Numbers and Numerosities

Dedicated to Mauro Di Nasso in occasione of his 60° birthday

Vieri Benci
Università di Pisa

July 9, 2023

Mille auguri!!!!

The story of Mauro and the Numerosity Theory

The story of Mauro and the Numerosity Theory

The story of Mauro and the Numerosity Theory

Benci V., Di Nasso M., How to measure the infinite: Mathematics with infinite and infinitesimal numbers, World Scientific, Singapore, 2018.

Mauro and the Numerosity Theory

(1) V. Benci, M. Di Nasso - Numerosities of labelled sets: a new way of counting, Adv. Math. 21 (2003), 505-67.

Mauro and the Numerosity Theory

V. Benci, M. Di Nasso - Numerosities of labelled sets: a new way of counting, Adv. Math. 21 (2003), 505-67.
(R. Benci, M. Di Nasso, M. Forti - An Aristotelian notion of size, Ann. Pure Appl. Logic 143 (2006), 43-53.

Mauro and the Numerosity Theory

V. Benci, M. Di Nasso - Numerosities of labelled sets: a new way of counting, Adv. Math. 21 (2003), 505-67.
(R. Benci, M. Di Nasso, M. Forti - An Aristotelian notion of size, Ann. Pure Appl. Logic 143 (2006), 43-53.
圊 Benci V., Luperi Baglini L., Euclidean numbers and numerosities, The Journal of Symbolic Logic, (2022) pp. 1-35, DOI: https://doi.org/10.1017/jsl.2022.17.

This talk

In this talk I will present Numerosity Theory with a slightly different approach.

This talk

In this talk I will present Numerosity Theory with a slightly different approach.

This approach is possible thanks to a new result which I recently obtained.

The comparison relation and the numbers

One of the aims in counting the elements of sets is the comparison of their sizes. We denote by \preceq is a total preorder relation, and as usual, we set

$$
X \cong Y: \Leftrightarrow(X \preceq Y \text { and } Y \preceq X)
$$

and

$$
X \prec Y: \Leftrightarrow(X \preceq Y \text { and } Y \nsubseteq X)
$$

Definition

A comparison system is a couple (\mathbb{U}, \preceq) where \mathbb{U} is a universe and \preceq is a total preorder relation, called comparison relation, which satisfies the following properties:

Definition

A comparison system is a couple (\mathbb{U}, \preceq) where \mathbb{U} is a universe and \preceq is a total preorder relation, called comparison relation, which satisfies the following properties:
(1) Null Set Principle: if $A \neq \varnothing$, then $\varnothing \prec A$ and $\{\varnothing\} \cong\{A\} \preceq A$.

Definition

A comparison system is a couple (\mathbb{U}, \preceq) where \mathbb{U} is a universe and \preceq is a total preorder relation, called comparison relation, which satisfies the following properties:
(1) Null Set Principle: if $A \neq \varnothing$, then $\varnothing \prec A$ and $\{\varnothing\} \cong\{A\} \preceq A$.
(2) Comparison Principle: $A \preceq B$, if and only if there exists $A^{\prime} \subseteq B$ such that $A^{\prime} \cong A$.

Definition

A comparison system is a couple (\mathbb{U}, \preceq) where \mathbb{U} is a universe and \preceq is a total preorder relation, called comparison relation, which satisfies the following properties:
(1) Null Set Principle: if $A \neq \varnothing$, then $\varnothing \prec A$ and $\{\varnothing\} \cong\{A\} \preceq A$.
(2) Comparison Principle: $A \preceq B$, if and only if there exists $A^{\prime} \subseteq B$ such that $A^{\prime} \cong A$.
(3) Union Principle: If $A \cong A^{\prime}$ and $B \cong B^{\prime}$ and $A \cap B=A^{\prime} \cap B^{\prime}=\varnothing$, then

$$
A \cup B \cong A^{\prime} \cup B^{\prime}
$$

Definition

A comparison system is a couple (\mathbb{U}, \preceq) where \mathbb{U} is a universe and \preceq is a total preorder relation, called comparison relation, which satisfies the following properties:
(1) Null Set Principle: if $A \neq \varnothing$, then $\varnothing \prec A$ and $\{\varnothing\} \cong\{A\} \preceq A$.
(2) Comparison Principle: $A \preceq B$, if and only if there exists $A^{\prime} \subseteq B$ such that $A^{\prime} \cong A$.
(3) Union Principle: If $A \cong A^{\prime}$ and $B \cong B^{\prime}$ and $A \cap B=A^{\prime} \cap B^{\prime}=\varnothing$, then

$$
A \cup B \cong A^{\prime} \cup B^{\prime}
$$

(9) Product Principle: If $A \cong A$ and $B \cong B^{\prime}$ are four families of pairwise disjoint sets, we define the following "product":

$$
A \otimes B:=\{a \cup b \mid a \in A, b \in B\} ;
$$

then, $A \otimes B \cong A^{\prime} \otimes B^{\prime}$.

THE NUMBERS

If we have a comparison system then it is possible to build the notion of number:

Definition

A set of numbers \mathcal{N} is a set of atoms such that there exists a biunivoc corrisondence

$$
\Phi:(\mathbb{U} / \cong) \rightarrow \mathcal{N}
$$

THE NUMBERS

If we have a comparison system then it is possible to build the notion of number:

Definition

A set of numbers \mathcal{N} is a set of atoms such that there exists a biunivoc corrisondence

$$
\Phi:(\mathbb{U} / \cong) \rightarrow \mathcal{N}
$$

Then given a set A the number of its elements is given by

$$
\mathfrak{n}(A)=\Phi\left([A]_{\cong}\right)
$$

THE NUMBERS

If we have a comparison system then it is possible to build the notion of number:

Definition

A set of numbers \mathcal{N} is a set of atoms such that there exists a biunivoc corrisondence

$$
\Phi:(\mathbb{U} / \cong) \rightarrow \mathcal{N}
$$

Then given a set A the number of its elements is given by

$$
\mathfrak{n}(A)=\Phi\left([A]_{\cong}\right)
$$

Notice that in every set of numbers there are two distingushed elements:

$$
0:=\mathfrak{n}(\varnothing)
$$

and

$$
1:=\mathfrak{n}(\{\varnothing\})
$$

The order relation of numbers

The numbers are a linearly ordered set with the following order relation:

Definition
 If $\alpha=\mathfrak{n}(A)$ and $\beta=\mathfrak{n}(B)$

$$
\alpha \leq \beta: \Leftrightarrow A \preceq B .
$$

The basic operations with numbers

On the set of numbers we can define also the two basic operations: the sum and the product.

