Prove Multidimensional van der Waerden's Theorem With A Simple Induction

Renling Jin
College of Charleston, SC

Logical Methods in Ramsey Theory and Related Topics Pisa, Italy, July 11, 2023

OUTLINE:

(1) Iterated elementary extensions

 (2) Proof of Ramsey's theorem
OUTLINE:

(1) Iterated elementary extensions
(2) Proof of Ramsey's theorem (3) Proof of multidimensional van der Waerden's theorem

OUTLINE:

(1) Iterated elementary extensions
(2) Proof of Ramsey's theorem
(3) Proof of multidimensional van der Waerden's theorem

OUTLINE:

(1) Iterated elementary extensions
(2) Proof of Ramsey's theorem
(3) Proof of multidimensional van der Waerden's theorem

Definition

Let \mathfrak{A}_{0} be a structure with the base set A_{0} containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_{0} and \mathbb{R}_{0}.

Definition

Let \mathfrak{A}_{0} be a structure with the base set A_{0} containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_{0} and \mathbb{R}_{0}. For example, let \mathfrak{A} be the superstructure $(V(X) ; \in)$ truncated at level 100.

Definition

Let \mathfrak{A}_{0} be a structure with the base set A_{0} containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_{0} and \mathbb{R}_{0}. For example, let \mathfrak{A} be the superstructure $(V(X) ; \in)$ truncated at level 100.
(a) The structure \mathfrak{A}^{\prime} with base set A^{\prime} is called an elementary extension of \mathfrak{A}_{0}, denoted by $\mathfrak{A}_{0} \prec \mathfrak{A}^{\prime}$, if there is a proper injection $i: A_{0} \rightarrow A^{\prime}$, called elementary embedding, such that

Definition

Let \mathfrak{A}_{0} be a structure with the base set A_{0} containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_{0} and \mathbb{R}_{0}. For example, let \mathfrak{A} be the superstructure $(V(X) ; \in)$ truncated at level 100.
(a) The structure \mathfrak{A}^{\prime} with base set A^{\prime} is called an elementary extension of \mathfrak{A}_{0}, denoted by $\mathfrak{A}_{0} \prec \mathfrak{A}^{\prime}$, if there is a proper injection $i: A_{0} \rightarrow A^{\prime}$, called elementary embedding, such that

$$
\varphi(\bar{a}) \text { is true in } \mathfrak{A}_{0} \Longleftrightarrow \varphi(\overline{i(a)}) \text { is true in } \mathfrak{A}^{\prime}
$$

Definition

Let \mathfrak{A}_{0} be a structure with the base set A_{0} containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_{0} and \mathbb{R}_{0}. For example, let \mathfrak{A} be the superstructure $(V(X) ; \in)$ truncated at level 100.
(a) The structure \mathfrak{A}^{\prime} with base set A^{\prime} is called an elementary extension of \mathfrak{A}_{0}, denoted by $\mathfrak{A}_{0} \prec \mathfrak{A}^{\prime}$, if there is a proper injection $i: A_{0} \rightarrow A^{\prime}$, called elementary embedding, such that

$$
\varphi(\bar{a}) \text { is true in } \mathfrak{A}_{0} \Longleftrightarrow \varphi(\overline{i(a)}) \text { is true in } \mathfrak{A}^{\prime}
$$

for any first-order formula $\varphi(\bar{x})$ in the language of \mathfrak{A}_{0} and any tuple \bar{a} in A_{0}^{n}.

Definition

Let \mathfrak{A}_{0} be a structure with the base set A_{0} containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_{0} and \mathbb{R}_{0}. For example, let \mathfrak{A} be the superstructure $(V(X) ; \in)$ truncated at level 100.
(a) The structure \mathfrak{A}^{\prime} with base set A^{\prime} is called an elementary extension of \mathfrak{A}_{0}, denoted by $\mathfrak{A}_{0} \prec \mathfrak{A}^{\prime}$, if there is a proper injection $i: A_{0} \rightarrow A^{\prime}$, called elementary embedding, such that

$$
\varphi(\bar{a}) \text { is true in } \mathfrak{A}_{0} \Longleftrightarrow \varphi(\overline{i(a)}) \text { is true in } \mathfrak{A}^{\prime}
$$

for any first-order formula $\varphi(\bar{x})$ in the language of \mathfrak{A}_{0} and any tuple \bar{a} in A_{0}^{n}.
(b) Let \mathfrak{A}^{\prime} and $\mathfrak{A}^{\prime \prime}$ be two elementary extensions of \mathfrak{A}_{0}. The relation $\mathfrak{A}^{\prime} \prec \mathfrak{A}^{\prime \prime}$ and map i: $\mathfrak{A}^{\prime} \prec \mathfrak{A}^{\prime \prime}$ can be defined similarly as in (a) with \mathfrak{A}_{0} and \mathfrak{A}^{\prime} being replaced by \mathfrak{A}^{\prime} and $\mathfrak{A}^{\prime \prime}$.

We often write \mathfrak{A} for a structure as well as the base set of the structure for notational convenience.

We often write \mathfrak{A} for a structure as well as the base set of the structure for notational convenience.

Proposition

There is a chain of elementary extensions

$$
\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots
$$

such that the set \mathbb{N}_{m} of all natural numbers in \mathfrak{A}_{m} is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m, n}$ from \mathfrak{A}_{n} to \mathfrak{A}_{n+1} for any $0 \leq m \leq n$ such that

We often write \mathfrak{A} for a structure as well as the base set of the structure for notational convenience.

Proposition

There is a chain of elementary extensions

$$
\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots
$$

such that the set \mathbb{N}_{m} of all natural numbers in \mathfrak{A}_{m} is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m, n}$ from \mathfrak{A}_{n} to \mathfrak{A}_{n+1} for any $0 \leq m \leq n$ such that
(a) $i_{m, n}(x)=x$ for $x \in \mathbb{N}_{m}$ and $i_{m, n} \mid \mathfrak{A}_{k}=i_{m, k}$ for $m \leq k \leq n$,

We often write \mathfrak{A} for a structure as well as the base set of the structure for notational convenience.

Proposition

There is a chain of elementary extensions

$$
\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots
$$

such that the set \mathbb{N}_{m} of all natural numbers in \mathfrak{A}_{m} is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m, n}$ from \mathfrak{A}_{n} to \mathfrak{A}_{n+1} for any $0 \leq m \leq n$ such that
(a) $i_{m, n}(x)=x$ for $x \in \mathbb{N}_{m}$ and $i_{m, n} \mid \mathfrak{A}_{k}=i_{m, k}$ for $m \leq k \leq n$,
(b) $i_{m, n}\left[\mathbb{N}_{k} \backslash \mathbb{N}_{k-1}\right] \subseteq \mathbb{N}_{k+1} \backslash \mathbb{N}_{k}$ for $k=m+1, \ldots, n$,

We often write \mathfrak{A} for a structure as well as the base set of the structure for notational convenience.

