Prove Multidimensional van der Waerden's Theorem With A Simple Induction

Renling Jin College of Charleston, SC

Logical Methods in Ramsey Theory and Related Topics Pisa, Italy, July 11, 2023

伺 ト イ ヨ ト イ ヨ

- Iterated elementary extensions
- Proof of Ramsey's theorem
- Proof of multidimensional van der Waerden's theorem

/□ ▶ < 글 ▶ < 글

Iterated elementary extensions

- Proof of Ramsey's theorem
- I Proof of multidimensional van der Waerden's theorem

- ∢ ≣ ▶

- Iterated elementary extensions
- Proof of Ramsey's theorem
- Proof of multidimensional van der Waerden's theorem

< E.

- Iterated elementary extensions
- Proof of Ramsey's theorem
- **③** Proof of multidimensional van der Waerden's theorem

Let \mathfrak{A}_0 be a structure with the base set A_0 containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_0 and \mathbb{R}_0 . For example, let \mathfrak{A} be the superstructure $(V(X); \in)$ truncated at level 100.

(a) The structure \mathfrak{A}' with base set A' is called an elementary extension of \mathfrak{A}_0 , denoted by $\mathfrak{A}_0 \prec \mathfrak{A}'$, if there is a proper injection $i : A_0 \rightarrow A'$, called elementary embedding, such that

 $\varphi(\overline{a})$ is true in $\mathfrak{A}_0 \iff \varphi(\overline{i(a)})$ is true in \mathfrak{A}' (1)

for any first-order formula $\varphi(\overline{\mathbf{x}})$ in the language of \mathfrak{A}_0 and any tuple $\overline{\mathbf{a}}$ in A_0^n .

(b) Let 𝔄' and 𝔅'' be two elementary extensions of 𝔅₀. The relation 𝔅' ≺ 𝔅'' and map i : 𝔅' ≺ 𝔅'' can be defined similarly as in (a) with 𝔅₀ and 𝔅' being replaced by 𝔅' and 𝔅''.

Let \mathfrak{A}_0 be a structure with the base set A_0 containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_0 and \mathbb{R}_0 . For example, let \mathfrak{A} be the superstructure $(V(X); \in)$ truncated at level 100.

(a) The structure \mathfrak{A}' with base set A' is called an elementary extension of \mathfrak{A}_0 , denoted by $\mathfrak{A}_0 \prec \mathfrak{A}'$, if there is a proper injection $i : A_0 \rightarrow A'$, called elementary embedding, such that

 $arphi(\overline{a})$ is true in $\mathfrak{A}_0 \Longleftrightarrow arphi(\overline{i(a)})$ is true in \mathfrak{A}' (1)

for any first-order formula $\varphi(\overline{\mathbf{x}})$ in the language of \mathfrak{A}_0 and any tuple $\overline{\mathbf{a}}$ in A_0^n .

(b) Let 𝔄' and 𝔅'' be two elementary extensions of 𝔅₀. The relation 𝔅' ≺ 𝔅'' and map i : 𝔅' ≺ 𝔅'' can be defined similarly as in (a) with 𝔅₀ and 𝔅' being replaced by 𝔅' and 𝔅''.

Let \mathfrak{A}_0 be a structure with the base set A_0 containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_0 and \mathbb{R}_0 . For example, let \mathfrak{A} be the superstructure $(V(X); \in)$ truncated at level 100.

(a) The structure \mathfrak{A}' with base set A' is called an elementary extension of \mathfrak{A}_0 , denoted by $\mathfrak{A}_0 \prec \mathfrak{A}'$, if there is a proper injection $i : A_0 \rightarrow A'$, called elementary embedding, such that

$\varphi(\overline{a})$ is true in $\mathfrak{A}_0 \iff \varphi(\overline{i(a)})$ is true in \mathfrak{A}' (1)

for any first-order formula $\varphi(\overline{x})$ in the language of \mathfrak{A}_0 and any tuple \overline{a} in A_0^n .

(b) Let 𝔄' and 𝔅'' be two elementary extensions of 𝔅₀. The relation 𝔅' ≺ 𝔅'' and map i : 𝔅' ≺ 𝔅'' can be defined similarly as in (a) with 𝔅₀ and 𝔅' being replaced by 𝔅' and 𝔅''.

Let \mathfrak{A}_0 be a structure with the base set A_0 containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_0 and \mathbb{R}_0 . For example, let \mathfrak{A} be the superstructure $(V(X); \in)$ truncated at level 100.