Definition

Given two numbers $\alpha=\mathfrak{n}(A)$ and $\beta=\mathfrak{n}(B)$ with $A \cap B=\varnothing$, we set

$$
\mathfrak{n}(A)+\mathfrak{n}(B):=\mathfrak{n}(A \cup B)
$$

The basic operations with numbers

On the set of numbers we can define also the two basic operations: the sum and the product.

Definition

Given two numbers $\alpha=\mathfrak{n}(A)$ and $\beta=\mathfrak{n}(B)$ with $A \cap B=\varnothing$, we set

$$
\mathfrak{n}(A)+\mathfrak{n}(B):=\mathfrak{n}(A \cup B)
$$

Definition

Given two numbers $\alpha=\mathfrak{n}(A)$ and $\beta=\mathfrak{n}(B)$ where A and B are as in Def. 1-(4), we set

$$
\mathfrak{n}(A) \cdot \mathfrak{n}(B):=\mathfrak{n}(A \otimes B)
$$

The basic algebraic properties of numbers

Thanks to the definition of the product " \otimes ", the numbers as defined by Def. 2, satisfy the basic algebraic properties (BAC):

The basic algebraic properties of numbers

Thanks to the definition of the product " \otimes ", the numbers as defined by Def. 2, satisfy the basic algebraic properties (BAC):

- commutative property with respect to + and .

The basic algebraic properties of numbers

Thanks to the definition of the product " \otimes ", the numbers as defined by Def. 2, satisfy the basic algebraic properties (BAC):

- commutative property with respect to + and .
- associative property with respect to + and .

The basic algebraic properties of numbers

Thanks to the definition of the product " \otimes ", the numbers as defined by Def. 2, satisfy the basic algebraic properties (BAC):

- commutative property with respect to + and .
- associative property with respect to + and .
- existence of the identity elements "0" and "1" with respect to + and .

The basic algebraic properties of numbers

Thanks to the definition of the product " \otimes ", the numbers as defined by Def. 2, satisfy the basic algebraic properties (BAC):

- commutative property with respect to + and .
- associative property with respect to + and .
- existence of the identity elements "0" and " 1 " with respect to + and •
- distributive property

The Cartesian Product

The Cartesian Product plays a prominent role in the development of Mathematics, but probably is not the fundamental notion related to the product between numbers since it is not commutative nor associative namely

$$
A \times B \neq B \times A ;(A \times B) \times C \neq A \times(B \times C)
$$

The Cartesian Product

The Cartesian Product plays a prominent role in the development of Mathematics, but probably is not the fundamental notion related to the product between numbers since it is not commutative nor associative namely

$$
A \times B \neq B \times A ;(A \times B) \times C \neq A \times(B \times C)
$$

However, a good notion of comparison relation must satisfy the following principle:

- Cartesian Product Principle: If A and B are two families of sets as in Def. 1, then

$$
A \times B \cong A \otimes B
$$

The notion of counting system

In conclusion, we are lead to the following definition:

Definition

Given comparison system (\mathbb{U}, \preceq) which satisfies the Cartesian Product Principle, the corresponding triple ($\mathbb{U}, \mathcal{N}, \mathfrak{n}$) is called counting system.

First example

Now let us see some examples of counting systems: we take

- $\mathbb{U}=$ the class of all sets:

First example

Now let us see some examples of counting systems: we take

- $\mathbb{U}=$ the class of all sets:
- $\mathcal{N}=\{0,1,2, M\}$ where the number M is read "many".

First example

Then, there exists a unique comparison relation defined by the following tables:

+	$[0]$	$[1]$	$[2]$	$[M]$
$[0]$	0	1	2	M
$[1]$	1	2	M	M
$[2]$	2	M	M	M
$[M]$	M	M	M	M

\cdot	$[0]$	$[1]$	$[2]$	$[M]$
$[0]$	0	0	0	0
$[1]$	0	1	2	M
$[2]$	0	2	M	M
$[M]$	0	M	M	M

First example

Then, there exists a unique comparison relation defined by the following tables:

+	$[0]$	$[1]$	$[2]$	$[M]$
$[0]$	0	1	2	M
$[1]$	1	2	M	M
$[2]$	2	M	M	M
$[M]$	M	M	M	M

\cdot	$[0]$	$[1]$	$[2]$	$[M]$
$[0]$	0	0	0	0
$[1]$	0	1	2	M
$[2]$	0	2	M	M
$[M]$	0	M	M	M

Actually, $(\mathbb{U},\{0,1,2, M\}, \mathfrak{n})$ is not the "smallest" counting system since we can take $(\mathbb{U},\{0,1\}, \mathfrak{n})$.

Euclid's Principle

If we want to exclude these interesting, but mathematically trivial examples we need to add some other principle: for example the V common notion of Euclid's elements:

The whole is greater than the part.

Euclid's Principle

If we want to exclude these interesting, but mathematically trivial examples we need to add some other principle: for example the V common notion of Euclid's elements:

The whole is greater than the part.
In our formalism

- Euclid's principle - (V common notion) Given two sets F and G such that F is a proper part of G, then $F \prec G$.

The natural numbers counting system

The most important counting system which satisfies Euclid's Principle is the counting system of natural numbers (Fin, $\mathbb{N},|\cdot|$)

The natural numbers counting system

The most important counting system which satisfies Euclid's Principle is the counting system of natural numbers ($\mathbf{F i n}, \mathbb{N},|\cdot|$) where

- Fin is the class of finite sets

The natural numbers counting system

The most important counting system which satisfies Euclid's Principle is the counting system of natural numbers ($\mathbf{F i n}, \mathbb{N},|\cdot|$) where

- Fin is the class of finite sets
- \mathbb{N} is the set of natural numbers

The natural numbers counting system

The most important counting system which satisfies Euclid's Principle is the counting system of natural numbers (Fin, $\mathbb{N},|\cdot|$) where

- Fin is the class of finite sets
- \mathbb{N} is the set of natural numbers
- $|A|=\mathfrak{n}(A)$ is the number of elements of a finite set.

