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The Euclidean integers

We present an axiomatization of the ordered domain Zκ of the

Euclidean integers: from the algebraic point of view, the Eu-

clidean integers are a non-Archimedean discretely ordered super-

ring Zκ of Z, with a supplementary structure, the Euclidean

structure, introduced axiomatically via the transfinite sum

∑
α
aα = Σ(a), where 〈aα | α < κ〉 = a ∈ Zκ,

Remark that we intend that any transfinite sum comprehends

all summands aα, α < κ. When needed, we restrict the sum to

a subset K ⊆ κ by means of the characteristic function of K

∑
α∈K

aα =
∑
α
bα, with bα = aα·χK(α), and χK(α) =

1 if α ∈ K,
0 otherwise.
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The square inclusion < between ordinals

Given the base 2 normal form of the ordinal α = 2α1 ⊕ . . .⊕ 2αn,

where ⊕ denotes the so called natural commutative ordinal sum,

the associated finite set of ordinals is the set `α = {α1, . . . , αn},

and, coherently, 0 corresponds to the empty set `0 = ∅.

The square inclusion relations <, v on ordinals are defined by

α < β ⇐⇒ `α ⊂ `β, α v β ⇐⇒ `α ⊆ `β (hence α < β ⇒ α < β);

the corresponding supremum is
∨n

1 αi = α ⇔ `α =
⋃n

1 `αi

Proposition. For an infinite set of ordinals A, let Â={β |`β⊆A}:

then A is <-cofinal in Â ⇐⇒ A is <-directed, and then the map

` : α 7→ `α is an isomorphism of (Â,<) onto ([A]<ω,⊂) ∼= (|A|,<)

In particular κ ≥ ℵ0 =⇒ κ = κ̂ =⇒ (κ,<) ∼= ([κ]<ω,⊂).
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The Axioms of the Euclidean integers

This axiomatization is similar to that of the Euclidean numbers

of [3], but introduces the new stronger axiom (SRA), which

makes the semiring Z≥0
κ of the nonnegative Euclidean integers

coincide with the set of all transfinite sums of natural numbers.

We make the natural assumption that a transfinite sum coin-

cides with the ordinary sum of the ring Zκ when the number of

non-zero summands is finite.

In the following axioms, for sake of clarity, we denote general Euclidean num-

bers by fractures a, b, c, s, t, x, y, z, ordinary integers by latin letters a, b, c,m, n, p,

q, u, v, w, x, y, z, κ-sequences by boldface letters a,b,n,x,y, z, and ordinals by

greek letters α, β, γ, δ, η, with κ, ν, µ reserved for cardinals.
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(RA) Representation Axiom: For every x in Zκ there exists a

κ-sequence x = 〈xα | α < κ〉 ∈ Zκ such that x =
∑
α xα.

(LA) Linearity Axiom: The transfinite sum is Z-linear, i.e.

u
∑
α xα + v

∑
α yα =

∑
α(uxα + vyα) for all u, v, xα, yα ∈ Z.

(CA) Comparison Axiom For all x,y ∈ Zκ

∃ θ<κ ∀ δ w θ
( ∑
αvδ

xα ≤
∑
αvδ

yα
)

=⇒
∑
α
xα ≤

∑
α
yα

(Remark that
∑
αvδ xα is a finite sum of ordinary integers.)

(PA) Product axiom: For all x,y ∈ Zκ

(
∑
α
xα)(

∑
β
yβ) =

∑
α,β

xαyβ =
∑
γ

( ∑
α∨β=γ

xαβ
)
,

Remark that
∑
γvδ

∑
γ=α∨β xαβ =

∑
α,βvδ xαβ is a finite sum of

integers, and the corresponding comparison criterion holds:

∃ θ< κ ∀ δ w θ
( ∑
α,βvδ

xαβ ≤
∑

α,βvδ
yαβ

)
=⇒

∑
α,β

xαβ ≤
∑
α,β

yαβ
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The Strong Representation Axiom

(SRA) Strong Representation Axiom: For all x ≥ 0 in Zκ there

exists n = 〈nα | α < κ〉 ∈ Nκ such that x =
∑
α nα.

The axiom (SRA) directly yieds the representation axiom (RA),

since every Euclidean integer is the difference of two disjoint

transfinite sums of natural numbers

z =
∑
α∈A+ zα −

∑
α∈A− |zα|, where A± = {α | zα><0}.

More important, the strong axiom (SRA) has the interesting

consequence that all Euclidean integers are of the simpler form

z = ±∑
α nα for some n ∈ Nκ.

This fact is of great importance for the theory of numerosities.