Proposition

There is a chain of elementary extensions

$$
\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots
$$

such that the set \mathbb{N}_{m} of all natural numbers in \mathfrak{A}_{m} is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m, n}$ from \mathfrak{A}_{n} to \mathfrak{A}_{n+1} for any $0 \leq m \leq n$ such that
(a) $i_{m, n}(x)=x$ for $x \in \mathbb{N}_{m}$ and $i_{m, n} \mid \mathfrak{A}_{k}=i_{m, k}$ for $m \leq k \leq n$,
(b) $i_{m, n}\left[\mathbb{N}_{k} \backslash \mathbb{N}_{k-1}\right] \subseteq \mathbb{N}_{k+1} \backslash \mathbb{N}_{k}$ for $k=m+1, \ldots, n$,
(c) $i_{m, n} \mid \mathfrak{A}_{k}$ is an elementary embedding from $\left(\mathfrak{A}_{k} ; \mathbb{R}_{k-1}\right)$ to $\left(\mathfrak{A}_{n+1} ; \mathbb{R}_{n+1-I}\right)$ for $m \leq k \leq n$ and $0<I \leq k-m$, where $\left(\mathfrak{A}_{k} ; \mathbb{R}_{k-1}\right)$ is the structure \mathfrak{A}_{k} augmented by \mathbb{R}_{k-1} as a unary relation.

Remark

(1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_{0}. The elementary chain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_{0} modulo \mathcal{F}.

There are different ways of doing iterations example, to obtain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2}$, one can consider

Remark

(1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_{0}. The elementary chain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_{0} modulo \mathcal{F}.
(2) There are different ways of doing iterations. Let $\mathcal{F}^{\prime}=\mathcal{F}$. For example, to obtain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2}$, one can consider

Remark

(1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_{0}. The elementary chain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_{0} modulo \mathcal{F}.
(2) There are different ways of doing iterations. Let $\mathcal{F}^{\prime}=\mathcal{F}$. For example, to obtain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2}$, one can consider

$$
\left(\mathfrak{A}_{0}^{\mathbb{N}_{0}} / \mathcal{F}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{1}^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{2}
$$

Remark

(1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_{0}. The elementary chain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_{0} modulo \mathcal{F}.
(2) There are different ways of doing iterations. Let $\mathcal{F}^{\prime}=\mathcal{F}$. For example, to obtain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2}$, one can consider

$$
\left(\mathfrak{A}_{0}^{\mathbb{N}_{0}} / \mathcal{F}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{1}^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{2}
$$

which is called the external ultrapower construction, or

Remark

(1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_{0}. The elementary chain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_{0} modulo \mathcal{F}.
(2) There are different ways of doing iterations. Let $\mathcal{F}^{\prime}=\mathcal{F}$. For example, to obtain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2}$, one can consider

$$
\left(\mathfrak{A}_{0}^{\mathbb{N}_{0}} / \mathcal{F}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{1}^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{2}
$$

which is called the external ultrapower construction, or

$$
\left(\mathfrak{A}_{0}^{\mathbb{N}_{0}} / \mathcal{F}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\left(\mathfrak{A}_{1}^{\mathbb{N}_{1}} \cap \mathfrak{A}_{1}\right) /\left(\mathcal{F}^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}\right)=\mathfrak{A}_{2}
$$

Remark

(1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_{0}. The elementary chain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2} \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_{0} modulo \mathcal{F}.
(2) There are different ways of doing iterations. Let $\mathcal{F}^{\prime}=\mathcal{F}$. For example, to obtain $\mathfrak{A}_{0} \prec \mathfrak{A}_{1} \prec \mathfrak{A}_{2}$, one can consider

$$
\left(\mathfrak{A}_{0}^{\mathbb{N}_{0}} / \mathcal{F}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{1}^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\mathfrak{A}_{2}
$$

which is called the external ultrapower construction, or

$$
\left(\mathfrak{A}_{0}^{\mathbb{N}_{0}} / \mathcal{F}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\left(\mathfrak{A}_{1}^{\mathbb{N}_{1}} \cap \mathfrak{A}_{1}\right) /\left(\mathcal{F}^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}\right)=\mathfrak{A}_{2}
$$

which is called the internal ultrapower construction.

Remark

(3) By the external ultrapower construction one can produce an elementary embedding $i_{0,1}: \mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}$. Note that $i_{0,1}\left[\mathbb{N}_{1} \backslash \mathbb{N}_{0}\right] \subseteq \mathbb{N}_{2} \backslash \mathbb{N}_{1}$. By the internal ultrapower construction one can produce another elementary embedding $i_{1,1}: \mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}$ such that $i_{1,1} l, \mathbb{N}_{1}$ is an identity map.
\qquad
\qquad
\qquad
\qquad

Remark

(3) By the external ultrapower construction one can produce an elementary embedding $i_{0,1}: \mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}$. Note that $i_{0,1}\left[\mathbb{N}_{1} \backslash \mathbb{N}_{0}\right] \subseteq \mathbb{N}_{2} \backslash \mathbb{N}_{1}$. By the internal ultrapower construction one can produce another elementary embedding $i_{1,1}: \mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}$ such that $i_{1,1}\left\lceil, \mathbb{N}_{1}\right.$ is an identity map.
(4) Since $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\left(\mathfrak{A}_{2} ; \mathbb{R}_{1}\right)$, the map $i_{0,1}$ is also an elementary embedding from $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)$, i.e., the model \mathfrak{A}_{1} augmented with a new unary relation \mathbb{R}_{0}, to $\left(\mathfrak{A}_{2} ; \mathbb{R}_{1}\right)$, i.e., the model \mathfrak{A}_{2} augmented with a new unary relation \mathbb{R}_{1}.