The Euclid's Principle and infinite sets

If we want to have a universe \mathbb{U} which incudes infinite sets and satisfies the Euclid's Principle we get some limitation.

The Euclid's Principle and infinite sets

If we want to have a universe \mathbb{U} which incudes infinite sets and satisfies the Euclid's Principle we get some limitation.
For example

Theorem

If $(\mathbb{U}, \mathcal{N}, \mathfrak{n})$ is a counting system which satisfies Euclid's principle, then \mathbb{U} cannot contain sets of rank ω.

Proof.

If

$$
A=\{a,(a, a),(a, a, a),(a, a, a, a), \ldots .\} .
$$

then

$$
A \times\{a\}=\{(a, a),(a, a, a),(a, a, a, a), \ldots\} \subset A
$$

Proof.
If

$$
A=\{a,(a, a),(a, a, a),(a, a, a, a), \ldots .\}
$$

then

$$
A \times\{a\}=\{(a, a),(a, a, a),(a, a, a, a), \ldots\} \subset A
$$

Hence, by Euclid's Principle

$$
\mathfrak{n}(A \times\{a\})<\mathfrak{n}(A)
$$

and

$$
\mathfrak{n}(A)<\mathfrak{n}(A \times\{a\})=\mathfrak{n}(A) \cdot \mathfrak{n}(\{a\})=\mathfrak{n}(A) \cdot 1=\mathfrak{n}(A) .
$$

CONTRADICTION!

So, if we want to have a universe \mathbb{U} which incudes all the infinite sets, the simplest idea is to renounce to Euclid's Principle and to take the counting system $(\mathbb{U}, \mathbb{N} \cup\{\infty\}, \mathfrak{n})$ with the relations

$$
\begin{aligned}
n+\infty & =\infty \\
n \cdot \infty & =\infty \text { for } n \neq 0 \\
0 \cdot \infty & =0
\end{aligned}
$$

This system, does not have a good algebra: in particular, the equation

$$
x+\infty=\infty
$$

has infinitely many solutions, and hence $\mathbb{N} \cup\{\infty\}$ is not even the positive part of an ordered ring.

This system, does not have a good algebra: in particular, the equation

$$
x+\infty=\infty
$$

has infinitely many solutions, and hence $\mathbb{N} \cup\{\infty\}$ is not even the positive part of an ordered ring.
In particular, we cannot define infinitesimal numbers such as

$$
\frac{1}{\infty}
$$

in a consistent way.

This system, does not have a good algebra: in particular, the equation

$$
x+\infty=\infty,
$$

has infinitely many solutions, and hence $\mathbb{N} \cup\{\infty\}$ is not even the positive part of an ordered ring.
In particular, we cannot define infinitesimal numbers such as

$$
\frac{1}{\infty}
$$

in a consistent way. For this reason, in the History of Mathematics, the symbol " ∞ " did not even got the dignity of "number".

Hume's Principle

Until the XIX century, the idea of natural number was rooted not only on the Euclid's principle, but also on the Hume's Principle

Hume's Principle

Until the XIX century, the idea of natural number was rooted not only on the Euclid's principle, but also on the Hume's Principle :

The number of elements in F is equal to the number of elements in G if there is a one-to-one correspondence between F and G.

Hume's Principle

Hume's Principle suggests the comparison relation " \preceq_{c} ".

Hume's Principle

Hume's Principle suggests the comparison relation " \preceq_{c} ".
In our formalism

- Hume's principle - Given two sets F and G, then $F \preceq_{c} G$ if there is an injective map

$$
\phi: F \rightarrow G .
$$

Hume's Principle and the cardinal numbers

It is well known that Euclid's principle and Hume's Principle are satisfied by (Fin, $\mathbb{N},|\cdot|)$ but they lead to a contradiction if our universe contains an infinite set.

Hume's Principle and the cardinal numbers

It is well known that Euclid's principle and Hume's Principle are satisfied by (Fin, $\mathbb{N},|\cdot|)$ but they lead to a contradiction if our universe contains an infinite set.
Cantor had the great idea to drop Euclid's principle and to use only the preorder relation " $\preceq_{\mathfrak{c}}$ " suggested by Hume and introduced the cardinal numbers.

The cardinal numbers counting system

The cardinal numbers counting system which we will denote by

$$
(\mathbb{U}, \mathbf{C r d},|\cdot|)
$$

is much reacher than $(\mathbb{U}, \mathbb{N} \cup\{\infty\}, \mathfrak{n})$ since for every set A,

$$
|\wp(A)|>|A|
$$

The cardinal numbers counting system

The cardinal numbers counting system which we will denote by

$$
(\mathbb{U}, \mathbf{C r d},|\cdot|)
$$

is much reacher than $(\mathbb{U}, \mathbb{N} \cup\{\infty\}, \mathfrak{n})$ since for every set A,

$$
|\wp(A)|>|A|
$$

even if the operation tables resemble the trivial one since if β is an infinite number

$$
x+\beta=x \cdot \beta=\max \{x, \beta\}
$$

The ordinal numbers

Cantor introduced also the notion of ordinal number.

The ordinal numbers

Cantor introduced also the notion of ordinal number.
The ordinal numbers do not fit in a counting system in the sense of our definition; however they are related to these systems in several ways.

The ordinal numbers

Cantor introduced also the notion of ordinal number.
The ordinal numbers do not fit in a counting system in the sense of our definition; however they are related to these systems in several ways. First of all, we can define a triple (\mathbb{W}, Ord, ot) similar to a counting system as follows.

- \mathbb{W} is the class of well ordered set;
- Ord is the class of ordered numbers,
- $\forall A \in \mathbb{W}, \mathfrak{o t}(A) \in$ Ord is the order type of A.

The ordinal numbers

Cantor introduced also the notion of ordinal number.
The ordinal numbers do not fit in a counting system in the sense of our definition; however they are related to these systems in several ways. First of all, we can define a triple (\mathbb{W}, Ord, ot) similar to a counting system as follows.