The axiom (CA) yields the useful property

Translation invariance: Let η, γ < κ and xα = 0 for α ≥ 2η:

(TI)
∑
α
xα =

∑
δ
yδ, where yδ =

xα if δ = 2ηγ + α

0 otherwise
.

In fact,
∑
αvβ xα =

∑
δ=2ηγ+αvβ yδ, for α < 2η and β w 2ηγ.

A stronger interesting property is the following

Double sum linearization: Let xβ,γ = 0 for γ, β ≥ 2η, then

(DSL)
∑
β,γ

xβγ =
∑
α
yα, where yα =

xβγ if α = 2ηβ + γ

0 otherwise
.

In order to get (DSL), one has to strengthen (CA) by putting

D(η, θ) = {δ = 2η·2α+ 2ηξ + ξ | ξ < 2η, α < κ, δ w θ}
and postulating, for all x,y ∈ Zκ,

∃ η, θ<κ ∀ δ ∈ D(η, θ)
( ∑
αvδ

xα ≤
∑
αvδ

yα
)

=⇒
∑
α
xα ≤

∑
α
yα
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Embedding the ordinals

The properties (TI) and (DSL) have the interesting consequence

that, by taking the transfinite sum of their characteristic func-

tions, the ordinals less than κ, with the so called “natural sum

and product” ⊕,⊗, become an ordered subsemiring of Zκ.

Theorem. Put Ψ(β) =
∑
α χβ(α), where χβ(α) =

1 if α < β,

0 otherwise
.

Then α < β ⇐⇒ Ψ(α) < Ψ(β), and Ψ(α⊕β) = Ψ(α)+Ψ(β),

hence Ψ is an isomorphic embedding of (κ;<,⊕), as ordered

semigroup, into the nonnegative part of Zκ.

If moreover (DSL) holds, then also Ψ(α⊗ β) = Ψ(α) ·Ψ(β),

and Ψ is an isomorphic embedding of (κ;<,⊕,⊗), as ordered

semiring, into the nonnegative part of the ring Zκ.
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The counting functions
The counting function of a κ-sequence of integers x ∈ Zκ is

fx : κ→ Z defined by fx(α) =
∑
βvα xβ.

Lemma . Every function ψ : κ → Z is the counting function fx

of some κ-sequence x ∈ Zκ, e.g. put

x0 = ψ(0), xα = ψ(α)−
∑
β<α

xβ, thus ψ(α) =
∑
βvα

xβ.

Call fine a filter on κ containing all cones C(α) = {β | α v β}, for

α < κ, and let U be any fine ultrafilter containing the zero-sets of

all counting functions, i.e. the sets Z(x) = {α < κ | fx(α) = 0},

for x ∈ Zκ.

Then we have the following ultrapower characterization (U must

be fine, in order to get axiom (CA)).
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The ultrapower characterization of Zκ

Theorem. Let U be a fine ultrafilter over κ, containing all zero-

sets Z(x) = {α < κ | fx(α) = 0}, x ∈ Zκ. Let p be the prime

ideal of the ring Zκ corresponding to U, and let πU : Zκ → ZκU
and πp : Zκ → Zκ/p be the canonical projections. Then there

exist unique isomorphisms σ : Zκ → Zκ/p, ϕ : Zκ/p → ZκU that

make the following diagram commute:

Zκ ZκUZκ/p

Zκ

πp

Zκ

σ

f

Σ
ϕ

πU

- -

-

? ?

@
@

@
@

@
@R

(f and Σ map each x ∈ Zκ to its counting function fx ∈ Zκ and respectively

to its transfinite sum
∑

(x) ∈ Zκ)
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Any fine ultrafilter U on κ validates the four axioms (RA),(LA),

(CA), and (PA), but the ring Zκ satisfies the strong represen-

tation axiom (SRA) if and only if Σ maps the semiring Nκ of

all κ-sequences of natural numbers onto the nonnegative part

Z≥0
κ of Zκ. Equivalently, given a function ψ ∈ Zκ that is pos-

itive modulo U, the axiom (SRA) postulates the existence of a

κ-sequence x ∈ Nκ such that

{α < κ | fx(α) =
∑
βvα xβ = ψ(α)} ∈ U.

Now, nonnegative κ-sequences x give rise to nondecreasing

counting functions fx, and conversely, so one needs a fine ul-

trafilter U that includes, for each ψ ∈ Nκ, a set Uψ such that

(#) ∀α, β ∈ Uψ
(
α < β =⇒ ψ(α) ≤ ψ(β)

)
.
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The Euclidean ultrafilters
Let [κ]2< = {(α, β) | α < β} be the set of all <-ordered pairs:

for ψ ∈ Nκ, define the partition

Gψ : [κ]2<→ {0,1} by Gψ(α, β) =

0 if ψ(α) > ψ(β),

1 otherwise.