Remark

(3) By the external ultrapower construction one can produce an elementary embedding $i_{0,1}: \mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}$. Note that $i_{0,1}\left[\mathbb{N}_{1} \backslash \mathbb{N}_{0}\right] \subseteq \mathbb{N}_{2} \backslash \mathbb{N}_{1}$. By the internal ultrapower construction one can produce another elementary embedding $i_{1,1}: \mathfrak{A}_{1} \rightarrow \mathfrak{A}_{2}$ such that $i_{1,1} \, \mathbb{N}_{1}$ is an identity map.
(4) Since $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)^{\mathbb{N}_{0}} / \mathcal{F}^{\prime}=\left(\mathfrak{A}_{2} ; \mathbb{R}_{1}\right)$, the map $i_{0,1}$ is also an elementary embedding from $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)$, i.e., the model \mathfrak{A}_{1} augmented with a new unary relation \mathbb{R}_{0}, to $\left(\mathfrak{A}_{2} ; \mathbb{R}_{1}\right)$, i.e., the model \mathfrak{A}_{2} augmented with a new unary relation \mathbb{R}_{1}.
(5) If one iterates internal ultrapowers of $\mathfrak{A}_{0} m$ times followed by external but \mathfrak{A}_{m}-internal ultrapowers $n-m$ times, one can obtain an elementary embedding $i_{m, n}: \mathfrak{A}_{n} \rightarrow \mathfrak{A}_{n+1}$ as stated in the proposition.

Theorem (Ramsey)

Given a coloring $c:\left[\mathbb{N}_{0}\right]^{n} \rightarrow[r]$ for some $r \in \mathbb{N}_{0}$, there exists an infinite set $A \subseteq \mathbb{N}_{0}$ such that $c \upharpoonright[A]^{n}$ is a constant function.

Theorem (Ramsey)

Given a coloring $c:\left[\mathbb{N}_{0}\right]^{n} \rightarrow[r]$ for some $r \in \mathbb{N}_{0}$, there exists an infinite set $A \subseteq \mathbb{N}_{0}$ such that $c \upharpoonright[A]^{n}$ is a constant function.

Proof: Let $x_{1}=\left[/ d_{\mathbb{N}_{0}}\right]_{\mathcal{F}_{0}} \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}$ and let $x_{j+1}=i_{0, n}\left(x_{j}\right)$ for $j=1,2, \ldots, n-1$. Note that x_{j+1} is an equivalence class represented by $I d_{\mathbb{N}_{j}}: \mathbb{N}_{j} \rightarrow \mathbb{N}_{j}$. Let ${ }^{*} c(\bar{x})=c_{0} \in[r]$ where $\bar{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. We find an infinite set $A=\left\{a_{1}<a_{2}<\cdots\right\}$ in \mathbb{N}_{0} by induction such that ${ }^{*} c \upharpoonright[A \cup \bar{x}]^{n} \equiv c_{0}$.

The basic case for $A=\emptyset$ is trivially true.
Assume that $A_{m}=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\}$ has been constructed

Theorem (Ramsey)

Given a coloring $c:\left[\mathbb{N}_{0}\right]^{n} \rightarrow[r]$ for some $r \in \mathbb{N}_{0}$, there exists an infinite set $A \subseteq \mathbb{N}_{0}$ such that $c \upharpoonright[A]^{n}$ is a constant function.

Proof: Let $x_{1}=\left[/ d_{\mathbb{N}_{0}}\right]_{\mathcal{F}_{0}} \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}$ and let $x_{j+1}=i_{0, n}\left(x_{j}\right)$ for $j=1,2, \ldots, n-1$. Note that x_{j+1} is an equivalence class represented by $I d_{\mathbb{N}_{j}}: \mathbb{N}_{j} \rightarrow \mathbb{N}_{j}$. Let ${ }^{*} c(\bar{x})=c_{0} \in[r]$ where $\bar{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. We find an infinite set $A=\left\{a_{1}<a_{2}<\cdots\right\}$ in \mathbb{N}_{0} by induction such that ${ }^{*} c \upharpoonright[A \cup \bar{x}]^{n} \equiv c_{0}$.

The basic case for $A=\emptyset$ is trivially true.
Assume that $A_{m}=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\}$ has been constructed such that ${ }^{*} c \upharpoonright\left[A_{m} \cup \bar{x}\right]^{n} \equiv c_{0}$.

Theorem (Ramsey)

Given a coloring $c:\left[\mathbb{N}_{0}\right]^{n} \rightarrow[r]$ for some $r \in \mathbb{N}_{0}$, there exists an infinite set $A \subseteq \mathbb{N}_{0}$ such that $c \upharpoonright[A]^{n}$ is a constant function.

Proof: Let $x_{1}=\left[/ d_{\mathbb{N}_{0}}\right]_{\mathcal{F}_{0}} \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}$ and let $x_{j+1}=i_{0, n}\left(x_{j}\right)$ for $j=1,2, \ldots, n-1$. Note that x_{j+1} is an equivalence class represented by $I d_{\mathbb{N}_{j}}: \mathbb{N}_{j} \rightarrow \mathbb{N}_{j}$. Let ${ }^{*} c(\bar{x})=c_{0} \in[r]$ where $\bar{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. We find an infinite set $A=\left\{a_{1}<a_{2}<\cdots\right\}$ in \mathbb{N}_{0} by induction such that ${ }^{*} c \upharpoonright[A \cup \bar{x}]^{n} \equiv c_{0}$.

The basic case for $A=\emptyset$ is trivially true.
Assume that $A_{m}=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\}$ has been constructed such that ${ }^{*} c \upharpoonright\left[A_{m} \cup \bar{x}\right]^{n} \equiv c_{0}$.

Theorem (Ramsey)

Given a coloring $c:\left[\mathbb{N}_{0}\right]^{n} \rightarrow[r]$ for some $r \in \mathbb{N}_{0}$, there exists an infinite set $A \subseteq \mathbb{N}_{0}$ such that $c \upharpoonright[A]^{n}$ is a constant function.

Proof: Let $x_{1}=\left[/ d_{\mathbb{N}_{0}}\right]_{\mathcal{F}_{0}} \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}$ and let $x_{j+1}=i_{0, n}\left(x_{j}\right)$ for $j=1,2, \ldots, n-1$. Note that x_{j+1} is an equivalence class represented by $I d_{\mathbb{N}_{j}}: \mathbb{N}_{j} \rightarrow \mathbb{N}_{j}$. Let ${ }^{*} c(\bar{x})=c_{0} \in[r]$ where $\bar{x}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. We find an infinite set $A=\left\{a_{1}<a_{2}<\cdots\right\}$ in \mathbb{N}_{0} by induction such that ${ }^{*} c \upharpoonright[A \cup \bar{x}]^{n} \equiv c_{0}$.

The basic case for $A=\emptyset$ is trivially true.
Assume that $A_{m}=\left\{a_{1}<a_{2}<\cdots<a_{m}\right\}$ has been constructed such that ${ }^{*} c \upharpoonright\left[A_{m} \cup \bar{x}\right]^{n} \equiv c_{0}$.

It suffices to find $a_{m+1}>a_{m}$ in \mathbb{N}_{0} and $A_{m+1}=A_{m} \cup\left\{a_{m+1}\right\}$ such that ${ }^{*} c \upharpoonright\left[A_{m+1} \cup \bar{x}\right]^{n} \equiv c_{0}$.