- \mathbb{W} is the class of well ordered set;
- Ord is the class of ordered numbers,
- $\forall A \in \mathbb{W}, \mathfrak{o t}(A) \in$ Ord is the order type of A.
$(\mathbb{W}$, Ord, $\mathfrak{o t})$ is not a counting system since the operations between ordinals do not satisfy (BAC); we will call it pseudo-counting system.

The ordinal numbers

Similarly, we can define a preorder relation on sets in \mathbb{W} as follows:

- $A \preceq_{0} B$ if and only there exists a injective map $\Phi: A \rightarrow B$ which preserves the order, namely $\forall a_{1}, a_{2} \in A$,

$$
a_{1}<_{A} a_{2} \Rightarrow \Phi(a)<_{B} \Phi(b) .
$$

The Numerosity Counting Systems

We have seen that it is not possible to have a counting system which contains infinite sets and which at the same time preserves both Euclid's principle and Hume's principle. However, we can give up Hume's principle and keep Euclid's principle.

The Numerosity Counting Systems

We have seen that it is not possible to have a counting system which contains infinite sets and which at the same time preserves both Euclid's principle and Hume's principle. However, we can give up Hume's principle and keep Euclid's principle.

Definition

A counting system ($\mathbb{U}, N u m, \mathfrak{n u m}$) which contains infinite sets and preserves Euclid's Principle is called numerosity counting system.

The Numerosity Counting Systems

We have seen that it is not possible to have a counting system which contains infinite sets and which at the same time preserves both Euclid's principle and Hume's principle. However, we can give up Hume's principle and keep Euclid's principle.

Definition

A counting system ($\mathbb{U}, N u m, \mathfrak{n u m}$) which contains infinite sets and preserves Euclid's Principle is called numerosity counting system.

- Num is the set of the numerosities;

The Numerosity Counting Systems

We have seen that it is not possible to have a counting system which contains infinite sets and which at the same time preserves both Euclid's principle and Hume's principle. However, we can give up Hume's principle and keep Euclid's principle.

Definition

A counting system ($\mathbb{U}, N u m, \mathfrak{n u m})$ which contains infinite sets and preserves Euclid's Principle is called numerosity counting system.

- Num is the set of the numerosities;
- for every $A \in \mathbb{U}, \mathfrak{n u m}(A) \in \operatorname{Num}$ is called the numerosity of the set A.

The Numerosity Counting Systems

As we have seen, it is not possible to have a numerosity counting system ($\mathbb{U}, \mathbf{N u m}, \mathfrak{n u m}$) such that \mathbb{U} is the class of all sets. Thus, it is necessary to restrict \mathbb{U}.

The Numerosity Counting Systems

As we have seen, it is not possible to have a numerosity counting system ($\mathbb{U}, \mathbf{N u m}, \mathfrak{n u m}$) such that \mathbb{U} is the class of all sets. Thus, it is necessary to restrict \mathbb{U}.

The first counting system has been introduced by Mauro and me:
國 V. Benci, M. Di Nasso - Numerosities of labelled sets: a new way of counting, Adv. Math. 21 (2003), 505-67.

The Numerosity Counting Systems

As we have seen, it is not possible to have a numerosity counting system $(\mathbb{U}$, Num, $\mathfrak{n u m})$ such that \mathbb{U} is the class of all sets. Thus, it is necessary to restrict \mathbb{U}.

The first counting system has been introduced by Mauro and me:

- V. Benci, M. Di Nasso - Numerosities of labelled sets: a new way of counting, Adv. Math. 21 (2003), 505-67.

In this case \mathbb{U} is the class of denumerable sets and the counting system takes the form

$$
\left(\mathbb{U}, \mathbb{N}^{*}, \mathfrak{n u m}\right)
$$

where \mathbb{N}^{*} is an elementary extension of the natural numbers.

The Numerosity Counting Systems

After this paper the "theory of numerosity" has been developed in several directions and also non-denumerable sets have been included.

The Numerosity Counting Systems

After this paper the "theory of numerosity" has been developed in several directions and also non-denumerable sets have been included.

However no counting system for non-denumerable sets has been described since in (almost) all these models, the Comparison Principle

$$
A \preceq B \text {, if and only if there exists } A^{\prime} \subseteq B \text { such that } A^{\prime} \cong A
$$

has not been established.

The Numerosity Counting Systems

Thus a question arises naturally:
there exists a numerosity counting system in which the sets in \mathbb{U} might have any cardinality?

The Numerosity Counting Systems

Thus a question arises naturally:
there exists a numerosity counting system in which the sets in \mathbb{U} might have any cardinality?

The answer is YES and we will discuss this point in the rest of this talk.

Three ways of counting

Before presenting a numerosity counting system in a formal way, I want to give an intuitive idea and to compare it with the cardinal counting system and the ordinal pseudo-counting system

Three ways of counting

In everyday life, there exist (at least) three ways to count the elements of a set:

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one. This is the concept of number of a three years old kid, who associate numbers to sets of fingers of his hands.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one. This is the concept of number of a three years old kid, who associate numbers to sets of fingers of his hands.
(2) In the second way of counting, one arranges the elements of a given set in a row, and then compares such a row with the sequence of natural numbers.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one. This is the concept of number of a three years old kid, who associate numbers to sets of fingers of his hands.
(2) In the second way of counting, one arranges the elements of a given set in a row, and then compares such a row with the sequence of natural numbers.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one. This is the concept of number of a three years old kid, who associate numbers to sets of fingers of his hands.
(2) In the second way of counting, one arranges the elements of a given set in a row, and then compares such a row with the sequence of natural numbers. This is the concept of number of a five years old child.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one. This is the concept of number of a three years old kid, who associate numbers to sets of fingers of his hands.
(2) In the second way of counting, one arranges the elements of a given set in a row, and then compares such a row with the sequence of natural numbers. This is the concept of number of a five years old child.
(3) The third way of counting consists in arranging the elements of a given sets into smaller groups to be counted separately.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one. This is the concept of number of a three years old kid, who associate numbers to sets of fingers of his hands.
(2) In the second way of counting, one arranges the elements of a given set in a row, and then compares such a row with the sequence of natural numbers. This is the concept of number of a five years old child.
(3) The third way of counting consists in arranging the elements of a given sets into smaller groups to be counted separately.

