}^n , the following Voronoi representation holds:

$$\Omega_{j} = \operatorname{int}\left\{p \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,\ldots,q}\left(\mathfrak{c}_{j},p\right) + \kappa_{j} = i\right\} = \bigcap_{j \neq i}\left\{p \in \mathbb{S}^{n} ; \left(\mathfrak{c}_{ij},p\right) + \kappa_{ij} < 0\right\}.$$

Similarly on \mathbb{R}^n , after stereographic projection to \mathbb{S}^n .

Furthermore, each Ω_i is connected.

Step 2 involves simplicial homology of $\{\Omega_i\}_{i=1,...,q}$, Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

On **G**^{*n*}: These steps not needed; jump to Step 4!

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical Voronoi cluster:

Euclidean Voronoi Cells: $\Omega_i = \{x : \arg \min_j |x - x_j|^2 = i\}$

There exist

 $\{\mathfrak{c}_i\}_{i=1,\ldots,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$ and $\{\kappa_i\}_{i=1,\ldots,q} \subset \mathbb{R}$ so that:

For every Σ_{ij} ≠ Ø, Σ_{ij} lies on a (generalized) geodesic sphere S_{ij} with quasi-center c_{ij} = c_i - c_j and curvature κ_{ij} = κ_i - κ_j.

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

On \mathbb{G}^n : These steps not needed; jump to Step 4! On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical Voronoi cluster:

There exist $\{c_i\}_{i=1,...,q} \in \mathbb{R}^{n+1}/\mathbb{R}^n$ and $\{\kappa_i\}_{i=1,...,q} \in \mathbb{R}$ so that:

For every Σ_{ij} ≠ Ø, Σ_{ij} lies on a (generalized) geodesic sphere S_{ij} with quasi-center c_{ij} = c_i - c_j and curvature κ_{ij} = κ_i - κ_j. The quasi-center c := n - κp is constant on a sphere S ⊂ Sⁿ/ℝⁿ.

On Sⁿ, the following Voronoi representation holds:

On Gⁿ: These steps not needed; jump to Step 4!

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \Rightarrow$ minimizer is spherical Voronoi cluster: There exist $\{c_i\}_{i=1,...,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$ and $\{\kappa_i\}_{i=1,...,q} \subset \mathbb{R}$ so that:

- For every Σ_{ij} ≠ Ø, Σ_{ij} lies on a (generalized) geodesic sphere S_{ij} with quasi-center c_{ij} = c_i c_j and curvature κ_{ij} = κ_i κ_j. The quasi-center c := n κp is constant on a sphere S ⊂ Sⁿ/ℝⁿ.
- 2 On S^n , the following Voronoi representation holds:

$$\Omega_{i} = \operatorname{int} \left\{ p \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,\ldots,q} \left\langle \mathfrak{c}_{j}, p \right\rangle + \kappa_{j} = i \right\} = \bigcap_{j \neq i} \left\{ p \in \mathbb{S}^{n} ; \left\langle \mathfrak{c}_{ij}, p \right\rangle + \kappa_{ij} < 0 \right\}.$$

Similarly on \mathbb{R}^n , after stereographic projection to \mathbb{S}^n .

Furthermore, each Ω_i is connected.

Step 2 involves simplicial homology of $\{\Omega_i\}_{i=1,...,q}$, Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

On Gⁿ: These steps not needed; jump to Step 4!

On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \Rightarrow$ minimizer is spherical Voronoi cluster: There exist $\{c_i\}_{i=1,...,q} \subset \mathbb{R}^{n+1}/\mathbb{R}^n$ and $\{\kappa_i\}_{i=1,...,q} \subset \mathbb{R}$ so that:

- For every Σ_{ij} ≠ Ø, Σ_{ij} lies on a (generalized) geodesic sphere S_{ij} with quasi-center c_{ij} = c_i c_j and curvature κ_{ij} = κ_i κ_j. The quasi-center c := n κp is constant on a sphere S ⊂ Sⁿ/ℝⁿ.
- 2 On $S^{\prime\prime}$, the following Voronoi representation holds:

$$\Omega_{i} = \operatorname{int} \left\{ \boldsymbol{p} \in \mathbb{S}^{n} ; \operatorname{arg\,min}_{j=1,\ldots,q} \left\langle \boldsymbol{\mathfrak{c}}_{j}, \boldsymbol{p} \right\rangle + \kappa_{j} = i \right\} = \bigcap_{j \neq i} \left\{ \boldsymbol{p} \in \mathbb{S}^{n} ; \left\langle \boldsymbol{\mathfrak{c}}_{ij}, \boldsymbol{p} \right\rangle + \kappa_{ij} < 0 \right\}.$$

Similarly on \mathbb{R}^n , after stereographic projection to \mathbb{S}^n .