Note that the sentence

$$
\varphi\left(i_{0, n}\left(A_{m}\right), i_{0, n}\left(x_{1}\right), i_{0, n}\left(x_{2}\right), \ldots, i_{0, n}\left(x_{n-1}\right)\right):
$$

Note that the sentence

$$
\varphi\left(i_{0, n}\left(A_{m}\right), i_{0, n}\left(x_{1}\right), i_{0, n}\left(x_{2}\right), \ldots, i_{0, n}\left(x_{n-1}\right)\right):
$$

$\exists x \in \mathbb{N}_{1}$ greater than a_{m} such that

$$
{ }^{*} c \upharpoonright\left[A_{m} \cup\left\{x, i_{0, n}\left(x_{1}\right), i_{0, n}\left(x_{2}\right), \ldots, i_{0, n}\left(x_{n-1}\right)\right]^{n} \equiv c_{0}\right.
$$

is true in $\left(\mathfrak{A}_{n} ; \mathbb{R}_{1}\right)$.

Note that the sentence

$$
\varphi\left(i_{0, n}\left(A_{m}\right), i_{0, n}\left(x_{1}\right), i_{0, n}\left(x_{2}\right), \ldots, i_{0, n}\left(x_{n-1}\right)\right):
$$

$\exists x \in \mathbb{N}_{1}$ greater than a_{m} such that

$$
{ }^{*} c \upharpoonright\left[A_{m} \cup\left\{x, i_{0, n}\left(x_{1}\right), i_{0, n}\left(x_{2}\right), \ldots, i_{0, n}\left(x_{n-1}\right)\right]^{n} \equiv c_{0}\right.
$$

is true in $\left(\mathfrak{A}_{n} ; \mathbb{R}_{1}\right)$.
By the transfer principle, the sentence $\varphi\left(A_{m}, x_{1}, x_{2}, \ldots, x_{n-1}\right)$ is true in $\left(\mathfrak{A}_{n-1} ; \mathbb{R}_{0}\right)$, i.e., there is an $a_{m+1}>a_{m}$ in \mathbb{N}_{0} such that ${ }^{*} c \upharpoonright\left[A_{m+1} \cup\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}\right]^{n} \equiv c_{0}$ where $A_{m+1}=A_{m} \cup\left\{a_{m+1}\right\}$.

Note that the sentence

$$
\varphi\left(i_{0, n}\left(A_{m}\right), i_{0, n}\left(x_{1}\right), i_{0, n}\left(x_{2}\right), \ldots, i_{0, n}\left(x_{n-1}\right)\right):
$$

$\exists x \in \mathbb{N}_{1}$ greater than a_{m} such that

$$
{ }^{*} c \upharpoonright\left[A_{m} \cup\left\{x, i_{0, n}\left(x_{1}\right), i_{0, n}\left(x_{2}\right), \ldots, i_{0, n}\left(x_{n-1}\right)\right]^{n} \equiv c_{0}\right.
$$

is true in $\left(\mathfrak{A}_{n} ; \mathbb{R}_{1}\right)$.
By the transfer principle, the sentence $\varphi\left(A_{m}, x_{1}, x_{2}, \ldots, x_{n-1}\right)$ is true in $\left(\mathfrak{A}_{n-1} ; \mathbb{R}_{0}\right)$, i.e., there is an $a_{m+1}>a_{m}$ in \mathbb{N}_{0} such that ${ }^{*} c \upharpoonright\left[A_{m+1} \cup\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}\right]^{n} \equiv c_{0}$ where $A_{m+1}=A_{m} \cup\left\{a_{m+1}\right\}$.

We show next that ${ }^{*} c \upharpoonright\left[A_{m+1} \cup\left\{x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right\}\right]^{n} \equiv c_{0}$

Given any $\bar{b}:=\left\{b_{1}<b_{2}<\cdots<b_{n}\right\} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n}\right\}\right]^{n}$.

Given any $\bar{b}:=\left\{b_{1}<b_{2}<\cdots<b_{n}\right\} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n}\right\}\right]^{n}$.
If $b_{n}<x_{n}$, then $\bar{b} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n-1}\right\}\right]^{n}$. Hence, ${ }^{*} c(\bar{b})=c_{0}$ by the choice of a_{m+1}.

Given any $\bar{b}:=\left\{b_{1}<b_{2}<\cdots<b_{n}\right\} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n}\right\}\right]^{n}$.
If $b_{n}<x_{n}$, then $\bar{b} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n-1}\right\}\right]^{n}$. Hence, ${ }^{*} c(\bar{b})=c_{0}$ by the choice of a_{m+1}.

If $b_{1}=x_{1}$, then $\bar{b}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Hence, ${ }^{*} c(\bar{b})=c_{0}$ by the choice of c_{0}.

Given any $\bar{b}:=\left\{b_{1}<b_{2}<\cdots<b_{n}\right\} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n}\right\}\right]^{n}$.
If $b_{n}<x_{n}$, then $\bar{b} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n-1}\right\}\right]^{n}$. Hence, ${ }^{*} c(\bar{b})=c_{0}$ by the choice of a_{m+1}.

If $b_{1}=x_{1}$, then $\bar{b}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Hence, ${ }^{*} c(\bar{b})=c_{0}$ by the choice of c_{0}.

So, we can assume $b_{1} \in \mathbb{N}_{0}$ and $b_{n}=x_{n}$. This means that one of the elements in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ must not be in \bar{b}. Suppose that x_{p} for some $1 \leq p<n$ is not in \bar{b}. We show that ${ }^{*} c(\bar{b})=c_{0}$.

Given any $\bar{b}:=\left\{b_{1}<b_{2}<\cdots<b_{n}\right\} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n}\right\}\right]^{n}$.
If $b_{n}<x_{n}$, then $\bar{b} \in\left[A_{m+1} \cup\left\{x_{1}, \ldots, x_{n-1}\right\}\right]^{n}$. Hence, ${ }^{*} c(\bar{b})=c_{0}$ by the choice of a_{m+1}.

If $b_{1}=x_{1}$, then $\bar{b}=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Hence, ${ }^{*} c(\bar{b})=c_{0}$ by the choice of c_{0}.

So, we can assume $b_{1} \in \mathbb{N}_{0}$ and $b_{n}=x_{n}$. This means that one of the elements in $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ must not be in \bar{b}. Suppose that x_{p} for some $1 \leq p<n$ is not in \bar{b}. We show that ${ }^{*} c(\bar{b})=c_{0}$.