(a) The structure \mathfrak{A}' with base set A' is called an elementary extension of \mathfrak{A}_0 , denoted by $\mathfrak{A}_0 \prec \mathfrak{A}'$, if there is a proper injection $i : A_0 \rightarrow A'$, called elementary embedding, such that

$\varphi(\overline{a})$ is true in $\mathfrak{A}_0 \iff \varphi(\overline{i(a)})$ is true in \mathfrak{A}' (1)

for any first-order formula $\varphi(\overline{x})$ in the language of \mathfrak{A}_0 and any tuple \overline{a} in A_0^n .

(b) Let 𝔄' and 𝔅'' be two elementary extensions of 𝔅₀. The relation 𝔅' ≺ 𝔅'' and map i : 𝔅' ≺ 𝔅'' can be defined similarly as in (a) with 𝔅₀ and 𝔅' being replaced by 𝔅' and 𝔅''.

Let \mathfrak{A}_0 be a structure with the base set A_0 containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_0 and \mathbb{R}_0 . For example, let \mathfrak{A} be the superstructure $(V(X); \in)$ truncated at level 100.

(a) The structure \mathfrak{A}' with base set A' is called an elementary extension of \mathfrak{A}_0 , denoted by $\mathfrak{A}_0 \prec \mathfrak{A}'$, if there is a proper injection $i : A_0 \rightarrow A'$, called elementary embedding, such that

$$arphi(\overline{a})$$
 is true in $\mathfrak{A}_0 \Longleftrightarrow arphi(\overline{i(a)})$ is true in \mathfrak{A}' (1)

for any first–order formula $\varphi(\overline{x})$ in the language of \mathfrak{A}_0 and any tuple \overline{a} in A_0^n .

(b) Let 𝔄' and 𝔅'' be two elementary extensions of 𝔅₀. The relation 𝔅' ≺ 𝔅'' and map i : 𝔅' ≺ 𝔅'' can be defined similarly as in (a) with 𝔅₀ and 𝔅' being replaced by 𝔅' and 𝔅''.

Let \mathfrak{A}_0 be a structure with the base set A_0 containing all standard real numbers and all subsets of standard real numbers including \mathbb{N}_0 and \mathbb{R}_0 . For example, let \mathfrak{A} be the superstructure $(V(X); \in)$ truncated at level 100.

(a) The structure \mathfrak{A}' with base set A' is called an elementary extension of \mathfrak{A}_0 , denoted by $\mathfrak{A}_0 \prec \mathfrak{A}'$, if there is a proper injection $i : A_0 \to A'$, called elementary embedding, such that

$$arphi(\overline{a})$$
 is true in $\mathfrak{A}_0 \Longleftrightarrow arphi(\overline{i(a)})$ is true in \mathfrak{A}' (1)

for any first-order formula $\varphi(\overline{x})$ in the language of \mathfrak{A}_0 and any tuple \overline{a} in A_0^n .

(b) Let \mathfrak{A}' and \mathfrak{A}'' be two elementary extensions of \mathfrak{A}_0 . The relation $\mathfrak{A}' \prec \mathfrak{A}''$ and map $i : \mathfrak{A}' \prec \mathfrak{A}''$ can be defined similarly as in (a) with \mathfrak{A}_0 and \mathfrak{A}' being replaced by \mathfrak{A}' and \mathfrak{A}'' .

Iterated nonstandard extensions Proof of Ramsey's Theorem Proof of multidimensional van der Waerden's theorem

We often write \mathfrak{A} for a structure as well as the base set of the structure for notational convenience.

Proposition

There is a chain of elementary extensions

 $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$

such that the set \mathbb{N}_m of all natural numbers in \mathfrak{A}_m is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m,n}$ from \mathfrak{A}_n to \mathfrak{A}_{n+1} for any $0 \leq m \leq n$ such that

(a)
$$i_{m,n}(x) = x$$
 for $x \in \mathbb{N}_m$ and $i_{m,n} \upharpoonright \mathfrak{A}_k = i_{m,k}$ for $m \le k \le n$,

(b) $i_{m,n}[\mathbb{N}_k \setminus \mathbb{N}_{k-1}] \subseteq \mathbb{N}_{k+1} \setminus \mathbb{N}_k$ for $k = m+1, \ldots, n$,

(c) $i_{m,n} \upharpoonright \mathfrak{A}_k$ is an elementary embedding from $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ to $(\mathfrak{A}_{n+1}; \mathbb{R}_{n+1-l})$ for $m \leq k \leq n$ and $0 < l \leq k - m$, where $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ is the structure \mathfrak{A}_k augmented by \mathbb{R}_{k-l} as a unary relation.

