Estimates on the Cheeger constant

Giorgio Saracco

Università di Trento giorgio.saracco@unitn.it

June, 2022 Isoperimetric problems

Pisa

The workshop aims at bringing together experts and young researchers working in the field of anisotropic isoperimetric problems, with a particular focus on the following subjects:

(A) Isoperimetric problems with density;

(B) Crystals and periodic structures;

(C) Gamow liquid drop model;

(D) Isoperimetric problems in geometric structures;

(E) Spectral problems.

sites.google.com/view/isoperimetric-indam-2022

The Cheeger problem

Let $\Omega \subset \mathbb{R}^N$. The *Cheeger constant* of Ω is defined as

$$h(\Omega) := \inf \left\{ \frac{P(E)}{|E|}, E \subset \Omega, |E| > 0 \right\},\$$

where P(E) denotes the distributional perimeter of the Borel set E, and |E| the standard N-dimensional Lebesgue measure.

Ih this talk, we shall see some estimates on its value.

The Cheeger problem

Let $\Omega \subset \mathbb{R}^N$. The *Cheeger constant* of Ω is defined as

$$h(\Omega) := \inf \left\{ \frac{P(E)}{|E|}, E \subset \Omega, |E| > 0 \right\},\$$

where P(E) denotes the distributional perimeter of the Borel set E, and |E| the standard N-dimensional Lebesgue measure.

Ih this talk, we shall see some estimates on its value.

Spectral applications:

(i) lower bounds to the first eigenvalue of the *p*-Laplacian

$$\left(\frac{h(\Omega)}{p}\right)^p \le \lambda_p(\Omega);$$

$$h(\Omega) \le p\left(\frac{|\Omega|}{\|w_p\|_1}\right)^{\frac{p-1}{p}}.$$

Spectral applications:

(i) lower bounds to the first eigenvalue of the *p*-Laplacian

$$\left(\frac{h(\Omega)}{p}\right)^p \le \lambda_p(\Omega);$$

$$h(\Omega) \le p \left(\frac{|\Omega|}{\|w_p\|_1}\right)^{\frac{p-1}{p}}.$$

Spectral applications:

(i) lower bounds to the first eigenvalue of the *p*-Laplacian

$$\left(\frac{h(\Omega)}{p}\right)^p \le \lambda_p(\Omega);$$

$$h(\Omega) \le p \left(\frac{|\Omega|}{\|w_p\|_1}\right)^{\frac{p-1}{p}}.$$

Spectral applications:

(i) lower bounds to the first eigenvalue of the *p*-Laplacian

$$\left(\frac{h(\Omega)}{p}\right)^p \le \lambda_p(\Omega);$$

$$h(\Omega) \le p\left(\frac{|\Omega|}{\|w_p\|_1}\right)^{\frac{p-1}{p}}.$$

Other applications:

(iv) it acts as threshold for the existence of non trivial minimizers of

 $P(E) - \kappa |E|,$ among $E \subset \Omega$,

since one needs $\kappa \ge h(\Omega)$;

(v) it acts as threshold for the existence of solutions of

div
$$\frac{\nabla u(x)}{\sqrt{1+|\nabla u(x)|^2}} = H, \qquad x \in \Omega,$$

since one needs $H \leq h(\Omega)$;

(vi) the Cheeger constant of the square even appeared in an elementary proof of the Prime Number Theorem..

Other applications:

(iv) it acts as threshold for the existence of non trivial minimizers of

 $P(E)-\kappa |E|,\qquad \text{among }E\subset \Omega,$

since one needs $\kappa \geq h(\Omega)$;

(v) it acts as threshold for the existence of solutions of

div
$$\frac{\nabla u(x)}{\sqrt{1+|\nabla u(x)|^2}} = H, \qquad x \in \Omega,$$

since one needs $H \leq h(\Omega)$;

(vi) the Cheeger constant of the square even appeared in an elementary proof of the Prime Number Theorem..

Other applications:

(iv) it acts as threshold for the existence of non trivial minimizers of

 $P(E) - \kappa |E|, \qquad \text{among } E \subset \Omega,$

since one needs $\kappa \geq h(\Omega)$;

(v) it acts as threshold for the existence of solutions of

div
$$\frac{\nabla u(x)}{\sqrt{1+|\nabla u(x)|^2}} = H, \qquad x \in \Omega,$$

since one needs $H \leq h(\Omega)$;

(vi) the Cheeger constant of the square even appeared in an elementary proof of the Prime Number Theorem..