Clearly, the partition Gψ does not admit any <-increasing 0-

homogeneous sequence (call such a sequence a 0-chain).

Call Euclidean a fine ultrafilter U on κ if for all ψ ∈ Nκ the part-

ition Gψ of [κ]2< has a homogeneous set Uψ ∈ U, which, being

<-cofinal, cannot be 0-homogeneous, so it satisfies (#). Then

Corollary. The ring Zκ ∼= ZκU satisfies the strong representation

axiom (SRA) if and only if the ultrafilter U is Euclidean. 2

We are left with the question of the existence of Euclidean

ultrafilters.
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The partition property [A]<ω⊂ → (cofin)rk says that any finite

partition of all ⊂-ordered r-tuples of finite subsets of A admits

a ⊂-cofinal homogeneous subset H ⊆ A, i.e. every u ∈ [A]<ω

is included in some v ∈ [H]<ω, and all ⊂-ordered r-tuples from

[H]<ω belong to the same piece of the partition (see [9]).

Clearly, the partition property [A]<ω⊂ → (cofin)2
k depends only

on |A|. Considering the corresponding notion for the square

inclusion < on κ, the property κ<→ (<-cofin)2
2 would yield di-

rectly the existence of Euclidean ultrafilters on κ, but its validity

for κ > ℵ1 is still open, half a century after [9]. (For κ = ℵ0 it

follows immediately from Ramsey’s Theorem, while for κ = ℵ1

it is proved in [10].)
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The partition property κ→ (ω, cofin)2
<

However a (weaker) property, stating an appropriate version of

the Erdös-Dushnik-Miller partition property κ→ (ω, κ)2 suffices.

The partition property κ → (ω, cofin)2
< affirms that any 2-

partition G : [κ]2 → {0,1} that does not admit a 0-chain

(i.e. a 0-homogeneous <-increasing sequence ), has a <-cofinal

homogeneous set H (necessarily 1-homogeneous).

This property suffices to get Euclidean ultrafilters, namely

Lemma 1. If κ → (ω, κ)2
< holds, then there are Euclidean ul-

trafilters on κ. 2

In [7] the validity of κ→ (ω, cofin)2
< is proved for all uncount-

able cardinals, hence the existence of rings of Euclidean integers

Zκ satisfying the strong representation axiom (SRA) is granted.
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The Euclidean common notions

A satisfactory notion of measure of size should abide by the

famous five common notions of Euclid’s Elements, which tra-

ditionally embody the properties of any kind of magnitudines:

(E1) Things equal to the same thing are also equal to one another.

(E2) And if equals be added to equals, the wholes are equal.

(E3) And if equals be subtracted from equals, the remainders are

equal.

(E4) Things [exactly] applying onto one another are equal to one

another.∗

(E5) The whole is greater than the part.
∗ Here we translate εφαρµoζoντα by “[exactly] applying onto”, instead of the usual “coin-
ciding with”. As pointed out by T.L. Heath in his commentary [?], this translation seems
to give a more appropriate rendering of the mathematical usage of the verb εφαρµoζειν.
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Measureing the size of sets
The usual measure of the size of sets is the classical Cantorian

“cardinality”, grounded on the so called Hume’s Principle “Two

sets have the same size if and only if there exists a biunique

correspondence between them.”

This assumption might seem natural, and even implicit in the

notion of counting; but it strongly violates the equally natural

Euclid’s principle A set is greater than its proper subsets, which

in turn seems implicit in the notion of magnitudo.

• Call a measure of size k for sets Cantorian if, for all A,B:

(HP) k(A) = k(B) ⇐⇒ ∃f : A→ B biunique

• Call a measure of size n for sets Euclidean if, for all A,B:

(EP) n(A) < n(B) ⇐⇒ ∃A′ ⊂ B′
(
n(A) = n(A′), n(B′) = n(B)

)
(Remark the use of proper inclusion)
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Euclidean size of sets (numerosity)

The consistency of the principle (EP) for uncountable sets ap-

peared problematic from the beginning, and this question has

been posed in several papers (see [1, 2, 5]), where only the

literal set-theoretic translation of the fifth Euclidean notion has

been obtained, i.e. the sole left pointing arrow of (EP):

(E5) A ⊂ B =⇒ n(A) < n(B)

(On the other hand, it is worth recalling that also the totality of

the Cantorian weak cardinal ordering had to wait more than two

decades till Zermelo’s new axiom of choice to be established!)