Proposition

There is a chain of elementary extensions

$$\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$$

such that the set \mathbb{N}_m of all natural numbers in \mathfrak{A}_m is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m,n}$ from \mathfrak{A}_n to \mathfrak{A}_{n+1} for any $0 \le m \le n$ such that

(a) $i_{m,n}(x) = x$ for $x \in \mathbb{N}_m$ and $i_{m,n} \upharpoonright \mathfrak{A}_k = i_{m,k}$ for $m \le k \le n$, (b) $i_{m,n}[\mathbb{N}_k \setminus \mathbb{N}_{k-1}] \subseteq \mathbb{N}_{k+1} \setminus \mathbb{N}_k$ for $k = m+1, \dots, n$.

(c) $i_{m,n} \upharpoonright \mathfrak{A}_k$ is an elementary embedding from $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ to $(\mathfrak{A}_{n+1}; \mathbb{R}_{n+1-l})$ for $m \le k \le n$ and $0 < l \le k - m$, where $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ is the structure \mathfrak{A}_k augmented by \mathbb{R}_{k-l} as a unary relation.

Proposition

There is a chain of elementary extensions

$$\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$$

such that the set \mathbb{N}_m of all natural numbers in \mathfrak{A}_m is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m,n}$ from \mathfrak{A}_n to \mathfrak{A}_{n+1} for any $0 \le m \le n$ such that

(a)
$$i_{m,n}(x) = x$$
 for $x \in \mathbb{N}_m$ and $i_{m,n} \upharpoonright \mathfrak{A}_k = i_{m,k}$ for $m \le k \le n_k$

(b) $i_{m,n}[\mathbb{N}_k \setminus \mathbb{N}_{k-1}] \subseteq \mathbb{N}_{k+1} \setminus \mathbb{N}_k$ for $k = m+1, \ldots, n$,

(c) $i_{m,n} \upharpoonright \mathfrak{A}_k$ is an elementary embedding from $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ to $(\mathfrak{A}_{n+1}; \mathbb{R}_{n+1-l})$ for $m \leq k \leq n$ and $0 < l \leq k - m$, where $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ is the structure \mathfrak{A}_k augmented by \mathbb{R}_{k-l} as a unary relation.

Proposition

There is a chain of elementary extensions

$$\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$$

such that the set \mathbb{N}_m of all natural numbers in \mathfrak{A}_m is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m,n}$ from \mathfrak{A}_n to \mathfrak{A}_{n+1} for any $0 \le m \le n$ such that

(a)
$$i_{m,n}(x) = x$$
 for $x \in \mathbb{N}_m$ and $i_{m,n} \upharpoonright \mathfrak{A}_k = i_{m,k}$ for $m \le k \le n$,
(b) $i_m : \mathbb{N}_k \setminus \mathbb{N}_{k-1} \subseteq \mathbb{N}_{k+1} \setminus \mathbb{N}_k$ for $k = m+1, \dots, n$.

(c) $i_{m,n} \upharpoonright \mathfrak{A}_k$ is an elementary embedding from $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ to $(\mathfrak{A}_{n+1}; \mathbb{R}_{n+1-l})$ for $m \le k \le n$ and $0 < l \le k - m$, where $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ is the structure \mathfrak{A}_k augmented by \mathbb{R}_{k-l} as a unary relation.

Proposition

There is a chain of elementary extensions

$$\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$$

such that the set \mathbb{N}_m of all natural numbers in \mathfrak{A}_m is an initial segment of the set \mathbb{N}_{m+1} of all natural numbers in \mathfrak{A}_{m+1} and there exist elementary embeddings $i_{m,n}$ from \mathfrak{A}_n to \mathfrak{A}_{n+1} for any $0 \le m \le n$ such that

(a)
$$i_{m,n}(x) = x$$
 for $x \in \mathbb{N}_m$ and $i_{m,n} \upharpoonright \mathfrak{A}_k = i_{m,k}$ for $m \le k \le n$,

(b)
$$i_{m,n}[\mathbb{N}_k \setminus \mathbb{N}_{k-1}] \subseteq \mathbb{N}_{k+1} \setminus \mathbb{N}_k$$
 for $k = m+1, \ldots, n$,

(c)
$$i_{m,n} \upharpoonright \mathfrak{A}_k$$
 is an elementary embedding from $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ to $(\mathfrak{A}_{n+1}; \mathbb{R}_{n+1-l})$ for $m \leq k \leq n$ and $0 < l \leq k - m$, where $(\mathfrak{A}_k; \mathbb{R}_{k-l})$ is the structure \mathfrak{A}_k augmented by \mathbb{R}_{k-l} as a unary relation.