Three ways of counting

(1) The first way of counting consists in associating to each element of a set an element of another one. This is the concept of number of a three years old kid, who associate numbers to sets of fingers of his hands.
(2) In the second way of counting, one arranges the elements of a given set in a row, and then compares such a row with the sequence of natural numbers. This is the concept of number of a five years old child.
(3) The third way of counting consists in arranging the elements of a given sets into smaller groups to be counted separately. This is the way of counting of a grown child.

Three ways of counting

The three ways of counting discussed above imply more and more complex logical operations.

Three ways of counting

The three ways of counting discussed above imply more and more complex logical operations.

Obviously these three methods of counting give the same result when finite sets are counted, but different results are obtained when we deal with infinite sets.

Three ways of counting

The three ways of counting discussed above imply more and more complex logical operations.

Obviously these three methods of counting give the same result when finite sets are counted, but different results are obtained when we deal with infinite sets.

Therefore, among the infinite numbers it is necessary to distinguish (at least) three sets of numbers:

Three ways of counting

The three ways of counting discussed above imply more and more complex logical operations.

Obviously these three methods of counting give the same result when finite sets are counted, but different results are obtained when we deal with infinite sets.

Therefore, among the infinite numbers it is necessary to distinguish (at least) three sets of numbers:

- Cardinal numbers

Three ways of counting

The three ways of counting discussed above imply more and more complex logical operations.

Obviously these three methods of counting give the same result when finite sets are counted, but different results are obtained when we deal with infinite sets.

Therefore, among the infinite numbers it is necessary to distinguish (at least) three sets of numbers:

- Cardinal numbers
- Ordinal numbers

Three ways of counting

The three ways of counting discussed above imply more and more complex logical operations.

Obviously these three methods of counting give the same result when finite sets are counted, but different results are obtained when we deal with infinite sets.

Therefore, among the infinite numbers it is necessary to distinguish (at least) three sets of numbers:

- Cardinal numbers
- Ordinal numbers
- Numerosities

The third way of counting

Clearly, the third way of counting is only possible if the objects of a given set have a "some feature" that allows us to bunch "similar objects".

The third way of counting

Clearly, the third way of counting is only possible if the objects of a given set have a "some feature" that allows us to bunch "similar objects".

Let us see an example. Assume we are given a big bunch of randomly chosen playing cards. Probably, the better strategy to count the cards is to divide them into smaller decks. For example, one can put all the aces in a deck, all the twos in another deck, and so forth.

The labelled universe

So the third way of counting is possible if the objects of a given set have a "label".
<label for="firstname">First name:</label>

The labelled universe

We are lead to a structure formalized by the notion of labelled universe that will be described next.

The labelled universe

We are lead to a structure formalized by the notion of labelled universe that will be described next.

The formal definition which I will present here has been introduced in
围 Benci V., Luperi Baglini L., Euclidean numbers and numerosities, The Journal of Symbolic Logic, (2022) pp. 1-35, DOI: https://doi.org/10.1017/jsl.2022.17.

The labelled universe

From now on we will assume that our universe is given by

$$
\Lambda:=\left\{X \in V_{\infty}(\text { Ato }) \backslash \text { Ato }|\quad| X|<| \text { Ato } \mid\right\}
$$

where Ato is an infinite set of atoms.

The labelled universe

The family of labels \mathfrak{L} is a subset of V_{∞} (Ato) satisfying the following requests:

The labelled universe

The family of labels \mathfrak{L} is a subset of V_{∞} (Ato) satisfying the following requests:

- $\mathfrak{L} \subseteq$ Fin,

The labelled universe

The family of labels \mathfrak{L} is a subset of V_{∞} (Ato) satisfying the following requests:

- $\mathfrak{L} \subseteq$ Fin,
- $\forall \lambda \in \mathfrak{L}, \lambda \cap \mathbf{F i n}=\varnothing$, namely if $\lambda \in \mathfrak{L}, \lambda$ is a finite set and if $x \in \lambda$, then x is either an atom or an infinite set.

The labelled universe

The family of labels \mathfrak{L} is a subset of V_{∞} (Ato) satisfying the following requests:

- $\mathfrak{L} \subseteq$ Fin,
- $\forall \lambda \in \mathfrak{L}, \lambda \cap \mathbf{F i n}=\varnothing$, namely if $\lambda \in \mathfrak{L}, \lambda$ is a finite set and if $x \in \lambda$, then x is either an atom or an infinite set.
- the set of labels must be sufficiently large:

$$
\bigcup_{\lambda \in \mathfrak{L}} V_{\infty}(\lambda)=\Lambda \cup \text { Ato }
$$

namely $\forall a \in \Lambda \cup$ Ato, $\exists \lambda \in \mathfrak{L}, a \in V_{\infty}(\lambda)$.

The labelled universe

The family of labels \mathfrak{L} is a subset of V_{∞} (Ato) satisfying the following requests:

- $\mathfrak{L} \subseteq$ Fin,
- $\forall \lambda \in \mathfrak{L}, \lambda \cap \operatorname{Fin}=\varnothing$, namely if $\lambda \in \mathfrak{L}, \lambda$ is a finite set and if $x \in \lambda$, then x is either an atom or an infinite set.
- the set of labels must be sufficiently large:

$$
\bigcup_{\lambda \in \mathfrak{L}} V_{\infty}(\lambda)=\Lambda \cup \text { Ato }
$$

namely $\forall a \in \Lambda \cup$ Ato, $\exists \lambda \in \mathfrak{L}, a \in V_{\infty}(\lambda)$.

- $\forall \lambda, \mu \in \mathfrak{L} \Rightarrow \lambda \cup \mu, \lambda \cap \mu \in \mathfrak{L}$

The labelled universe

The family of labels \mathfrak{L} is a subset of V_{∞} (Ato) satisfying the following requests:

- $\mathfrak{L} \subseteq$ Fin,
- $\forall \lambda \in \mathfrak{L}, \lambda \cap \operatorname{Fin}=\varnothing$, namely if $\lambda \in \mathfrak{L}, \lambda$ is a finite set and if $x \in \lambda$, then x is either an atom or an infinite set.
- the set of labels must be sufficiently large:

$$
\bigcup_{\lambda \in \mathfrak{L}} V_{\infty}(\lambda)=\Lambda \cup \text { Ato }
$$

namely $\forall a \in \Lambda \cup$ Ato, $\exists \lambda \in \mathfrak{L}, a \in V_{\infty}(\lambda)$.