Other applications:

(iv) it acts as threshold for the existence of non trivial minimizers of

 $P(E) - \kappa |E|, \qquad \text{among } E \subset \Omega,$

since one needs $\kappa \geq h(\Omega)$;

(v) it acts as threshold for the existence of solutions of

div
$$\frac{\nabla u(x)}{\sqrt{1+|\nabla u(x)|^2}} = H, \qquad x \in \Omega,$$

since one needs $H \leq h(\Omega)$;

(vi) the Cheeger constant of the square even appeared in an elementary proof of the Prime Number Theorem..

Other applications:

(iv) it acts as threshold for the existence of non trivial minimizers of

 $P(E) - \kappa |E|, \qquad \text{among } E \subset \Omega,$

since one needs $\kappa \geq h(\Omega)$;

(v) it acts as threshold for the existence of solutions of

div
$$\frac{\nabla u(x)}{\sqrt{1+|\nabla u(x)|^2}} = H, \qquad x \in \Omega,$$

since one needs $H \leq h(\Omega)$;

- (vi) the Cheeger constant of the square even appeared in an elementary proof of the Prime Number Theorem..
- (vii) ..and many more!

Robustness of the relations

Most of these relations hold in very general spaces. Given a metric measure space $(X, \mathcal{B}, \mathfrak{m})$, and $P(\cdot)$ the perimeter induced by the metric, one can define for $\Omega \subset X$

$$h(\Omega) := \inf \left\{ \frac{P(E)}{\mathfrak{m}(E)}, E \subset \Omega, \, \mathfrak{m}(\Omega) > 0 \right\}.$$

If $(X, \mathcal{B}, \mathfrak{m})$ is "good" one retains the spectral relations we mentioned.

An extension to abstract measure spaces endowed with a proper perimeter functional is soon due jointly w/Franceschi, Pinamonti & Stefani.

Robustness of the relations

Most of these relations hold in very general spaces. Given a metric measure space $(X, \mathcal{B}, \mathfrak{m})$, and $P(\cdot)$ the perimeter induced by the metric, one can define for $\Omega \subset X$

$$h(\Omega) := \inf \left\{ \frac{P(E)}{\mathfrak{m}(E)}, E \subset \Omega, \, \mathfrak{m}(\Omega) > 0 \right\}.$$

If $(X, \mathcal{B}, \mathfrak{m})$ is "good" one retains the spectral relations we mentioned.

An extension to abstract measure spaces endowed with a proper perimeter functional is soon due jointly w/Franceschi, Pinamonti & Stefani.

Today we shall zero-in on the easiest possible framework, that of the Euclidean *N*-dimensional space, for an open, and bounded set Ω .

A brief overview of our tour:

- 1) we start in dimension N = 2;
- 2) we pass to estimates for cylindrical sets;
- 3) we conclude with quantitive estimates.

Given $\Omega \subset \mathbb{R}^2$ its "inner parallel set" at distance t is

$$\Omega^t := \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) \ge t \}.$$

Let Ω be convex [Kawohl & Lachand-Robert (2006)] or a strip [Leonardi & Pratelli (2016)]. Then, Ω has a unique Cheeger set E given by

$$E = \bigcup_{x \in \Omega^r} B_r(x).$$

where $r = 1/h(\Omega)$. Moreover, the inner Cheeger formula holds: r is the unique positive solution of

Given $\Omega \subset \mathbb{R}^2$ its "inner parallel set" at distance t is

$$\Omega^t := \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) \ge t \}.$$

Let Ω be convex [Kawohl & Lachand-Robert (2006)] or a strip [Leonardi & Pratelli (2016)]. Then, Ω has a unique Cheeger set E given by

$$E = \bigcup_{x \in \Omega^r} B_r(x),$$

where $r = 1/h(\Omega)$. Moreover, the inner Cheeger formula holds: r is the unique positive solution of

Given $\Omega \subset \mathbb{R}^2$ its "inner parallel set" at distance t is

$$\Omega^t := \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) \ge t \}.$$