Consider the elementary embedding $i_{p, n-1}: \mathfrak{A}_{n-1} \rightarrow \mathfrak{A}_{n}$. For each $b_{j} \in \bar{b}$, if $b_{j}<x_{p}$, then $i_{p, n-1}\left(b_{j}\right)=b_{j}$, and if $b_{j}=x_{k}>x_{p}$, then $i_{p, n-1}\left(x_{k-1}\right)=i_{0, n-1}\left(x_{k-1}\right)=x_{k}$. Let $\bar{b}^{\prime}=i_{p, n-1}^{-1}(\bar{b})$. Then, $\bar{b}^{\prime} \in\left[A_{m+1} \cup\left\{x_{1}, x_{2}, \ldots, x_{n-1}\right\}\right]^{n}$. Hence, ${ }^{*} c\left(\bar{b}^{\prime}\right)=c_{0}$. So, ${ }^{*} c(\bar{b})=c_{0}$ by the elementarity of $i_{p, n-1}$.

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n]:=\{0,1, \ldots, n-1\}$.

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n]:=\{0,1, \ldots, n-1\}$.

Fix a dimension s. A homothetic copy of $[n]^{s}$ is a set of the form

$$
H C_{\vec{a}, d, n}:=\vec{a}+d[n]^{s}=\left\{\vec{a}+d \vec{x} \mid \vec{x} \in[n]^{s}\right\}
$$

for some $\vec{a} \in \mathbb{N}^{s}$ and positive $d \in \mathbb{N}$. We omit n in $H C_{\vec{a}, d, n}$ after n is fixed.

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n]:=\{0,1, \ldots, n-1\}$.

Fix a dimension s. A homothetic copy of $[n]^{s}$ is a set of the form

$$
H C_{\vec{a}, d, n}:=\vec{a}+d[n]^{s}=\left\{\vec{a}+d \vec{x} \mid \vec{x} \in[n]^{s}\right\}
$$

for some $\vec{a} \in \mathbb{N}^{s}$ and positive $d \in \mathbb{N}$. We omit n in $H C_{\vec{a}, d, n}$ after n is fixed.

Theorem (Gallai)

Given any positive $r, n \in \mathbb{N}_{0}$, one can find an $N \in \mathbb{N}_{0}$ such that for every $c:[N]^{s} \rightarrow[r]$ there exists \vec{a}, d such that $c \mid H C_{\vec{a}, d, n} \equiv c_{0}$ for some $c_{0} \in[r]$.

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n]:=\{0,1, \ldots, n-1\}$.

Fix a dimension s. A homothetic copy of $[n]^{s}$ is a set of the form

$$
H C_{\vec{a}, d, n}:=\vec{a}+d[n]^{s}=\left\{\vec{a}+d \vec{x} \mid \vec{x} \in[n]^{s}\right\}
$$

for some $\vec{a} \in \mathbb{N}^{s}$ and positive $d \in \mathbb{N}$. We omit n in $H C_{\vec{a}, d, n}$ after n is fixed.

Theorem (Gallai)

Given any positive $r, n \in \mathbb{N}_{0}$, one can find an $N \in \mathbb{N}_{0}$ such that for every $c:[N]^{s} \rightarrow[r]$ there exists \vec{a}, d such that $c \mid H C_{\vec{a}, d, n} \equiv c_{0}$ for some $c_{0} \in[r]$.

The proof of the multidimensional van der Waerden's theorem in this talk is inspired by the proof of the one-dimensional version in A. Khinchin's book "Three Pearls of Number Theory."

Proof: Fix $n \in \mathbb{N}_{0}$. Let \triangleleft be the lexicographical order of $H C_{\vec{a}, d}$. For each $0 \leq I<n^{s}$ let $H C_{\vec{a}, d}(I)$ denote the I-th element of $H C_{\vec{a}, d}$ under \triangleleft. Note that $H C_{\vec{a}, d}(0)=\vec{a}$.

Proof: Fix $n \in \mathbb{N}_{0}$. Let \triangleleft be the lexicographical order of $H C_{\vec{a}, d}$. For each $0 \leq I<n^{s}$ let $H C_{\vec{a}, d}(I)$ denote the I-th element of $H C_{\vec{a}, d}$ under \triangleleft. Note that $H C_{\vec{a}, d}(0)=\vec{a}$.

Let $\varphi_{m}(r, N)$ be the following first-order sentence:

Proof: Fix $n \in \mathbb{N}_{0}$. Let \triangleleft be the lexicographical order of $H C_{\vec{a}, d}$. For each $0 \leq I<n^{s}$ let $H C_{\vec{a}, d}(I)$ denote the I-th element of $H C_{\vec{a}, d}$ under \triangleleft. Note that $H C_{\vec{a}, d}(0)=\vec{a}$.

Let $\varphi_{m}(r, N)$ be the following first-order sentence:

$$
\begin{align*}
\forall c: & {[N]^{s} \rightarrow[r] \exists H C_{\vec{a}, d} \subseteq[N]^{s} \exists c_{0} \in[r] } \\
& \left(c\left(H C_{\vec{a}, d}(I)\right)=c_{0} \text { for } I=0,1, \ldots, m\right) . \tag{2}
\end{align*}
$$

Note that the claim when $m=n^{s}-1$ is the multidimensional

Proof: Fix $n \in \mathbb{N}_{0}$. Let \triangleleft be the lexicographical order of $H C_{\vec{a}, d}$. For each $0 \leq I<n^{s}$ let $H C_{\vec{a}, d}(I)$ denote the I-th element of $H C_{\vec{a}, d}$ under \triangleleft. Note that $H C_{\vec{a}, d}(0)=\vec{a}$.

Let $\varphi_{m}(r, N)$ be the following first-order sentence:

$$
\begin{align*}
\forall c: & {[N]^{s} \rightarrow[r] \exists H C_{\vec{a}, d} \subseteq[N]^{s} \exists c_{0} \in[r] } \\
& \left(c\left(H C_{\vec{a}, d}(I)\right)=c_{0} \text { for } I=0,1, \ldots, m\right) . \tag{2}
\end{align*}
$$

Claim (1)

Given $m \in\left[n^{s}\right]$, for every $r \in \mathbb{N}_{0}$, there exists an $N \in \mathbb{N}_{0}$ such that $\varphi_{m}(r, N)$ is true in \mathfrak{A}_{0}.

[^0]Proof: Fix $n \in \mathbb{N}_{0}$. Let \triangleleft be the lexicographical order of $H C_{\vec{a}, d}$. For each $0 \leq I<n^{s}$ let $H C_{\vec{a}, d}(I)$ denote the I-th element of $H C_{\vec{a}, d}$ under \triangleleft. Note that $H C_{\vec{a}, d}(0)=\vec{a}$.