- $\forall \lambda, \mu \in \mathfrak{L} \Rightarrow \lambda \cup \mu, \lambda \cap \mu \in \mathfrak{L}$

Example:

$$
\mathfrak{L}=\wp_{\omega}((\Lambda \backslash \text { Fin }) \cup \text { Ato })
$$

The labelled universe

If $a \in V_{\infty}$ (Ato), we define the label of " a " as follows:

$$
\ell(a)=\bigcap\left\{\lambda \in \mathfrak{L} \mid a \in V_{\infty}(\lambda)\right\}
$$

The labelled universe

If $a \in V_{\infty}$ (Ato), we define the label of " a " as follows:

$$
\ell(a)=\bigcap\left\{\lambda \in \mathfrak{L} \mid a \in V_{\infty}(\lambda)\right\}
$$

From now on, $\forall A \in \Lambda \subset V_{\infty}$ (Ato), we set

$$
A_{\lambda}=\{x \in A \mid \ell(x) \subseteq \lambda\}
$$

Properties of the labels

Proposition

The labelling $\ell: V_{\infty}($ Ato $) \rightarrow \mathfrak{L}$ satisfies the following properties:
(1) $\ell(\varnothing)=\varnothing$;
(2) $\forall A \in \Lambda$, the set A_{λ} is finite;
(3) if $\{a, b\} \in \Lambda, \ell(\{a, b\})=\ell(a) \cup \ell(b)$;
(9) $(A \cup B)_{\lambda}=A_{\lambda} \cup B_{\lambda}$;
(6) $(A \otimes B)_{\lambda}=A_{\lambda} \otimes B_{\lambda}$;
(0) $(A \times B)_{\lambda}=A_{\lambda} \times B_{\lambda}$;
(0) $[\wp(A)]_{\lambda}=\wp\left(A_{\lambda}\right)$;
(8) $\left(B^{A}\right)_{\lambda}=\left(B_{\lambda}\right)^{A_{\lambda}}$.

A construction of a numerosity counting system

We take a fine ultrafilter over \mathfrak{L} and we we set:

A construction of a numerosity counting system

We take a fine ultrafilter over \mathfrak{L} and we we set:

Definition

We set

$$
A \preceq_{\mathfrak{n}} B
$$

if there exists a qualified set $Q \in \mathcal{U}$ such that $\forall \lambda \in Q$

$$
\left|A_{\lambda}\right| \leq\left|B_{\lambda}\right| .
$$

A construction of a numerosity counting system

It is not difficult to prove that the above definition implies the following fact:

Proposition

$$
A \cong_{\mathfrak{n}} B
$$

if and only if \exists a qualified set Q and a bijective map $\Phi: A \rightarrow B$ such that $\forall \lambda \in Q$,

$$
\Phi\left(A_{\lambda}\right)=B_{\lambda}
$$

The new main theorem

Theorem

The couple $\left(\Lambda, \preceq_{\mathfrak{n}}\right)$ is a comparison system that satisfies the Cartesian Product Principle.

The new main theorem

Theorem

The couple $\left(\Lambda, \preceq_{\mathfrak{n}}\right)$ is a comparison system that satisfies the Cartesian Product Principle.

Corollary

The numerosity theory $(\Lambda, N u m, \mathfrak{n u m})$ is a counting system that satisfies Euclid's Principle.

Comparison of the numerosities theory with the cardinal and ordinal numbers

Comparison of the numerosities theory with the cardinal and ordinal numbers

(1) The cardinality of A equal to the cardinality of B (in our symbols $A \cong_{\mathfrak{c}} B$) if there exists a bijective map $\Phi: A \rightarrow B$.

Comparison of the numerosities theory with the cardinal and ordinal numbers

(1) The cardinality of A equal to the cardinality of B (in our symbols $A \cong_{\mathfrak{c}} B$) if there exists a bijective map $\Phi: A \rightarrow B$.
(2) The order type of (A, \lessdot) is equal to the order type of (B, \lessdot) (in our symbols $A \cong_{0} B$) if there exists bijective map $\Phi: A \rightarrow B$ which respects the order, namely $\forall a \in A, \forall b \in B$,

$$
a \in A, \forall b, \quad a \lessdot b \Rightarrow \Phi(a) \lessdot \Phi(b)
$$

Comparison of the numerosities theory with the cardinal and ordinal numbers

(1) The cardinality of A equal to the cardinality of B (in our symbols $A \cong_{\mathfrak{c}} B$) if there exists a bijective map $\Phi: A \rightarrow B$.
(2) The order type of (A, \lessdot) is equal to the order type of (B, \lessdot) (in our symbols $A \cong_{\mathfrak{o}} B$) if there exists bijective map $\Phi: A \rightarrow B$ which respects the order, namely $\forall a \in A, \forall b \in B$,

$$
a \in A, \forall b, \quad a \lessdot b \Rightarrow \Phi(a) \lessdot \Phi(b)
$$

(3) The numerosity of $A \in \Lambda$ is equal to the the numerosity of $B \in \Lambda$ (in our symbols $A \cong_{\mathfrak{n}} B$) if there exists bijective map map $\Phi: A \rightarrow B$ which respects the labelling, namely $\exists Q \in \mathcal{U}, \forall \lambda \in Q$,

$$
\Phi\left(A_{\lambda}\right)=B_{\lambda}
$$

Comparison of the numerosities theory with the cardinal numbers

From the point (1), it follows straightforwardly the following theorem:

```
Theorem
If \mathfrak{num}(A)<\mathfrak{num}(B),\mathrm{ then }|A|\leq|B|.
```


Comparison of the numerosities theory with the ordinal numbers

Now let us compare the set of numerosities with the ordinal numbers. In order to do this, we take an injective map

$$
\Psi: \text { Num } \rightarrow \text { Ato. }
$$

Comparison of the numerosities theory with the ordinal numbers

Now let us compare the set of numerosities with the ordinal numbers. In order to do this, we take an injective map

$$
\Psi: \text { Num } \rightarrow \text { Ato. }
$$

This is possible if we assume that \mid Ato \mid is sufficiently large, for example if |Ato| is the first uncountable inaccessible cardinal number.