Furthermore, each Ω_i is connected.

Step 2 involves simplicial homology of $\{\Omega_i\}_{i=1,...,q}$, Convex Geometry. Step 3 involves stability again, elliptic regularity, maximum principle.

On \mathbb{G}^n : These steps not needed; jump to Step 4! On $\mathbb{S}^n/\mathbb{R}^n$: $q \le n+1 \implies$ minimizer is spherical Voronoi cluster:

Emanuel Milman Multi-Bubble Isoperimetric Problems - Old and New

Proof: Step 4 – Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with $\sum_{ij} \neq \emptyset \ \forall i < j$ coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:

Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

Proof: Step 4 – Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with $\sum_{ij} \neq \emptyset \ \forall i < j$ coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:

Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

Proof: Step 4 – Need Global Information

At this point, we know that our cluster is spherical / flat Voronoi. We are almost done! Fact: class of Voronoi clusters with $\sum_{ij} \neq \emptyset \ \forall i < j$ coincides with the class of conjectured minimizers.

We now need to incorporate a global argument, as local arguments (e.g. stability) will never be enough to exclude configurations like:

Typical GMT argument: if cluster non-rigid, move bubbles until they touch, forming an illegal singularity for an isoperimetric cluster.

Double and Triple bubble on $\mathbb{R}^n/\mathbb{S}^n$

This already concludes proof of double/triple-bubble on $\mathbb{R}^n/\mathbb{S}^n$! Quadruple-bubble needs more work...

For $q \gg 1$, leads to questions on incidence structure of $\{\Omega_i\}_{i=1,...,q}$. How to proceed? How did we conclude on \mathbb{G}^n for all $q \le n+1$?

The Isoperimetric Profile for Multi-Bubbles

 $(M^n, g, \mu) \in \{\mathbb{G}^n, \mathbb{S}^n\}$. Need finite volume, so cannot work on \mathbb{R}^n . $V(\Omega) = (V(\Omega_1), \dots, V(\Omega_q)) \in \Delta^{(q-1)} := \{v \in \mathbb{R}^q : v_i \ge 0, \sum_{i=1}^q v_i = 1\}.$ Isoperimetric Profile: $I^{(q-1)} : \Delta^{(q-1)} \to \mathbb{R}_+,$

 $I^{(q-1)}(\mathbf{v}) \coloneqq \inf \{A(\Omega); V(\Omega) = \mathbf{v}\}.$

Model Isoperimetric Profile: $I_m^{(q-1)}$: int $\Delta^{(q-1)} \to \mathbb{R}_+$, (denoting by Ω^m the conjectured model standard *q*-cluster),

$$I_m^{(q-1)}(v) = A(\Omega^m) \text{ s.t. } V(\Omega^m) = v \in \operatorname{int} \Delta^{(q-1)};$$

extend continuously to $\partial \Delta^{(q-1)}$.

Obviously $I^{(q-1)} \leq I_m^{(q-1)}$; want to show: $I^{(q-1)} \geq I_m^{(q-1)}$ on $\Delta^{(q-1)}$. Inducting on q, can assume $I^{(q-1)} = I_m^{(q-1)}$ on the boundary $\partial \Delta^{(q-1)}$.

The Isoperimetric Profile for Multi-Bubbles

 $(M^n, g, \mu) \in \{\mathbb{G}^n, \mathbb{S}^n\}$. Need finite volume, so cannot work on \mathbb{R}^n . $V(\Omega) = (V(\Omega_1), \dots, V(\Omega_q)) \in \Delta^{(q-1)} := \{v \in \mathbb{R}^q ; v_i \ge 0, \sum_{i=1}^q v_i = 1\}.$ Isoperimetric Profile: $I^{(q-1)} : \Delta^{(q-1)} \to \mathbb{R}_+,$

 $I^{(q-1)}(\mathbf{v}) \coloneqq \inf \{A(\Omega); V(\Omega) = \mathbf{v}\}.$

Model Isoperimetric Profile: $I_m^{(q-1)}$: int $\Delta^{(q-1)} \rightarrow \mathbb{R}_+$, (denoting by Ω^m the conjectured model standard *q*-cluster),

$$I_m^{(q-1)}(\mathbf{v}) = A(\Omega^m) \text{ s.t. } V(\Omega^m) = \mathbf{v} \in \operatorname{int} \Delta^{(q-1)};$$

extend continuously to $\partial \Delta^{(q-1)}$.