Let $\varphi_{m}(r, N)$ be the following first-order sentence:

$$
\begin{align*}
\forall c: & {[N]^{s} \rightarrow[r] \exists H C_{\vec{a}, d} \subseteq[N]^{s} \exists c_{0} \in[r] } \\
& \left(c\left(H C_{\vec{a}, d}(I)\right)=c_{0} \text { for } I=0,1, \ldots, m\right) . \tag{2}
\end{align*}
$$

Claim (1)

Given $m \in\left[n^{s}\right]$, for every $r \in \mathbb{N}_{0}$, there exists an $N \in \mathbb{N}_{0}$ such that $\varphi_{m}(r, N)$ is true in \mathfrak{A}_{0}.

Note that the claim when $m=n^{s}-1$ is the multidimensional van der Waerden's theorem.

Note also that $N \in \mathbb{N}_{0}$ depends on r, and if $N^{\prime}>N$, then $\varphi_{m}(r, N)$ implies $\varphi\left(r, N^{\prime}\right)$. Hence, if N is hyperfinite, then $\left(\forall r \in \mathbb{N}_{0}\right) \varphi_{m}(r, N)$ is true.

Proof of Claim (1): The case for $m=0$ is trivial

Note also that $N \in \mathbb{N}_{0}$ depends on r, and if $N^{\prime}>N$, then $\varphi_{m}(r, N)$ implies $\varphi\left(r, N^{\prime}\right)$. Hence, if N is hyperfinite, then $\left(\forall r \in \mathbb{N}_{0}\right) \varphi_{m}(r, N)$ is true.

It suffices to prove the claim by induction on $m \leq n^{s}-1$. Call $H C_{\vec{a}, d}$ in (2) monochromatic up to m with respect to c.

Note also that $N \in \mathbb{N}_{0}$ depends on r, and if $N^{\prime}>N$, then $\varphi_{m}(r, N)$ implies $\varphi\left(r, N^{\prime}\right)$. Hence, if N is hyperfinite, then $\left(\forall r \in \mathbb{N}_{0}\right) \varphi_{m}(r, N)$ is true.

It suffices to prove the claim by induction on $m \leq n^{s}-1$. Call $H C_{\vec{a}, d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for $m=0$ is trivial.

Note also that $N \in \mathbb{N}_{0}$ depends on r, and if $N^{\prime}>N$, then $\varphi_{m}(r, N)$ implies $\varphi\left(r, N^{\prime}\right)$. Hence, if N is hyperfinite, then $\left(\forall r \in \mathbb{N}_{0}\right) \varphi_{m}(r, N)$ is true.

It suffices to prove the claim by induction on $m \leq n^{s}-1$. Call $H C_{\vec{a}, d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for $m=0$ is trivial.
Assume that the claim is true for $m-1$. We prove that the claim is true for $m<n^{s}$.

Note also that $N \in \mathbb{N}_{0}$ depends on r, and if $N^{\prime}>N$, then $\varphi_{m}(r, N)$ implies $\varphi\left(r, N^{\prime}\right)$. Hence, if N is hyperfinite, then $\left(\forall r \in \mathbb{N}_{0}\right) \varphi_{m}(r, N)$ is true.

It suffices to prove the claim by induction on $m \leq n^{s}-1$. Call $H C_{\vec{a}, d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for $m=0$ is trivial.
Assume that the claim is true for $m-1$. We prove that the claim is true for $m<n^{s}$.

Given $r \in \mathbb{N}_{0}$, the task now is to find $N \in \mathbb{N}_{0}$ such that $\varphi_{m}(r, N)$ is true in \mathfrak{A}_{0}.

Note also that $N \in \mathbb{N}_{0}$ depends on r, and if $N^{\prime}>N$, then $\varphi_{m}(r, N)$ implies $\varphi\left(r, N^{\prime}\right)$. Hence, if N is hyperfinite, then $\left(\forall r \in \mathbb{N}_{0}\right) \varphi_{m}(r, N)$ is true.

It suffices to prove the claim by induction on $m \leq n^{s}-1$. Call $H C_{\vec{a}, d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for $m=0$ is trivial.
Assume that the claim is true for $m-1$. We prove that the claim is true for $m<n^{s}$.

Given $r \in \mathbb{N}_{0}$, the task now is to find $N \in \mathbb{N}_{0}$ such that $\varphi_{m}(r, N)$ is true in \mathfrak{A}_{0}.

Work within \mathfrak{A}_{r+1}. Choose any $N_{r} \in \mathbb{N}_{r+1} \backslash \mathbb{N}_{r}$. It suffices to prove that $\varphi_{m}\left(r, 2 N_{r}\right)$ is true in \mathfrak{A}_{r} by the transfer principle.

Fix $c:\left[2 N_{r}\right]^{s} \rightarrow[r]$.
It suffices to find a $H C_{\vec{a}, d} \subseteq\left[2 N_{r}\right]^{s}$ which is monochromatic up to m with respect to c.

Fix $c:\left[2 N_{r}\right]^{s} \rightarrow[r]$.
It suffices to find a $H C_{\vec{a}, d} \subseteq\left[2 N_{r}\right]^{s}$ which is monochromatic up to m with respect to c.

Fix $c:\left[2 N_{r}\right]^{s} \rightarrow[r]$.
It suffices to find a $H C_{\vec{a}, d} \subseteq\left[2 N_{r}\right]^{s}$ which is monochromatic up to m with respect to c.

Choose any $N_{j} \in \mathbb{N}_{j+1} \backslash \mathbb{N}_{j}$ for $j=0,1, \ldots, r-1$. Since \mathbb{N}_{j+1} is an end-extension of \mathbb{N}_{j}, the number $r^{\left(2 N_{j-1}\right)^{s}}$ is infinitely smaller than N_{j}.

Fix $c:\left[2 N_{r}\right]^{s} \rightarrow[r]$.
It suffices to find a $H C_{\vec{a}, d} \subseteq\left[2 N_{r}\right]^{s}$ which is monochromatic up to m with respect to c.

Choose any $N_{j} \in \mathbb{N}_{j+1} \backslash \mathbb{N}_{j}$ for $j=0,1, \ldots, r-1$. Since \mathbb{N}_{j+1} is an end-extension of \mathbb{N}_{j}, the number $r^{\left(2 N_{j-1}\right)^{s}}$ is infinitely smaller than N_{j}.

For any $\vec{x}, \vec{y} \in\left[N_{r}\right]^{s}$ we say that \vec{x} and \vec{y} have the same $2 N_{j}$-type if $c(\vec{x}+\vec{z})=c(\vec{y}+\vec{z})$ for any $\vec{z} \in\left[2 N_{j}\right]^{s}$.