(1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_0 . The elementary chain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_0 modulo \mathcal{F} .

(2) There are different ways of doing iterations. Let F' = F. For example, to obtain 𝔄₀ ≺ 𝔄₁ ≺ 𝔅₂, one can consider

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_1^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_2,$$

which is called the external ultrapower construction, or

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}' = \left(\mathfrak{A}_1^{\mathbb{N}_1}\cap\mathfrak{A}_1\right)/\left(\mathcal{F}^{\mathbb{N}_0}/\mathcal{F}'\right) = \mathfrak{A}_2,$$

which is called the internal ultrapower construction.

< 日 > < 同 > < 三 > < 三 >

-

- (1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_0 . The elementary chain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_0 modulo \mathcal{F} .
- (2) There are different ways of doing iterations. Let $\mathcal{F}' = \mathcal{F}$. For example, to obtain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2$, one can consider

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_1^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_2,$$

which is called the external ultrapower construction, or

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}' = \left(\mathfrak{A}_1^{\mathbb{N}_1}\cap\mathfrak{A}_1\right)/\left(\mathcal{F}^{\mathbb{N}_0}/\mathcal{F}'\right) = \mathfrak{A}_2,$$

which is called the internal ultrapower construction.

< 日 > < 同 > < 三 > < 三 >

- (1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_0 . The elementary chain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_0 modulo \mathcal{F} .
- (2) There are different ways of doing iterations. Let $\mathcal{F}' = \mathcal{F}$. For example, to obtain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2$, one can consider

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_1^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_2,$$

which is called the external ultrapower construction, or

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}' = \left(\mathfrak{A}_1^{\mathbb{N}_1}\cap\mathfrak{A}_1\right)/\left(\mathcal{F}^{\mathbb{N}_0}/\mathcal{F}'\right) = \mathfrak{A}_2,$$

which is called the internal ultrapower construction.

- (1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_0 . The elementary chain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_0 modulo \mathcal{F} .
- (2) There are different ways of doing iterations. Let $\mathcal{F}' = \mathcal{F}$. For example, to obtain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2$, one can consider

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_1^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_2,$$

which is called the external ultrapower construction, or

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}' = \left(\mathfrak{A}_1^{\mathbb{N}_1} \cap \mathfrak{A}_1\right)/\left(\mathcal{F}^{\mathbb{N}_0}/\mathcal{F}'\right) = \mathfrak{A}_2,$$

which is called the internal ultrapower construction.

イロト イポト イラト イラト

- (1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_0 . The elementary chain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_0 modulo \mathcal{F} .
- (2) There are different ways of doing iterations. Let $\mathcal{F}' = \mathcal{F}$. For example, to obtain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2$, one can consider

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_1^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_2,$$

which is called the external ultrapower construction, or

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}' = \left(\mathfrak{A}_1^{\mathbb{N}_1} \cap \mathfrak{A}_1\right)/\left(\mathcal{F}^{\mathbb{N}_0}/\mathcal{F}'\right) = \mathfrak{A}_2,$$

which is called the internal ultrapower construction.

イロト イポト イラト イラト

- (1) Fix a non-principle ultrafilter \mathcal{F} on \mathbb{N}_0 . The elementary chain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2 \prec \cdots$ can be constructed by iterating the ultrapower construction of \mathfrak{A}_0 modulo \mathcal{F} .
- (2) There are different ways of doing iterations. Let $\mathcal{F}' = \mathcal{F}$. For example, to obtain $\mathfrak{A}_0 \prec \mathfrak{A}_1 \prec \mathfrak{A}_2$, one can consider

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_1^{\mathbb{N}_0}/\mathcal{F}'=\mathfrak{A}_2,$$

which is called the external ultrapower construction, or

$$\left(\mathfrak{A}_0^{\mathbb{N}_0}/\mathcal{F}\right)^{\mathbb{N}_0}/\mathcal{F}' = \left(\mathfrak{A}_1^{\mathbb{N}_1} \cap \mathfrak{A}_1\right)/\left(\mathcal{F}^{\mathbb{N}_0}/\mathcal{F}'\right) = \mathfrak{A}_2,$$

which is called the internal ultrapower construction.