Obviously $I^{(q-1)} \leq I_m^{(q-1)}$; want to show: $I^{(q-1)} \geq I_m^{(q-1)}$ on $\Delta^{(q-1)}$. Inducting on q, can assume $I^{(q-1)} = I_m^{(q-1)}$ on the boundary $\partial \Delta^{(q-1)}$.

The Isoperimetric Profile for Multi-Bubbles

 $(M^n, g, \mu) \in \{\mathbb{G}^n, \mathbb{S}^n\}$. Need finite volume, so cannot work on \mathbb{R}^n . $V(\Omega) = (V(\Omega_1), \dots, V(\Omega_q)) \in \Delta^{(q-1)} := \{v \in \mathbb{R}^q ; v_i \ge 0, \sum_{i=1}^q v_i = 1\}$. Isoperimetric Profile: $I^{(q-1)} : \Delta^{(q-1)} \to \mathbb{R}_+$,

$$I^{(q-1)}(\mathbf{v}) \coloneqq \inf \{A(\Omega); V(\Omega) = \mathbf{v}\}.$$

Model Isoperimetric Profile: $I_m^{(q-1)}$: int $\Delta^{(q-1)} \to \mathbb{R}_+$, (denoting by Ω^m the conjectured model standard *q*-cluster),

$$I_m^{(q-1)}(\mathbf{v}) = A(\Omega^m) \text{ s.t. } V(\Omega^m) = \mathbf{v} \in \operatorname{int} \Delta^{(q-1)};$$

extend continuously to $\partial \Delta^{(q-1)}$.

Obviously $I_m^{(q-1)} \leq I_m^{(q-1)}$; want to show: $I_m^{(q-1)} \geq I_m^{(q-1)}$ on $\Delta^{(q-1)}$. Inducting on q, can assume $I_m^{(q-1)} = I_m^{(q-1)}$ on the boundary $\partial \Delta^{(q-1)}$.

On \mathbb{G}^n , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$

Similar (but more complicated) PDE holds on \mathbb{S}^n .

If we could show that the following PDI holds (in the viscosity sense):

 $abla^2 \mathcal{I} < 0 \ , \ tr((abla^2 \mathcal{I})^{-1}) \le 2\mathcal{I} \ on \ int \Delta^{(q-1)},$

since $\mathcal{I} = \mathcal{I}_m$ on $\partial \Delta^{(q-1)}$ by induction, $\mathcal{I} \ge \mathcal{I}_m$ by maximum-principle.

This is our global information!! PDI takes into account entire $\Delta^{(q-1)}$. *Key idea*: instead of using global information in space parameters \mathbb{G}^n , PDI propagates global information in volume parameters $\Delta^{(q-1)}$

On \mathbb{G}^n , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$

Similar (but more complicated) PDE holds on \mathbb{S}^n .

If we could show that the following PDI holds (in the viscosity sense):

 $\nabla^2 \mathcal{I} < 0$, tr $((-\nabla^2 \mathcal{I})^{-1}) \le 2\mathcal{I}$ on int $\Delta^{(q-1)}$,

since $\mathcal{I} = \mathcal{I}_m$ on $\partial \Delta^{(q-1)}$ by induction, $\mathcal{I} \ge \mathcal{I}_m$ by maximum-principle.

This is our global information!! PDI takes into account entire $\Delta^{(q-1)}$. *Key idea*: instead of using global information in space parameters \mathbb{G}^n , PDI propagates global information in volume parameters $\Delta^{(q-1)}$

On \mathbb{G}^n , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$

Similar (but more complicated) PDE holds on \mathbb{S}^n .

If we could show that the following PDI holds (in the viscosity sense):

 $\nabla^2 \mathcal{I} < 0 \ , \ tr((-\nabla^2 \mathcal{I})^{-1}) \le 2\mathcal{I} \ on \ int \Delta^{(q-1)},$

since $\mathcal{I} = \mathcal{I}_m$ on $\partial \Delta^{(q-1)}$ by induction, $\mathcal{I} \ge \mathcal{I}_m$ by maximum-principle.