Comparison of the numerosities theory with the ordinal numbers

Now let us compare the set of numerosities with the ordinal numbers. In order to do this, we take an injective map

$$
\Psi: \text { Num } \rightarrow \text { Ato. }
$$

This is possible if we assume that \mid Ato \mid is sufficiently large, for example if |Ato| is the first uncountable inaccessible cardinal number. Thanks to this map, from now on, we will identify the numerosities with atoms in Ato, namely we will assume that

$$
\text { Num } \subset \text { Ato. }
$$

Comparison of the numerosities theory with the ordinal numbers

Now let us compare the set of numerosities with the ordinal numbers. In order to do this, we take an injective map

$$
\Psi: \text { Num } \rightarrow \text { Ato. }
$$

This is possible if we assume that \mid Ato \mid is sufficiently large, for example if |Ato| is the first uncountable inaccessible cardinal number. Thanks to this map, from now on, we will identify the numerosities with atoms in Ato, namely we will assume that

Num \subset Ato.

Hence it makes sense to talk of the numerosity of a set of numerosities.

Definition of the ordinal numerosities

Definition of the ordinal numerosities

Definition

The set Ordn of ordinal numerosities is defined by the following property:

$$
\gamma \in \operatorname{Ordn} \Leftrightarrow \gamma=\mathfrak{n u m}\left(\Omega_{\beta}\right)
$$

where

$$
\Omega_{\beta}:=\{x \in \operatorname{Ordn} \mid x<\beta\}
$$

Comparison of the numerosities theory with the ordinal numbers

The set Ordn is not empty since

$$
0:=\mathfrak{n u m}(\varnothing) \in \text { Ordn }
$$

Comparison of the numerosities theory with the ordinal numbers

The set Ordn is not empty since

$$
0:=\mathfrak{n u m}(\varnothing) \in \text { Ordn }
$$

and hence

$$
\begin{aligned}
1: & =\mathfrak{n u m}(\{0\}) \in \text { Ordn } \\
2: & =\mathfrak{n u m}(\{0,1\}) \in \text { Ordn } \\
& \ldots \ldots \ldots \ldots \\
n+1: & =\mathfrak{n u m}(\{0, \ldots, n\}) \\
& \cdots \cdots \cdots \cdots \\
\omega: & =\mathfrak{n u m}(\mathbb{N}), \quad \mathbb{N}:=\{0,1, \ldots, n, \ldots\}
\end{aligned}
$$

and so on.

Comparison of the numerosities theory with the ordinal numbers

The set Ordn is not empty since

$$
0:=\mathfrak{n u m}(\varnothing) \in \text { Ordn }
$$

and hence

$$
\begin{aligned}
1: & =\mathfrak{n u m}(\{0\}) \in \text { Ordn } \\
2: & =\mathfrak{n u m}(\{0,1\}) \in \text { Ordn } \\
& \ldots \ldots \ldots \ldots \\
n+1: & =\mathfrak{n u m}(\{0, \ldots, n\}) \\
& \cdots \cdots \cdots \cdots \\
\omega: & =\mathfrak{n u m}(\mathbb{N}), \quad \mathbb{N}:=\{0,1, \ldots, n, \ldots\}
\end{aligned}
$$

and so on. Thus, we get a "copy" of the Von Nemann ordinal numbers.

Comparison of the numerosities theory with the ordinal numbers

Clearly

Ordn \subset Num

since

$$
\omega-1=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)=\mathfrak{n u m}(\{1,2 . ., n, \ldots\}) \notin \text { Ordn. }
$$

Cardinal numbers, ordinal numbers and numerosities

It is well known that the cardinal numbers can be identified with some ordinal numbers by the map

$$
\Psi: \text { Card } \rightarrow \text { Ord }
$$

defined by

$$
\Psi(\beta):=\min \left\{x \in \text { Ord }_{\mathrm{VN}}| | x \mid=\beta\right\}
$$

Cardinal numbers, ordinal numbers and numerosities

It is well known that the cardinal numbers can be identified with some ordinal numbers by the map

$$
\Psi: \text { Card } \rightarrow \text { Ord }
$$

defined by

$$
\Psi(\beta):=\min \left\{x \in \text { Ord }_{\mathrm{VN}}| | x \mid=\beta\right\}
$$

Similarly, we can identify the cardinal numbers with some numerosities by the map

$$
\Psi: \text { Card } \rightarrow \text { Num }
$$

defined by

$$
\Psi_{\mathfrak{n}}(\beta):=\min \left\{x \in \operatorname{Ordn}| | \Omega_{x} \mid=\beta\right\}
$$

Cardinal numbers, ordinal numbers and numerosities

In conclusion, we have the following diagram:

where Cardn $:=\Psi_{\mathfrak{n}}$ (Card) is the set of cardinal numerosities and the vertical arrows are isomorphisms.

Basic properties of numerosities

For every set of labels \mathfrak{L} the following result holds:

Basic properties of numerosities

For every set of labels \mathfrak{L} the following result holds:

Proposition

Let E, F be sets in Λ. Numerosities satisfy the following properties:
(1) Num $=\mathbb{N}^{*}$, namely $\mathbf{N u m}$ is a elementary extension of \mathbb{N};

Basic properties of numerosities

For every set of labels \mathfrak{L} the following result holds:

Proposition

Let E, F be sets in Λ. Numerosities satisfy the following properties:
(1) Num $=\mathbb{N}^{*}$, namely $\mathbf{N u m}$ is a elementary extension of \mathbb{N};
(2) Finite parts principle: $\mathfrak{n u m}\left(\wp_{\omega}(E)\right)=2^{\mathfrak{n u m}(E)}$;

Basic properties of numerosities

For every set of labels \mathfrak{L} the following result holds:

Proposition

Let E, F be sets in Λ. Numerosities satisfy the following properties:
(1) Num $=\mathbb{N}^{*}$, namely $\mathbf{N u m}$ is a elementary extension of \mathbb{N};
(2) Finite parts principle: $\mathfrak{n u m}\left(\wp_{\omega}(E)\right)=2^{\mathfrak{n u m}(E)}$;
(3) Finite functions principle: let E be nonempty, and let

$$
\mathfrak{F}_{\omega}(X, E):=\left\{f: D \rightarrow E \mid D \in \wp_{\omega}(X)\right\}
$$

then

$$
\mathfrak{n u m}\left(\mathfrak{F}_{\omega}(X, E)\right)=\mathfrak{n u m}(E)^{\mathfrak{n u m}(X)}
$$

Basic properties of numerosities

For every set of labels \mathfrak{L} the following result holds:

Proposition

Let E, F be sets in Λ. Numerosities satisfy the following properties:
(1) Num $=\mathbb{N}^{*}$, namely $\mathbf{N u m}$ is a elementary extension of \mathbb{N};
(2) Finite parts principle: $\mathfrak{n u m}\left(\wp_{\omega}(E)\right)=2^{\mathfrak{n u m}(E)}$;
(3) Finite functions principle: let E be nonempty, and let

$$
\mathfrak{F}_{\omega}(X, E):=\left\{f: D \rightarrow E \mid D \in \wp_{\omega}(X)\right\}
$$

then

$$
\mathfrak{n u m}\left(\mathfrak{F}_{\omega}(X, E)\right)=\mathfrak{n u m}(E)^{\mathfrak{n u m}(X)}
$$

(9) Hessenberg principle: the operation " + " and "." between ordinal numerosities correspond to the natural (Hessenberg) operations between ordinals.

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Theorem

If we define

$$
\alpha:=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)
$$

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Theorem

If we define

$$
\alpha:=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)
$$

then
(1) $\mathfrak{n u m}\left(\left\{n m \mid m \in \mathbb{N}^{+}\right\}\right)=\frac{\alpha}{n}$;

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Theorem

If we define

$$
\alpha:=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)
$$

then
(1) $\mathfrak{n u m}\left(\left\{n m \mid m \in \mathbb{N}^{+}\right\}\right)=\frac{\alpha}{n}$;
(2) $\mathfrak{n u m}\left(\left\{m^{n} \mid m \in \mathbb{N}^{+}\right\}\right)=\alpha^{\frac{1}{n}}$;

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Theorem

If we define

$$
\alpha:=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)
$$

then
(1) $\mathfrak{n u m}\left(\left\{n m \mid m \in \mathbb{N}^{+}\right\}\right)=\frac{\alpha}{n}$;
(2) $\mathfrak{n u m}\left(\left\{m^{n} \mid m \in \mathbb{N}^{+}\right\}\right)=\alpha^{\frac{1}{n}}$;
(3) $\mathfrak{n u m}(\mathbb{Z})=2 \alpha+1$;

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Theorem

If we define

$$
\alpha:=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)
$$

then
(1) $\mathfrak{n u m}\left(\left\{n m \mid m \in \mathbb{N}^{+}\right\}\right)=\frac{\alpha}{n}$;
(2) $\mathfrak{n u m}\left(\left\{m^{n} \mid m \in \mathbb{N}^{+}\right\}\right)=\alpha^{\frac{1}{n}}$;
(3) $\mathfrak{n u m}(\mathbb{Z})=2 \alpha+1$;
(1) for all $n \in \mathbb{N}$, $\mathfrak{n u m}(\mathbb{Q} \cap[n, n+1))=\alpha$;

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Theorem

If we define

$$
\alpha:=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)
$$

then
(1) $\mathfrak{n u m}\left(\left\{n m \mid m \in \mathbb{N}^{+}\right\}\right)=\frac{\alpha}{n}$;
(2) $\mathfrak{n u m}\left(\left\{m^{n} \mid m \in \mathbb{N}^{+}\right\}\right)=\alpha^{\frac{1}{n}}$;
(3) $\mathfrak{n u m}(\mathbb{Z})=2 \alpha+1$;
(9) for all $n \in \mathbb{N}$, $\mathfrak{n u m}(\mathbb{Q} \cap[n, n+1))=\alpha$;
(3) $\mathfrak{n u m}\left(\mathbb{Q}^{+}\right)=\alpha^{2}$;

Basic properties of numerosities

However it we choose the set of labels \mathfrak{L} in a smart way, we get other properties of the numrosities which appear quite natural (B., Luperi Baglini):

Theorem

If we define

$$
\alpha:=\mathfrak{n u m}\left(\mathbb{N}^{+}\right)
$$

then
(1) $\mathfrak{n u m}\left(\left\{n m \mid m \in \mathbb{N}^{+}\right\}\right)=\frac{\alpha}{n}$;
(2) $\mathfrak{n u m}\left(\left\{m^{n} \mid m \in \mathbb{N}^{+}\right\}\right)=\alpha^{\frac{1}{n}}$;
(3) $\mathfrak{n u m}(\mathbb{Z})=2 \alpha+1$;
(9) for all $n \in \mathbb{N}$, $\mathfrak{n u m}(\mathbb{Q} \cap[n, n+1))=\alpha$;
(3) $\mathfrak{n u m}\left(\mathbb{Q}^{+}\right)=\alpha^{2}$;
(0) $\mathfrak{n u m}(\mathbb{Q})=2 \alpha^{2}+1$.

Basic properties of numerosities

As far as non-denumerable sets are concerned, we have the following result (B., Luperi Baglini):

Basic properties of numerosities

As far as non-denumerable sets are concerned, we have the following result (B., Luperi Baglini):

Theorem
If we set

$$
\beta:=\mathfrak{n u m}([0,1))
$$

Basic properties of numerosities

As far as non-denumerable sets are concerned, we have the following result (B., Luperi Baglini):

Theorem
If we set

$$
\beta:=\mathfrak{n u m}([0,1))
$$

and $E \subset \mathbb{R} \subset$ Ato is a Lebesgue measurable set, then

$$
m_{L}(E)=s t\left(\frac{\mathfrak{n u m}(E)}{\beta}\right)
$$

where m_{L} denotes the Lebesgue measure.

Open question

We will end this talk with an open question worth to think about:

Open question

We will end this talk with an open question worth to think about:

If we give up the Cartesian Product Principle and we consider only the product " \otimes ", there is a numerosity counting system (Λ, Num, $\mathfrak{n u m}$) where Λ is the class of all sets?

Thank you for your attention!

Thank you for your attention!