<日本

- (3) By the external ultrapower construction one can produce an elementary embedding i_{0,1} : 𝔄₁ → 𝔅₂. Note that i_{0,1}[ℕ₁ \ ℕ₀] ⊆ ℕ₂ \ ℕ₁. By the internal ultrapower construction one can produce another elementary embedding i_{1,1} : 𝔅₁ → 𝔅₂ such that i_{1,1} ↾, ℕ₁ is an identity map.
- (4) Since (𝔅₁; 𝔅₀)^{𝔅₀}/𝓕' = (𝔅₂; 𝔅₁), the map i_{0,1} is also an elementary embedding from (𝔅₁; 𝔅₀), i.e., the model 𝔅₁ augmented with a new unary relation 𝔅₀, to (𝔅₂; 𝔅₁), i.e., the model 𝔅₂ augmented with a new unary relation 𝔅₁.
- (5) If one iterates internal ultrapowers of 𝔅₀ m times followed by external but 𝔅_m-internal ultrapowers n − m times, one can obtain an elementary embedding i_{m,n} : 𝔅_n → 𝔅_{n+1} as stated in the proposition.

< ロ > < 同 > < 回 > < 回 >

- (3) By the external ultrapower construction one can produce an elementary embedding i_{0,1} : 𝔄₁ → 𝔅₂. Note that i_{0,1}[ℕ₁ \ ℕ₀] ⊆ ℕ₂ \ ℕ₁. By the internal ultrapower construction one can produce another elementary embedding i_{1,1} : 𝔅₁ → 𝔅₂ such that i_{1,1} ↾, ℕ₁ is an identity map.
- (4) Since (𝔅₁; 𝔅₀)^{𝔅₀}/𝔅' = (𝔅₂; 𝔅₁), the map i_{0,1} is also an elementary embedding from (𝔅₁; 𝔅₀), i.e., the model 𝔅₁ augmented with a new unary relation 𝔅₀, to (𝔅₂; 𝔅₁), i.e., the model 𝔅₂ augmented with a new unary relation 𝔅₁.
- (5) If one iterates internal ultrapowers of 𝔄₀ m times followed by external but 𝔄_m-internal ultrapowers n − m times, one can obtain an elementary embedding i_{m,n} : 𝔄_n → 𝔄_{n+1} as stated in the proposition.

< ロ > < 同 > < 回 > < 回 >

- (3) By the external ultrapower construction one can produce an elementary embedding i_{0,1} : 𝔄₁ → 𝔅₂. Note that i_{0,1}[ℕ₁ \ ℕ₀] ⊆ ℕ₂ \ ℕ₁. By the internal ultrapower construction one can produce another elementary embedding i_{1,1} : 𝔅₁ → 𝔅₂ such that i_{1,1} ↾, ℕ₁ is an identity map.
- (4) Since (𝔅₁; ℝ₀)^{ℕ₀}/𝓕' = (𝔅₂; ℝ₁), the map i_{0,1} is also an elementary embedding from (𝔅₁; ℝ₀), i.e., the model 𝔅₁ augmented with a new unary relation ℝ₀, to (𝔅₂; ℝ₁), i.e., the model 𝔅₂ augmented with a new unary relation ℝ₁.
- (5) If one iterates internal ultrapowers of \mathfrak{A}_0 m times followed by external but \mathfrak{A}_m -internal ultrapowers n m times, one can obtain an elementary embedding $i_{m,n} : \mathfrak{A}_n \to \mathfrak{A}_{n+1}$ as stated in the proposition.

< ロ > < 同 > < 回 > < 回 >

Given a coloring $c : [\mathbb{N}_0]^n \to [r]$ for some $r \in \mathbb{N}_0$, there exists an infinite set $A \subseteq \mathbb{N}_0$ such that $c \upharpoonright [A]^n$ is a constant function.

Proof: Let $x_1 = [Id_{\mathbb{N}_0}]_{\mathcal{F}_0} \in \mathbb{N}_1 \setminus \mathbb{N}_0$ and let $x_{j+1} = i_{0,n}(x_j)$ for $j = 1, 2, \ldots, n-1$. Note that x_{j+1} is an equivalence class represented by $Id_{\mathbb{N}_j} : \mathbb{N}_j \to \mathbb{N}_j$. Let ${}^*c(\overline{x}) = c_0 \in [r]$ where $\overline{x} = \{x_1, x_2, \ldots, x_n\}$. We find an infinite set $A = \{a_1 < a_2 < \cdots\}$ in \mathbb{N}_0 by induction such that ${}^*c \upharpoonright [A \cup \overline{x}]^n \equiv c_0$.