This is our global information!! PDI takes into account entire $\Delta^{(q-1)}$. *Key idea*: instead of using global information in space parameters \mathbb{G}^n , PDI propagates global information in volume parameters $\Delta^{(q-1)}$

On \mathbb{G}^n , one can show that a fully non-linear elliptic PDE holds:

 $\operatorname{tr}((-\nabla^2 \mathcal{I}_m)^{-1}) = 2\mathcal{I}_m \text{ on } \Delta^{(q-1)}.$

Similar (but more complicated) PDE holds on \mathbb{S}^n .

If we could show that the following PDI holds (in the viscosity sense):

 $\nabla^2 \mathcal{I} < 0 \ , \ tr((-\nabla^2 \mathcal{I})^{-1}) \le 2 \mathcal{I} \ on \ int \Delta^{(q-1)},$

since $\mathcal{I} = \mathcal{I}_m$ on $\partial \Delta^{(q-1)}$ by induction, $\mathcal{I} \ge \mathcal{I}_m$ by maximum-principle.

This is our global information!! PDI takes into account entire $\Delta^{(q-1)}$. *Key idea*: instead of using global information in space parameters \mathbb{G}^n , PDI propagates global information in volume parameters $\Delta^{(q-1)}$

Recall $\frac{d}{dt}F_t = X \circ F_t$ diffeo, $\Omega_t = F_t(\Omega)$, $\mathcal{I}(V(\Omega_t)) \leq A(\Omega_t)$. Hence:

This generalizes stability: $\delta_X^1 V = 0 \implies 0 \le Q(X)$. The goal: choose X well to get a sharp PDI for \mathcal{I} .

Q(X) index-form, depends only on $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$ on $\Sigma^1 = \sqcup_{i < j} \Sigma_{ij}$.

$$\boldsymbol{Q}(\boldsymbol{f}) = -\langle L_{Jac}\boldsymbol{f}, \boldsymbol{f} \rangle_{\Sigma^{1}} + \int_{\partial^{*}\Sigma^{1}} \mathrm{bdry}(\boldsymbol{f}, \mathrm{II}).$$

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^{2})f.$$

 $\begin{aligned} & \operatorname{Recall} \frac{d}{dt} F_t = X \circ F_t \text{ diffeo, } \Omega_t = F_t(\Omega), \, \mathcal{I}(V(\Omega_t)) \leq A(\Omega_t). \text{ Hence:} \\ & \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 A = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ & \left(\delta_X^1 V \right)^T \, \nabla^2 \mathcal{I} \, \delta_X^1 V \leq \delta_X^2 A - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 A - \left\langle \lambda, \delta_X^2 V \right\rangle =: \, \boldsymbol{Q}(\boldsymbol{X}). \end{aligned}$

This generalizes stability: $\delta_X^1 V = 0 \Rightarrow 0 \le Q(X)$. <u>The goal</u>: choose X well to get a sharp PDI for \mathcal{I} . Q(X) index-form, depends only on $f_{ij} = \langle X, \mathbf{n}_{ij} \rangle$ on $\Sigma^1 = \sqcup_{i < j} \Sigma_{ij}$ $Q(f) = -\langle L_{Jac}f, f \rangle_{\Sigma^1} + \int_{\partial^* \Sigma^1} bdry(f, II)$.

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^{2})f.$$

 $\begin{aligned} & \operatorname{Recall} \frac{d}{dt} F_t = X \circ F_t \text{ diffeo, } \Omega_t = F_t(\Omega), \, \mathcal{I}(V(\Omega_t)) \leq A(\Omega_t). \text{ Hence:} \\ & \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 A = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ & \left(\delta_X^1 V \right)^T \, \nabla^2 \mathcal{I} \, \delta_X^1 V \leq \delta_X^2 A - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 A - \left\langle \lambda, \delta_X^2 V \right\rangle =: Q(X). \end{aligned}$

This generalizes stability: $\delta_X^1 V = 0 \implies 0 \le Q(X)$. The goal: choose X well to get a sharp PDI for \mathcal{I} .