A general discussion of different ways for comparing and mea-

suring the size of sets can be found in [8].
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Addition of numerosities

One wants not only compare, but also add and subtract nu-

merosities, and the following Aristotle’s Principle†

(AP) n(A) = n(B) ⇐⇒ n(A\B) = n(B\A)

is convenient, because it yields both the second and third Eu-

clidean common notions, with the natural definitions of addition

as (disjoint) union, and subtraction as (relative) complement

n(A) + nB = n(A ∪B) for all A,B such that A ∩B = ∅

Moreover, asuming (AP), the full principle (EP) follows by the

particular case of the empty set

(E0) n(A) = n(∅) ⇐⇒ A = ∅
† This priciple has been named Aristotle’s Principle in [4, ?], because it resembles Aristotle’s
preferred example of a “general axiom”. It is especially relevant in this context, because
(AP) implies both the second and the third Euclidean common notions, and also the fifth
whenever no nonempty set is equivalent to ∅, as stated in the proposition below.
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The Subtraction Principle

In particular one gets from (AP)+(EP) the “most wanted Sub-

traction Principle” of [1]:

(diff) n(A) < n(B) ⇐⇒ ∃C
(
C ∩A = ∅ and n(C ∪A) = n(B)

)
The consistency problem of the Subtraction Principle, studied in

several papers dealing with Euclidean (also called Aristotelian)

notions of size for sets, receeved a positive answer only for

countable sets in [5, 4], thanks to the use of selective ultrafilters.

A positive answer for sets of arbitrary cardinality is obtained in

[8], where it follows from the existence of Euclidean ultrafilters,

equivalent to the consistency of the axiom (SRA).
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Multiplication of numerosities

In classical mathematics, a multiplicative version of Euclid’s

second common notion “if equals be multiplied by equals, the

products are equal” was never considered for “dishomogeneous”

magnitudes, like geometric figures having different dimensions.

However it seems natural to consider abstract sets as homo-

geneous mathematical objects, and a satisfying arithmetic of

numerosities needs a product, with a corresponding unit. The

Cantorian choice of Cartesian products and singletons makes

any A × {b}, b ∈ B a disjoint equinumerous copy of A, thus

making their union A×B the sum of “B-many copies of A”, in

accord with the intuitive idea of product.‡

‡CAVEAT : Cartesian products are optimal when any A,B are multipliable in the sense that
A×B ∩A ∪B = ∅, but not when singletons cannot be unitary for a Euclidean theory, e.g.
when transitive universes are considered : Vω × {x} ⊂ Vω for any x ∈ Vω. (see [1, 8]).
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Natural congruences

Once the general Hume’s principle cannot be assumed, the

fourth Euclid’s common notion

Things [exactly] applying onto one another are equal to one

another

is left in need of an adequate choice of natural congruences, i.e.

size-preserving “exact applications”. When dealing with sets

of tuples, a natural choice seems to take those applications τ

that preserve the support (the set of components) of the tuple:

τ(a1, . . . , ak) = τ(b1, . . . , bn) ⇐⇒ {a1, . . . , ak} = {b1, . . . , bn} and

postulate the following Congruence Principle

(CP) n(τ [A]) = n(A) for all support preserving τ ,§

§ So in particular, although the Cartesian product is neither commutative nor associative
stricto sensu, the product of numerosities is.
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Euclidean numerosities as Euclidean integers

The properties of the ring Zκ of the Euclidean integers allow for

assigning a Euclidean numerosity to “Punktmengen”, i.e. sets

of tuples, over any line L of arbitrary size κ.

Definition. A (Euclidean) numerosity for “Punktmengen” over

L is a function n : W→ Zκ, with a set W ⊆ P(
⋃
n∈NLn) such that

A ∪ B, A× B ∈ W ⇐⇒ A,B ∈ W, C ⊆ A ∈ W =⇒ C ∈ W,

and the following conditions are satisfied for all A,B,C ∈W:

(EP) n(A) < n(B) ⇐⇒ ∃B′(A ⊂ B′, n(B′) = n(B)),

(AP) n(A) = n(B) ⇐⇒ n(A \B) = n(B \A);

(PP) n(A) = n(B) ⇐⇒ n(A× C) = n(B × C) (for all C 6= ∅);

(UP) n(A) = n(A× {w}) for all w ∈W =
⋃W.

(CP) n(τ [A]) = n(A) for all support-preserving bijections τ ;



Since in a general set-theoretic context there are no “geomet-

ric” or “analytic” properties to be considered, the sole relevant

characteristic of the line L remains cardinality, so a convenient

choice seems to be simply identify L with its cardinal κ, thus

obtaining the fringe benefit that no pair of ordinals is an ordinal,

and Cartesian products may be freely used.