The basic case for $A = \emptyset$ is trivially true.

Assume that $A_m = \{a_1 < a_2 < \cdots < a_m\}$ has been constructed such that ${}^*c \upharpoonright [A_m \cup \overline{x}]^n \equiv c_0$.

It suffices to find $a_{m+1} > a_m$ in \mathbb{N}_0 and $A_{m+1} = A_m \cup \{a_{m+1}\}$ such that ${}^*c \upharpoonright [A_{m+1} \cup \overline{x}]^n \equiv c_0$.

イロト イポト イラト イラト

Given a coloring $c : [\mathbb{N}_0]^n \to [r]$ for some $r \in \mathbb{N}_0$, there exists an infinite set $A \subseteq \mathbb{N}_0$ such that $c \upharpoonright [A]^n$ is a constant function.

Proof: Let $x_1 = [Id_{\mathbb{N}_0}]_{\mathcal{F}_0} \in \mathbb{N}_1 \setminus \mathbb{N}_0$ and let $x_{j+1} = i_{0,n}(x_j)$ for j = 1, 2, ..., n-1. Note that x_{j+1} is an equivalence class represented by $Id_{\mathbb{N}_j} : \mathbb{N}_j \to \mathbb{N}_j$. Let ${}^*c(\overline{x}) = c_0 \in [r]$ where $\overline{x} = \{x_1, x_2, ..., x_n\}$. We find an infinite set $A = \{a_1 < a_2 < \cdots\}$ in \mathbb{N}_0 by induction such that ${}^*c \upharpoonright [A \cup \overline{x}]^n \equiv c_0$.

The basic case for $A = \emptyset$ is trivially true.

Assume that $A_m = \{a_1 < a_2 < \cdots < a_m\}$ has been constructed such that ${}^*c \upharpoonright [A_m \cup \overline{x}]^n \equiv c_0$.

It suffices to find $a_{m+1} > a_m$ in \mathbb{N}_0 and $A_{m+1} = A_m \cup \{a_{m+1}\}$ such that ${}^*c \upharpoonright [A_{m+1} \cup \overline{x}]^n \equiv c_0$.

イロト イポト イラト イラト

Given a coloring $c : [\mathbb{N}_0]^n \to [r]$ for some $r \in \mathbb{N}_0$, there exists an infinite set $A \subseteq \mathbb{N}_0$ such that $c \upharpoonright [A]^n$ is a constant function.

Proof: Let $x_1 = [Id_{\mathbb{N}_0}]_{\mathcal{F}_0} \in \mathbb{N}_1 \setminus \mathbb{N}_0$ and let $x_{j+1} = i_{0,n}(x_j)$ for j = 1, 2, ..., n-1. Note that x_{j+1} is an equivalence class represented by $Id_{\mathbb{N}_j} : \mathbb{N}_j \to \mathbb{N}_j$. Let ${}^*c(\overline{x}) = c_0 \in [r]$ where $\overline{x} = \{x_1, x_2, ..., x_n\}$. We find an infinite set $A = \{a_1 < a_2 < \cdots\}$ in \mathbb{N}_0 by induction such that ${}^*c \upharpoonright [A \cup \overline{x}]^n \equiv c_0$.

The basic case for $A = \emptyset$ is trivially true.

Assume that $A_m = \{a_1 < a_2 < \cdots < a_m\}$ has been constructed such that ${}^*c \upharpoonright [A_m \cup \overline{x}]^n \equiv c_0$.

It suffices to find $a_{m+1} > a_m$ in \mathbb{N}_0 and $A_{m+1} = A_m \cup \{a_{m+1}\}$ such that ${}^*c \upharpoonright [A_{m+1} \cup \overline{x}]^n \equiv c_0$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given a coloring $c : [\mathbb{N}_0]^n \to [r]$ for some $r \in \mathbb{N}_0$, there exists an infinite set $A \subseteq \mathbb{N}_0$ such that $c \upharpoonright [A]^n$ is a constant function.

Proof: Let $x_1 = [Id_{\mathbb{N}_0}]_{\mathcal{F}_0} \in \mathbb{N}_1 \setminus \mathbb{N}_0$ and let $x_{j+1} = i_{0,n}(x_j)$ for j = 1, 2, ..., n-1. Note that x_{j+1} is an equivalence class represented by $Id_{\mathbb{N}_j} : \mathbb{N}_j \to \mathbb{N}_j$. Let ${}^*c(\overline{x}) = c_0 \in [r]$ where $\overline{x} = \{x_1, x_2, ..., x_n\}$. We find an infinite set $A = \{a_1 < a_2 < \cdots\}$ in \mathbb{N}_0 by induction such that ${}^*c \upharpoonright [A \cup \overline{x}]^n \equiv c_0$.