Q(X) index-form, depends only on $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$ on $\Sigma^1 = \sqcup_{i < j} \Sigma_{ij}$.

$$Q(f) = - \langle L_{Jac} f, f \rangle_{\Sigma^{1}} + \int_{\partial^{*} \Sigma^{1}} bdry(f, II).$$

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^{2})f.$$

 $\begin{aligned} & \operatorname{Recall} \frac{d}{dt} F_t = X \circ F_t \text{ diffeo, } \Omega_t = F_t(\Omega), \, \mathcal{I}(V(\Omega_t)) \leq A(\Omega_t). \text{ Hence:} \\ & \left\langle \nabla \mathcal{I}, \delta_X^1 V \right\rangle = \delta_X^1 A = \left\langle \lambda, \delta_X^1 V \right\rangle \Rightarrow \nabla \mathcal{I} = \lambda. \\ & \left(\delta_X^1 V \right)^T \, \nabla^2 \mathcal{I} \, \delta_X^1 V \leq \delta_X^2 A - \left\langle \nabla \mathcal{I}, \delta_X^2 V \right\rangle = \delta_X^2 A - \left\langle \lambda, \delta_X^2 V \right\rangle =: Q(X). \end{aligned}$

This generalizes stability: $\delta_X^1 V = 0 \implies 0 \le Q(X)$. The goal: choose X well to get a sharp PDI for \mathcal{I} .

Q(X) index-form, depends only on $f_{ij} = \langle X, \mathfrak{n}_{ij} \rangle$ on $\Sigma^1 = \sqcup_{i < j} \Sigma_{ij}$.

$$\boldsymbol{Q(f)} = - \langle \boldsymbol{L_{Jac}} f, f \rangle_{\Sigma^1} + \int_{\partial^* \Sigma^1} bdry(f, II).$$

$$-\delta_{f\mathfrak{n}}^{1}H_{\Sigma,\mu} = L_{Jac}f = \Delta_{\Sigma,\mu}f + (\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) + \|\Pi\|^{2})f.$$

$$(\delta_X^1 V)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \leq - \langle L_{Jac} X^n, X^n \rangle_{\Sigma^1} + \int_{\partial^* \Sigma^1} bdry(X^n, II), \\ L_{Jac} X^n = \left(\Delta_{\Sigma, \mu} + \operatorname{Ric}_{g, \mu}(n, n) + \|II\|^2 \right) X^n.$$

Here $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 1$ on \mathbb{G}^n and $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = (n-1)$ on \mathbb{S}^n . And we already know that || = 0 on \mathbb{G}^n and $|| = \kappa_{ij}|d$ on \mathbb{S}^n .

On **G**^{*n*}: L_{Jac} 1 = 1, so if $X^{n_{ij}} = a_i - a_j$ then $L_{Jac}X^{n_{ij}} = a_i - a_j$. As $n_{ij} + n_{jk} + n_{ki} = 0$ on $\partial^* \Sigma^1$, possible to (approximately) construct *X*. This yields sharp PDI, and we conclude the proof that $\mathcal{I} \ge \mathcal{I}_m$.

On \mathbb{S}^n : fields yielding sharp PDI exist (non-trivial). But we don't have explicit formula, unless cluster is (pseudo)-conformally-flat ({ c_i, κ_i }). E.g.: • when cluster is full-dimensional, i.e. affine-rank{ c_i } $_{i=1}^q = q-1$;

• if all bubbles have a mutual common point. In those cases, we obtain the sharp PDI for \mathcal{I} .

$$(\delta_X^1 V)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \leq - \langle L_{Jac} X^n, X^n \rangle_{\Sigma^1} + \int_{\partial^* \Sigma^1} bdry(X^n, II), \\ L_{Jac} X^n = \left(\Delta_{\Sigma, \mu} + \operatorname{Ric}_{g, \mu}(n, n) + \|II\|^2 \right) X^n.$$

Here $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 1$ on \mathbb{G}^n and $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = (n-1)$ on \mathbb{S}^n . And we already know that || = 0 on \mathbb{G}^n and $|| = \kappa_{ij}|d$ on \mathbb{S}^n .

On \mathbb{G}^n : $L_{Jac} 1 = 1$, so if $X^{\mathfrak{n}_{ij}} = a_i - a_j$ then $L_{Jac} X^{\mathfrak{n}_{ij}} = a_i - a_j$. As $\mathfrak{n}_{ij} + \mathfrak{n}_{jk} + \mathfrak{n}_{ki} = 0$ on $\partial^* \Sigma^1$, possible to (approximately) construct *X*. This yields sharp PDI, and we conclude the proof that $\mathcal{I} \ge \mathcal{I}_m$.