Since the first-order sentence

$$
\left(\forall r^{\prime} \in \mathbb{N}_{0}\right)\left(\forall N \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}\right) \varphi_{m-1}\left(r^{\prime}, N\right)
$$

is true in $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)$,

Since the first-order sentence

$$
\left(\forall r^{\prime} \in \mathbb{N}_{0}\right)\left(\forall N \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}\right) \varphi_{m-1}\left(r^{\prime}, N\right)
$$

is true in $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)$, the sentence

$$
\left(\forall r^{\prime} \in \mathbb{N}_{j}\right)\left(\forall N \in \mathbb{N}_{j+1} \backslash \mathbb{N}_{j}\right) \varphi_{m-1}\left(r^{\prime}, N\right)
$$

is true in $\left(\mathfrak{A}_{j+1} ; \mathbb{R}_{j}\right)$ for $j=1,2, \ldots, r$.

Since the first-order sentence

$$
\left(\forall r^{\prime} \in \mathbb{N}_{0}\right)\left(\forall N \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}\right) \varphi_{m-1}\left(r^{\prime}, N\right)
$$

is true in $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)$, the sentence

$$
\left(\forall r^{\prime} \in \mathbb{N}_{j}\right)\left(\forall N \in \mathbb{N}_{j+1} \backslash \mathbb{N}_{j}\right) \varphi_{m-1}\left(r^{\prime}, N\right)
$$

is true in $\left(\mathfrak{A}_{j+1} ; \mathbb{R}_{j}\right)$ for $j=1,2, \ldots, r$.
In particular, $\varphi_{m-1}\left(r^{\left(2 N_{j-1}\right)^{s}}, N_{j}\right)$ is true in \mathfrak{A}_{j+1} for $j=1,2, \ldots, r$.

Since the first-order sentence

$$
\left(\forall r^{\prime} \in \mathbb{N}_{0}\right)\left(\forall N \in \mathbb{N}_{1} \backslash \mathbb{N}_{0}\right) \varphi_{m-1}\left(r^{\prime}, N\right)
$$

is true in $\left(\mathfrak{A}_{1} ; \mathbb{R}_{0}\right)$, the sentence

$$
\left(\forall r^{\prime} \in \mathbb{N}_{j}\right)\left(\forall N \in \mathbb{N}_{j+1} \backslash \mathbb{N}_{j}\right) \varphi_{m-1}\left(r^{\prime}, N\right)
$$

is true in $\left(\mathfrak{A}_{j+1} ; \mathbb{R}_{j}\right)$ for $j=1,2, \ldots, r$.
In particular, $\varphi_{m-1}\left(r^{\left(2 N_{j-1}\right)^{s}}, N_{j}\right)$ is true in \mathfrak{A}_{j+1} for $j=1,2, \ldots, r$.

Since the number of $2 N_{j-1}$-types is at most $r^{\left(2 N_{j-1}\right)^{5}}$, we can find $H C_{\vec{a}_{j}, d_{j}} \subseteq\left[N_{j}\right]^{s}$ such that $H C_{\vec{a}_{j}, d_{j}}$ is monochromatic up to $m-1$ with respect to $2 N_{j-1}$-types, i.e., $H C_{\vec{a}_{j}, d_{j}}(I)$ for $I=0,1, \ldots, m-1$ have the same $2 N_{j-1}$-type.

Find $H C_{\vec{a}_{r}, d_{r}} \subseteq\left[N_{r}\right]^{s}$ which is monochromatic up to $m-1$ with respect to $2 N_{r-1}$-types.

Find $H C_{\vec{a}_{r}, d_{r}} \subseteq\left[N_{r}\right]^{s}$ which is monochromatic up to $m-1$ with respect to $2 N_{r-1}$-types.

Find $H C_{\vec{a}_{r-1}, d_{r-1}} \subseteq\left[N_{r-1}\right]^{s}$ such that $\vec{a}_{r}+H C_{\vec{a}_{r-1}, d_{r-1}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-2}$-types.

Find $H C_{\vec{a}_{r}, d_{r}} \subseteq\left[N_{r}\right]^{s}$ which is monochromatic up to $m-1$ with respect to $2 N_{r-1}$-types.

Find $H C_{\vec{a}_{r-1}, d_{r-1}} \subseteq\left[N_{r-1}\right]^{s}$ such that $\vec{a}_{r}+H C_{\vec{a}_{r-1}, d_{r-1}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-2}$-types.

Find $H C_{\vec{a}_{r-2}, d_{r-2}} \subseteq\left[N_{r-2}\right]^{s}$ such that $\vec{a}_{r}+\vec{a}_{r-1}+H C_{\vec{a}_{r-2}, d_{r-2}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-3}$-types.

Find $H C_{\vec{a}_{r}, d_{r}} \subseteq\left[N_{r}\right]^{s}$ which is monochromatic up to $m-1$ with respect to $2 N_{r-1}$-types.

Find $H C_{\vec{a}_{r-1}, d_{r-1}} \subseteq\left[N_{r-1}\right]^{s}$ such that $\vec{a}_{r}+H C_{\vec{a}_{r-1}, d_{r-1}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-2}$-types.

Find $H C_{\vec{a}_{r-2}, d_{r-2}} \subseteq\left[N_{r-2}\right]^{s}$ such that $\vec{a}_{r}+\vec{a}_{r-1}+H C_{\vec{a}_{r-2}, d_{r-2}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-3}$-types.

Find $H C_{\vec{a}_{r}, d_{r}} \subseteq\left[N_{r}\right]^{s}$ which is monochromatic up to $m-1$ with respect to $2 N_{r-1}$-types.

Find $H C_{\vec{a}_{r-1}, d_{r-1}} \subseteq\left[N_{r-1}\right]^{s}$ such that $\vec{a}_{r}+H C_{\vec{a}_{r-1}, d_{r-1}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-2}$-types.

Find $H C_{\vec{a}_{r-2}, d_{r-2}} \subseteq\left[N_{r-2}\right]^{s}$ such that $\vec{a}_{r}+\vec{a}_{r-1}+H C_{\vec{a}_{r-2}, d_{r-2}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-3}$-types.

Find $H C_{\vec{a}_{1}, d_{1}} \subseteq\left[N_{1}\right]^{s}$ such that $\sum_{j=2}^{r} \vec{a}_{j}+H C_{\vec{a}_{1}, d_{1}}$ is monochromatic up to $m-1$ with respect to $2 N_{0}$-types.

Find $H C_{\vec{a}_{r}, d_{r}} \subseteq\left[N_{r}\right]^{s}$ which is monochromatic up to $m-1$ with respect to $2 N_{r-1}$-types.

Find $H C_{\vec{a}_{r-1}, d_{r-1}} \subseteq\left[N_{r-1}\right]^{s}$ such that $\vec{a}_{r}+H C_{\vec{a}_{r-1}, d_{r-1}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-2}$-types.