Let Ω be convex [Kawohl & Lachand-Robert (2006)] or a strip [Leonardi & Pratelli (2016)]. Then, Ω has a unique Cheeger set E given by

$$E = \bigcup_{x \in \Omega^r} B_r(x),$$

where $r = 1/h(\Omega)$. Moreover, the inner Cheeger formula holds: r is the unique positive solution of

Given $\Omega \subset \mathbb{R}^2$ its "inner parallel set" at distance t is

$$\Omega^t := \{ x \in \Omega : \operatorname{dist}(x, \partial \Omega) \ge t \}.$$

Let Ω be convex [Kawohl & Lachand-Robert (2006)] or a strip [Leonardi & Pratelli (2016)]. Then, Ω has a unique Cheeger set E given by

$$E = \bigcup_{x \in \Omega^r} B_r(x).$$

where $r = 1/h(\Omega)$. Moreover, the inner Cheeger formula holds: r is the unique positive solution of

N=2: sets w/no necks

Definition

A set Ω has no "necks" of radius r if the following holds. Given two balls of radius r, $B_r(x_0) \in B_r(x_1)$ contained in Ω , there exists a continuous curve $\gamma : [0, 1] \to \Omega$, such that

 $\gamma(0)=x_0,\qquad \gamma(1)=x_1,\qquad \text{and}\qquad B_r(\gamma(t))\subset\Omega\,,\qquad \forall t\in[0,1].$

Theorem (Leonardi, Neumayer, S. (2017) & Leonardi, S. (2020)) Let Ω be a Jordan domain such that $|\partial \Omega| = 0$, and let r be the unique positive solution of $\pi t^2 = |\Omega^t|$. If Ω has no necks of radius r, then

$$h(\Omega) = rac{1}{r},$$
 and $E = \bigcup_{x \in \Omega^r} B_r(x),$

is the maximal Cheeger set of Ω .

An unfortunate example

The theorem in principle is great. It gives a formula to compute the constant and a recipe to find a Cheeger set. At times though...

An unfortunate example

The theorem in principle is great. It gives a formula to compute the constant and a recipe to find a Cheeger set. At times though..

A Koch snowflake has no necks of any size, thus the inner Cheeger formula holds. Yet, this is not algebraically solvable.

Approximating $h(\Omega)$

We have an error estimate of $h(\Omega)$ w.r.t. interior approximations.

Proposition (Leonardi, Neumayer, S. (2017))

Let ω, Ω be open sets in \mathbb{R}^2 such that $\omega \subset \Omega$. Let $r = h^{-1}(\omega)$ and $R = h^{-1}(\Omega)$ and assume the inner Cheeger formula holds for both ω, Ω , i.e., $|\omega^r| = \pi r^2$ and $|\Omega^R| = \pi R^2$. Then,

$$0 \le R - r \le \frac{|\Omega^r \setminus \omega^r|}{2\pi r} \,.$$

Approximating $h(\Omega)$

We have an error estimate of $h(\Omega)$ w.r.t. interior approximations.

Proposition (Leonardi, Neumayer, S. (2017))

Let ω, Ω be open sets in \mathbb{R}^2 such that $\omega \subset \Omega$. Let $r = h^{-1}(\omega)$ and $R = h^{-1}(\Omega)$ and assume the inner Cheeger formula holds for both ω, Ω , i.e., $|\omega^r| = \pi r^2$ and $|\Omega^R| = \pi R^2$. Then,

$$0 \le R - r \le \frac{|\Omega^r \setminus \omega^r|}{2\pi r} \,.$$

Computing r_n for the approximating sets is easy. The error is

$$0 \le r_{\infty} - r_n \le \frac{2^{n-3}}{25 \cdot 3^{3n-5}}.$$

Fix the cylinder $\Omega \subset \mathbb{R}^{N+1}$ w/cross section $\omega \subset \mathbb{R}^N$ & height L > 0

 $\Omega = \omega \times [0, L].$

Fix the cylinder $\Omega \subset \mathbb{R}^{N+1}$ w/cross section $\omega \subset \mathbb{R}^N$ & height L > 0

 $\Omega = \omega \times [0, L].$

If N = 1, cylinders are rectangles, which we got covered. Similarly to rectangles, one can consider "strips" [Krejčiřík & Pratelli (2011)],

Fix the cylinder $\Omega \subset \mathbb{R}^{N+1}$ w/cross section $\omega \subset \mathbb{R}^N$ & height L > 0

 $\Omega = \omega \times [0, L].$

If N = 1, cylinders are rectangles, which we got covered. Similarly to rectangles, one can consider "strips" [Krejčiřík & Pratelli (2011)],

and have (here ω is a segment $[0, \ell]$)

$$h(\omega) + \frac{1}{400} \frac{1}{L} \le h(\Omega) \le h(\omega) + \frac{2}{L}$$

A second order improvement came with [Leonardi & Pratelli (2016)].