The basic case for $A = \emptyset$ is trivially true.

Assume that $A_m = \{a_1 < a_2 < \cdots < a_m\}$ has been constructed such that ${}^*c \upharpoonright [A_m \cup \overline{x}]^n \equiv c_0$.

It suffices to find $a_{m+1} > a_m$ in \mathbb{N}_0 and $A_{m+1} = A_m \cup \{a_{m+1}\}$ such that ${}^*c \upharpoonright [A_{m+1} \cup \overline{x}]^n \equiv c_0$.

Given a coloring $c : [\mathbb{N}_0]^n \to [r]$ for some $r \in \mathbb{N}_0$, there exists an infinite set $A \subseteq \mathbb{N}_0$ such that $c \upharpoonright [A]^n$ is a constant function.

Proof: Let $x_1 = [Id_{\mathbb{N}_0}]_{\mathcal{F}_0} \in \mathbb{N}_1 \setminus \mathbb{N}_0$ and let $x_{j+1} = i_{0,n}(x_j)$ for j = 1, 2, ..., n-1. Note that x_{j+1} is an equivalence class represented by $Id_{\mathbb{N}_j} : \mathbb{N}_j \to \mathbb{N}_j$. Let ${}^*c(\overline{x}) = c_0 \in [r]$ where $\overline{x} = \{x_1, x_2, ..., x_n\}$. We find an infinite set $A = \{a_1 < a_2 < \cdots\}$ in \mathbb{N}_0 by induction such that ${}^*c \upharpoonright [A \cup \overline{x}]^n \equiv c_0$.

The basic case for $A = \emptyset$ is trivially true.

Assume that $A_m = \{a_1 < a_2 < \cdots < a_m\}$ has been constructed such that ${}^*c \upharpoonright [A_m \cup \overline{x}]^n \equiv c_0$.

It suffices to find $a_{m+1} > a_m$ in \mathbb{N}_0 and $A_{m+1} = A_m \cup \{a_{m+1}\}$ such that ${}^*c \upharpoonright [A_{m+1} \cup \overline{x}]^n \equiv c_0$.

イロト イポト イラト イラト

 $\varphi(i_{0,n}(A_m), i_{0,n}(x_1), i_{0,n}(x_2), \ldots, i_{0,n}(x_{n-1}))$:

 $\exists x \in \mathbb{N}_1 \text{ greater than } a_m \text{ such that} \\ {}^*c \upharpoonright [A_m \cup \{x, i_{0,n}(x_1), i_{0,n}(x_2), \dots, i_{0,n}(x_{n-1})]^n \equiv c_0$

is true in $(\mathfrak{A}_n; \mathbb{R}_1)$.

By the transfer principle, the sentence $\varphi(A_m, x_1, x_2, \dots, x_{n-1})$ is true in $(\mathfrak{A}_{n-1}; \mathbb{R}_0)$, i.e., there is an $a_{m+1} > a_m$ in \mathbb{N}_0 such that ${}^*c \upharpoonright [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n \equiv c_0$ where $A_{m+1} = A_m \cup \{a_{m+1}\}$.

伺 ト イ ヨ ト イ ヨ

$$\varphi(i_{0,n}(A_m), i_{0,n}(x_1), i_{0,n}(x_2), \ldots, i_{0,n}(x_{n-1}))$$
:

 $\exists x \in \mathbb{N}_1 \text{ greater than } a_m \text{ such that} \\ {}^*c \upharpoonright [A_m \cup \{x, i_{0,n}(x_1), i_{0,n}(x_2), \dots, i_{0,n}(x_{n-1})]^n \equiv c_0$

is true in $(\mathfrak{A}_n; \mathbb{R}_1)$.

