

Isoperimetric Multi-Bubble Problems - Old and New

Thursday, 23 June 2022 17:00 (50 minutes)

The classical isoperimetric inequality in Euclidean space \mathbb{R}^{n} states that among all sets ("bubbles") of prescribed volume, the Euclidean ball minimizes surface area. One may similarly consider isoperimetric problems for more general metric-measure spaces, such as on the sphere \mathbb{S}^{n} and on Gauss space \mathbb{G}^{n}. Furthermore, one may consider the "multi-bubble" partitioning problem, where one partitions the space into $q \geq 2$ (possibly disconnected) bubbles, so that their total common surface-area is minimal. The classical case, referred to as the single-bubble isoperimetric problem, corresponds to $q=2$; the case $q=3$ is called the double-bubble problem, and so on.

In 2000, Hutchings, Morgan, Ritoré and Ros resolved the Double-Bubble conjecture in Euclidean space \mathbb{R}^{3} (and this was subsequently resolved in \mathbb{R}^{n} as well) - the optimal partition into two bubbles of prescribed finite volumes (and an exterior unbounded third bubble) which minimizes the total surface-area is given by three spherical caps, meeting at 120°-degree angles. A more general conjecture of J. \sim Sullivan from the 1990's asserts that when $q \leq n+2$, the optimal multi-bubble partition of \mathbb{R}^{n} (as well as \mathbb{S}^{n}) is obtained by taking the Voronoi cells of q equidistant points in \mathbb{S}^{n} and applying appropriate stereographic projections to \mathbb{R}^{n} (and backwards).

In 2018, together with Joe Neeman, we resolved the analogous multi-bubble conjecture on the optimal partition of Gauss space \mathbb{G}^{n} into $q \leq n+1$ bubbles - the unique optimal partition is given by the Voronoi cells of (appropriately translated) q equidistant points. In this talk, we will describe our approach in that work, as well as recent progress on the multi-bubble problem on \mathbb{R}^{n} and \mathbb{S}^{n}. In particular, we show that minimizing partitions are always spherical when $q \leq n+1$, and we resolve the latter conjectures when in addition $q \leq 6$ (e.g. the triple-bubble conjecture in \mathbb{R}^{3} and \mathbb{S}^{3}, and the quadruple-bubble conjecture in \mathbb{R}^{4} and \mathbb{S}^{4}).

Based on joint work (in progress) with Joe Neeman

Presenter: MILMAN, Emanuel (Technion I.I.T. Haifa)