Find $H C_{\vec{a}_{r-2}, d_{r-2}} \subseteq\left[N_{r-2}\right]^{s}$ such that $\vec{a}_{r}+\vec{a}_{r-1}+H C_{\vec{a}_{r-2}, d_{r-2}}$ is monochromatic up to $m-1$ with respect to $2 N_{r-3}$-types.

Find $H C_{\vec{a}_{1}, d_{1}} \subseteq\left[N_{1}\right]^{s}$ such that $\sum_{j=2}^{r} \vec{a}_{j}+H C_{\vec{a}_{1}, d_{1}}$ is monochromatic up to $m-1$ with respect to $2 N_{0}$-types.

Find $H C_{\vec{a}_{0}, d_{0}} \subseteq\left[N_{0}\right]^{s}$ such that $\sum_{j=1}^{r} \vec{a}_{j}+H C_{\vec{a}_{0}, d_{0}}$ is monochromatic up to $m-1$ with respect to c.

Define $H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}:=H C_{\vec{a}+\vec{a}^{\prime}, d+d^{\prime}}$. Clearly, for any $I<n^{s}$ we have

$$
\left(H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}\right)(I)=H C_{\vec{a}, d}(I)+H C_{\vec{a}^{\prime}, d^{\prime}}(I)
$$

Define $H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}:=H C_{\vec{a}+\vec{a}^{\prime}, d+d^{\prime}}$. Clearly, for any $I<n^{s}$ we have

$$
\left(H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}\right)(I)=H C_{\vec{a}, d}(I)+H C_{\vec{a}^{\prime}, d^{\prime}}(I) .
$$

For each $j=0,1, \ldots, r$ let
$\vec{y}_{j}:=H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j}, d_{j}}(0)+H C_{\vec{a}_{j-1}, d_{j-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m)$.

Define $H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}:=H C_{\vec{a}+\vec{a}^{\prime}, d+d^{\prime}}$. Clearly, for any $I<n^{s}$ we have

$$
\left(H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}\right)(I)=H C_{\vec{a}, d}(I)+H C_{\vec{a}^{\prime}, d^{\prime}}(I) .
$$

For each $j=0,1, \ldots, r$ let
$\vec{y}_{j}:=H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j}, d_{j}}(0)+H C_{\vec{a}_{j-1}, d_{j-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m)$.
There must exist $0 \leq j_{1}<j_{2} \leq r$ such that $c\left(\vec{y}_{j_{1}}\right)=c\left(\vec{y}_{j_{2}}\right)$. Let

Define $H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}:=H C_{\vec{a}+\vec{a}^{\prime}, d+d^{\prime}}$. Clearly, for any $I<n^{s}$ we have

$$
\left(H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}\right)(I)=H C_{\vec{a}, d}(I)+H C_{\vec{a}^{\prime}, d^{\prime}}(I) .
$$

For each $j=0,1, \ldots, r$ let
$\vec{y}_{j}:=H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j}, d_{j}}(0)+H C_{\vec{a}_{j-1}, d_{j-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m)$.
There must exist $0 \leq j_{1}<j_{2} \leq r$ such that $c\left(\vec{y}_{j_{1}}\right)=c\left(\vec{y}_{j_{2}}\right)$. Let

$$
\begin{aligned}
D: & H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j_{2}}, d_{j_{2}}}(0) \\
& +H C_{\vec{a}_{j_{2}-1}} \oplus \cdots \oplus H C_{\vec{a}_{j_{1}}, d_{j_{1}}} \\
& +H C_{\vec{a}_{j_{1}-1}, d_{j_{1}-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m) .
\end{aligned}
$$

Define $H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}:=H C_{\vec{a}+\vec{a}^{\prime}, d+d^{\prime}}$. Clearly, for any $I<n^{s}$ we have

$$
\left(H C_{\vec{a}, d} \oplus H C_{\vec{a}^{\prime}, d^{\prime}}\right)(I)=H C_{\vec{a}, d}(I)+H C_{\vec{a}^{\prime}, d^{\prime}}(I) .
$$

For each $j=0,1, \ldots, r$ let
$\vec{y}_{j}:=H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j}, d_{j}}(0)+H C_{\vec{a}_{j-1}, d_{j-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m)$.
There must exist $0 \leq j_{1}<j_{2} \leq r$ such that $c\left(\vec{y}_{j_{1}}\right)=c\left(\vec{y}_{j_{2}}\right)$. Let

$$
\begin{aligned}
D: & H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j_{2}}, d_{j_{2}}}(0) \\
& +H C_{\vec{a}_{j_{2}-1}} \oplus \cdots \oplus H C_{\vec{a}_{j_{1}}, d_{j_{1}}} \\
& +H C_{\vec{a}_{j_{1}-1}, d_{j_{1}-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m) .
\end{aligned}
$$

Then D is a homothetic copy of $[n]^{s}$.

Claim (2)

The homothetic copy D is monochromatic up to m.

Claim (2)

The homothetic copy D is monochromatic up to m.

Proof of Claim (2) Note that all elements

$$
\begin{aligned}
D(I) & :=H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j_{2}}, d_{j_{2}}}(0) \\
& +H C_{\vec{a}_{j_{2}-1}}(I) \oplus \cdots \oplus H C_{\vec{a}_{j_{1}}, d_{j_{1}}}(I) \\
& +H C_{\vec{a}_{j_{1}-1}, d_{j_{1}-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m) .
\end{aligned}
$$

for $I=0,1, \ldots, m-1$ have the same c-value.

Claim (2)

The homothetic copy D is monochromatic up to m.

Proof of Claim (2) Note that all elements

$$
\begin{aligned}
D(I) & :=H C_{\vec{a}_{r}, d_{r}}(0)+\cdots+H C_{\vec{a}_{j_{2}}, d_{j_{2}}}(0) \\
& +H C_{\vec{a}_{j_{2}-1}}(I) \oplus \cdots \oplus H C_{\vec{a}_{j_{1}}, d_{j_{1}}}(I) \\
& +H C_{\vec{a}_{j_{1}-1}, d_{j_{1}-1}}(m)+\cdots+H C_{\vec{a}_{0}, d_{0}}(m) .
\end{aligned}
$$

for $I=0,1, \ldots, m-1$ have the same c-value.
Note also that $D(0)=\vec{y}_{j_{1}}$ and $D(m)=\vec{y}_{j_{2}}$ have the same c-value. Hence, the homothetic copy D of $[n]^{s}$ is monochromatic up to m with respect to c. This completes the proof.

The End

Thank you for your attention.

[^0]: Note that the claim when $m=n^{s}-1$ is the multidimensional van der Waerden's theorem.