On \mathbb{S}^n : fields yielding sharp PDI exist (non-trivial). But we don't have explicit formula, unless cluster is (pseudo)-conformally-flat ({ c_i, κ_i }). E.g.: • when cluster is full-dimensional, i.e. affine-rank{ c_i } $_{i=1}^q = q - 1$;

• if all bubbles have a mutual common point. In those cases, we obtain the sharp PDI for \mathcal{I} .

$$(\delta_X^1 V)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \leq - \langle L_{Jac} X^n, X^n \rangle_{\Sigma^1} + \int_{\partial^* \Sigma^1} bdry(X^n, II), \\ L_{Jac} X^n = \left(\Delta_{\Sigma, \mu} + \operatorname{Ric}_{g, \mu}(n, n) + \|II\|^2 \right) X^n.$$

Here $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 1$ on \mathbb{G}^n and $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = (n-1)$ on \mathbb{S}^n . And we already know that II = 0 on \mathbb{G}^n and $II = \kappa_{ij} Id$ on \mathbb{S}^n .

On \mathbb{G}^n : $L_{Jac} 1 = 1$, so if $X^{\mathfrak{n}_{ij}} = a_i - a_j$ then $L_{Jac} X^{\mathfrak{n}_{ij}} = a_i - a_j$. As $\mathfrak{n}_{ij} + \mathfrak{n}_{jk} + \mathfrak{n}_{ki} = 0$ on $\partial^* \Sigma^1$, possible to (approximately) construct *X*. This yields sharp PDI, and we conclude the proof that $\mathcal{I} \ge \mathcal{I}_m$.

On \mathbb{S}^n : fields yielding sharp PDI exist (non-trivial). But we don't have explicit formula, unless cluster is (pseudo)-conformally-flat ({ \mathfrak{c}_i, κ_i }). E.g.: • when cluster is full-dimensional, i.e. affine-rank{ \mathfrak{c}_i } $_{i=1}^q = q - 1$;

• if all bubbles have a mutual common point. In those cases, we obtain the sharp PDI for \mathcal{I} .

$$(\delta_X^1 V)^T \nabla^2 \mathcal{I} \ \delta_X^1 V \leq - \langle L_{Jac} X^n, X^n \rangle_{\Sigma^1} + \int_{\partial^* \Sigma^1} bdry(X^n, II), \\ L_{Jac} X^n = \left(\Delta_{\Sigma, \mu} + \operatorname{Ric}_{g, \mu}(n, n) + \|II\|^2 \right) X^n.$$

Here $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = 1$ on \mathbb{G}^n and $\operatorname{Ric}_{g,\mu}(\mathfrak{n},\mathfrak{n}) = (n-1)$ on \mathbb{S}^n . And we already know that |I| = 0 on \mathbb{G}^n and $|I| = \kappa_{ij}|I|$ on \mathbb{S}^n .

On \mathbb{G}^n : $L_{Jac} 1 = 1$, so if $X^{\mathfrak{n}_{ij}} = a_i - a_j$ then $L_{Jac} X^{\mathfrak{n}_{ij}} = a_i - a_j$. As $\mathfrak{n}_{ij} + \mathfrak{n}_{jk} + \mathfrak{n}_{ki} = 0$ on $\partial^* \Sigma^1$, possible to (approximately) construct *X*. This yields sharp PDI, and we conclude the proof that $\mathcal{I} \ge \mathcal{I}_m$.

On S^n : fields yielding sharp PDI exist (non-trivial). But we don't have explicit formula, unless cluster is (pseudo)-conformally-flat ({ c_i, κ_i }). E.g.: • when cluster is full-dimenional, i.e. affine-rank{ c_i }^q = q - 1;

 \bullet if all bubbles have a mutual common point. In those cases, we obtain the sharp PDI for $\mathcal{I}.$

Thank you for your attention!

Equal Volume Multi-Bubble on \mathbb{S}^n (M.–Neeman '18)

On \mathbb{S}^n , for any $q \le n+2$, if $V(\Omega_1) = \ldots = V(\Omega_q) = \frac{1}{q}$ then the unique minimizer is a standard bubble.

Proof: immediate consequence from \mathbb{G}^n , since spherical and Gaussian volume/area coincide for centered cones on $\mathbb{S}^n \subset \mathbb{G}^{n+1}$, and the unique equal volumes minimizer on \mathbb{G}^{n+1} for $q \leq (n+1) + 1$ is the centered simplicial cluster (whose cells are centered cones).

Equal Volume Triple-Bubble on \mathbb{R}^3 (Lawlor '22)

On \mathbb{R}^3 , if $V(\Omega_1) = V(\Omega_2) = V(\Omega_3)$, then the unique (?) minimizer is a standard triple-bubble.

Jump back....