Isoperimetric Problems

Contribution ID: 107

Type: not specified

Isoperimetric Multi-Bubble Problems - Old and New

Thursday, 23 June 2022 17:00 (50 minutes)

The classical isoperimetric inequality in Euclidean space \mathbb{R}^n states that among all sets ("bubbles") of prescribed volume, the Euclidean ball minimizes surface area. One may similarly consider isoperimetric problems for more general metric-measure spaces, such as on the sphere \mathbb{S}^n and on Gauss space \mathbb{G}^n . Furthermore, one may consider the "multi-bubble" partitioning problem, where one partitions the space into $q \ge 2$ (possibly disconnected) bubbles, so that their total common surface-area is minimal. The classical case, referred to as the single-bubble isoperimetric problem, corresponds to q = 2; the case q = 3 is called the double-bubble problem, and so on.

In 2000, Hutchings, Morgan, Ritoré and Ros resolved the Double-Bubble conjecture in Euclidean space \mathbb{R}^3 (and this was subsequently resolved in \mathbb{R}^n as well) – the optimal partition into two bubbles of prescribed finite volumes (and an exterior unbounded third bubble) which minimizes the total surface-area is given by three spherical caps, meeting at 120°-degree angles. A more general conjecture of J.-Sullivan from the 1990's asserts that when $q \leq n + 2$, the optimal multi-bubble partition of \mathbb{R}^n (as well as \mathbb{S}^n) is obtained by taking the Voronoi cells of q equidistant points in \mathbb{S}^n and applying appropriate stereographic projections to \mathbb{R}^n (and backwards).

In 2018, together with Joe Neeman, we resolved the analogous multi-bubble conjecture on the optimal partition of Gauss space \mathbb{G}^n into $q \leq n+1$ bubbles – the unique optimal partition is given by the Voronoi cells of (appropriately translated) q equidistant points. In this talk, we will describe our approach in that work, as well as recent progress on the multi-bubble problem on \mathbb{R}^n and \mathbb{S}^n . In particular, we show that minimizing partitions are always spherical when $q \leq n+1$, and we resolve the latter conjectures when in addition $q \leq 6$ (e.g. the triple-bubble conjecture in \mathbb{R}^3 and \mathbb{S}^3 , and the quadruple-bubble conjecture in \mathbb{R}^4 and \mathbb{S}^4).

Based on joint work (in progress) with Joe Neeman

Presenter: MILMAN, Emanuel (Technion I.I.T. Haifa)