Similar estimates hold general N-dimensional cross section $\omega \subset \mathbb{R}^N$.

Theorem (Pratelli, S. (forthcoming)) Let $\Omega = \omega \times [0, L]$ w/cross section $\omega \subset \mathbb{R}^N$ & height L > 0. There exists a constant $c = c(\omega) > 0$, such that

$$h(\omega) + \frac{c}{L} \le h(\Omega) \le h(\omega) + \frac{2}{L}.$$

The constant c only depends on the volume of $\omega\mbox{'s "smallest"}$ Cheeger set.

An application

Let p > 1, and let $F_{p,1}$ be the shape functional

$$F_{p,1}[E] := \frac{\lambda_p(E)}{h^p(E)} \,.$$

defined over \mathcal{K}^N , the class of convex subsets of \mathbb{R}^N .

Theorem (Pratelli, S. (forthcoming))

There exist minima of $F_{p,1}$ in \mathcal{K}^N , in any dimension N.

This positively solves a conjecture by [Parini (2017)] (for p = 2) and by [Briani, Buttazzo, Prinari (2021)], exploiting the estimates for cylindrical sets and tools proved in [Ftouhi (2021)].

Quantitative estimates

Let us recall the isoperimetric quantitative inequalities. Given any set Ω , we let B_{Ω} be the ball with its same volume. We have

$$\begin{array}{ll} \text{(i)} & \frac{P(\Omega) - P(B_{\Omega})}{P(B_{\Omega})} \geq 0, \\ \text{(ii)} & \frac{P(\Omega) - P(B_{\Omega})}{P(B_{\Omega})} \geq c\alpha^{2}(\Omega), \\ \text{(ii)} & \frac{P(\Omega) - P(B_{\Omega})}{P(B_{\Omega})} \geq c\alpha^{2}(\Omega), \\ \end{array}$$

where $\alpha(\Omega)$, $\zeta(\Omega)$ and $\beta(\Omega)$ are asymmetry indexes, measuring the distance in some suitable sense of Ω from an optimal set.

Can one obtain the analog with $h(\cdot)$ in place of $P(\cdot)$?

Quantitative estimates

The analogue of (i) is an immediate consequence of (i) itself, while the analogue of (ii) has been proved in [Figalli, Maggi, Pratelli (2009)].

Theorem (Julin, S. (2021))

Given $\Omega \subset \mathbb{R}^N$ open and bounded. There exists c = c(N) such that

$$\frac{h(\Omega) - h(B_{\Omega})}{h(B_{\Omega})} \ge c\zeta(\Omega) \,.$$

It does not exist c = c(N) s.t. the inequality with β^2 in place of ζ holds.

Quantitative Gaussian estimates

We have also proved similar estimates in the Gaussian space, where the volume and the perimeter are weighted by the Gaussian measure γ .

Theorem (Julin, S. (2021))

Given $\Omega \subset \mathbb{R}^N$ open and bounded. There exist $c_1 = c_1(\gamma(\Omega))$ such that

 $h_{\gamma}(\Omega) - h_{\gamma}(H_{\Omega}) \ge c_1 \alpha_{\gamma}^2(\Omega).$

and $c_2 = c_2(\gamma(\Omega))$ such that

$$h_{\gamma}(\Omega) - h_{\gamma}(H_{\Omega}) \ge c_2 \frac{\beta_{\gamma}(\Omega)}{1 + \sqrt{|\log(\beta_{\gamma}(\Omega))|}}$$

References

- Julin, V. and Saracco, G., Quantitative lower bounds to the Euclidean and the Gaussian Cheeger constants, *Ann. Fenn. Math.* 46:2, 2021
- Leonardi, G. P., Neumayer, R. and Saracco, G., The Cheeger constant of a Jordan domain without necks, *Calc. Var. Partial Differential Equations* 56(6):164, 2017
- Pratelli, A. and Saracco, G., forthcoming