Moreover this numerosity might be extended to the whole uni-

verse by suitably labelling each set by ordinals, under simple set

theoretic assumptions, e.g. Von Neumann’s axiom, that gives

a (class-)bijection between the universe V and the class Ord of

all ordinals.
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The generalized characteristic functions

Start with n : P(κ) → Zκ as the transfinite sum of the charac-

teristic functions of each subset of κ:

n(A) =
∑
α
χA(α), where χA(α) =

1 if α ∈ A
0 otherwise.

Then assign to each n-tuple α = (α1, . . . , αn) ∈ κn the ordinal

ψn(α) = α1 ∨ . . . ∨ αn < κ, and extend n to P(κn) by

n(A) =
∑
α χ

(n)
A (α), where χ

(n)
A (α) = |{α∈A | ψn(α) = α}|

for all ¶ A ⊆ κn.

Finally extend n to all finite dimensional point sets, i.e. sets A

such that {n | A ∩ κn 6= ∅} is finite, by putting

n(A) =
∑
n
n(A ∩ κn).

¶ Remark that we are assigning the same ordinal α to α ∈ κ, to (α1, α2) ∈ κ2 if α = α1∨α2,
. . . , to (α1, . . . , αn) ∈ κn if α =

∨n
1 αi, hence the functions χ(n), for n > 1, are not properly

characteristic functions, but they assume nonnegative integer values, so their sums are
nonnegative Euclidean integers.
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Then the five Euclid’s Common Notions are satisfied, all finite

sets receive their number of elements as numerosity, and

• the principle (EP) is equivalent to the axiom (SRA); (both

postulate that the difference χA − χB of two (generalized)

characteristic functions, when positive, has the same trans-

finite sum of a single positive function χC)

• the Aristotelian principle (AP) holds because

n(A) = n(A \B) + n(A ∩B), n(B) = n(B \A) + n(A ∩B;

• the multiplicative principles (UP) and (PP) follow directly

from the product axiom (PA);

• the congruence principles (CP) holds by the definition of the

generalized characteristic funtions χnA.

moreover every point set is equinumerous to a set of ordinals,

and conversely every nonnegative Euclidean integer x is the nu-

merosity of a set X of ordinals.
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The power mn of infinite numerosities is here always well-defined, since nu-

merosities are positive euclidean numbers, hence nonstandard natural num-

bers. By using finite approximations given by intersections with suitable

finite sets, the interesting relation

2n(X) = n([X]<ω),

has been obtained already in [1]. Since the comparison axiom (CA) evaluates

transfinite sums by finite sums
∑
αvδ χA(α), one obtains the following general

set theoretic interpretation of powers:

m(Y )n(X) = n({f : X → Y | |f | < ℵ0}),

by considering sets of ordinals X,Y , and labelling each finite function f by

the v-supremum of the (finitely many) ordinals involved in f .

The interesting problem of finding appropriately defined arithmetic opera-

tions that give instead the numerosity of the full powersets and function

spaces requires a quite different approach, and the history of the same prob-

lem for cardinalities suggests that it could not be properly solved.
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The Weak Hume Principle
Perhaps the best way to view a Euclidean numerosity is looking at it as

a refinement of Cantorian cardinality, able to separate sets that, although

equipotent, should have in fact really different sizes, in particular when they

are proper subsets or supersets of one another.

To this aim, the principle (EP) might be integrated by the “Weak Hume’s

Principle” postulating that equinumerous sets are in a biunique correspon-

dence. Or better

(WHP) n(A) ≤ n(B) =⇒ ∃f 1-to-1, f : A→ B.

So the ordering of the Euclidean numerosities refines the cardinal ordering,

and sums of ones of greater cardinality produce greater Euclidean integers.

This topic is dealt with in [8], where it is proved that the family of sets

Q>AB = {β < κ |
∑
αvβ χA(α) >

∑
αvβ χB(α)} for|A| > |B|

has the FIP together with the cones C(θ), hence may be contained in the

fine ultrafilter U. However it is not known whether that family might be

included in an Euclidean ultrafilter, so the consistency of the weak Hume

principle (WHP) with the difference property (diff) is still open.
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The Subset Property

An interesting consequence of (WHP) combined with (EP) is the

fact that any initial segment of Z≤0 generated by a numerosity

n(A) is in correspondence with P(A), so has size 2|A|, whereas

in the large ultrapower models of [1, 2], one may have strictly

increasing chains of sets of arbitrary length.