By the transfer principle, the sentence $\varphi(A_m, x_1, x_2, \dots, x_{n-1})$ is true in $(\mathfrak{A}_{n-1}; \mathbb{R}_0)$, i.e., there is an $a_{m+1} > a_m$ in \mathbb{N}_0 such that $c \upharpoonright [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n \equiv c_0$ where $A_{m+1} = A_m \cup \{a_{m+1}\}$. We show next that $c \upharpoonright [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n = c_0$

$$\varphi(i_{0,n}(A_m), i_{0,n}(x_1), i_{0,n}(x_2), \ldots, i_{0,n}(x_{n-1}))$$
:

 $\exists x \in \mathbb{N}_1 \text{ greater than } a_m \text{ such that} \\ {}^*c \upharpoonright [A_m \cup \{x, i_{0,n}(x_1), i_{0,n}(x_2), \dots, i_{0,n}(x_{n-1})]^n \equiv c_0$

is true in $(\mathfrak{A}_n; \mathbb{R}_1)$.

By the transfer principle, the sentence $\varphi(A_m, x_1, x_2, \ldots, x_{n-1})$ is true in $(\mathfrak{A}_{n-1}; \mathbb{R}_0)$, i.e., there is an $a_{m+1} > a_m$ in \mathbb{N}_0 such that ${}^*c \upharpoonright [A_{m+1} \cup \{x_1, x_2, \ldots, x_{n-1}\}]^n \equiv c_0$ where $A_{m+1} = A_m \cup \{a_{m+1}\}$.

We show next that ${}^{*}c \upharpoonright [A_{m+1} \cup \{x_1, x_2, ..., x_{n-1}, x_n\}]^n \equiv c_0$

$$\varphi(i_{0,n}(A_m), i_{0,n}(x_1), i_{0,n}(x_2), \ldots, i_{0,n}(x_{n-1}))$$
:

 $\exists x \in \mathbb{N}_1 \text{ greater than } a_m \text{ such that} \\ {}^*c \upharpoonright [A_m \cup \{x, i_{0,n}(x_1), i_{0,n}(x_2), \dots, i_{0,n}(x_{n-1})]^n \equiv c_0$

is true in $(\mathfrak{A}_n; \mathbb{R}_1)$.

By the transfer principle, the sentence $\varphi(A_m, x_1, x_2, \dots, x_{n-1})$ is true in $(\mathfrak{A}_{n-1}; \mathbb{R}_0)$, i.e., there is an $a_{m+1} > a_m$ in \mathbb{N}_0 such that $c \upharpoonright [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n \equiv c_0$ where $A_{m+1} = A_m \cup \{a_{m+1}\}$. We show next that $c \upharpoonright [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}, x_n\}]^n \equiv c_0$

Given any $\overline{b} := \{b_1 < b_2 < \cdots < b_n\} \in [A_{m+1} \cup \{x_1, \dots, x_n\}]^n$.

If $b_n < x_n$, then $\overline{b} \in [A_{m+1} \cup \{x_1, \dots, x_{n-1}\}]^n$. Hence, * $c(\overline{b}) = c_0$ by the choice of a_{m+1} .

If $b_1 = x_1$, then $\overline{b} = \{x_1, x_2, \dots, x_n\}$. Hence, ${}^*c(\overline{b}) = c_0$ by the choice of c_0 .

So, we can assume $b_1 \in \mathbb{N}_0$ and $b_n = x_n$. This means that one of the elements in $\{x_1, x_2, \ldots, x_n\}$ must not be in \overline{b} . Suppose that x_p for some $1 \leq p < n$ is not in \overline{b} . We show that ${}^*c(\overline{b}) = c_0$.

Consider the elementary embedding $i_{p,n-1} : \mathfrak{A}_{n-1} \to \mathfrak{A}_n$. For each $b_j \in \overline{b}$, if $b_j < x_p$, then $i_{p,n-1}(b_j) = b_j$, and if $b_j = x_k > x_p$, then $i_{p,n-1}(x_{k-1}) = i_{0,n-1}(x_{k-1}) = x_k$. Let $\overline{b}' = i_{p,n-1}^{-1}(\overline{b})$. Then, $\overline{b}' \in [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n$. Hence, $*c(\overline{b}') = c_0$. So, $*c(\overline{b}) = c_0$ by the elementarity of $i_{p,n-1}$.

- 4 回 ト 4 ヨト 4 ヨト

Given any $\overline{b} := \{b_1 < b_2 < \cdots < b_n\} \in [A_{m+1} \cup \{x_1, \dots, x_n\}]^n$. If $b_n < x_n$, then $\overline{b} \in [A_{m+1} \cup \{x_1, \dots, x_{n-1}\}]^n$. Hence, $*c(\overline{b}) = c_0$ by the choice of a_{m+1} .

If $b_1 = x_1$, then $\overline{b} = \{x_1, x_2, \dots, x_n\}$. Hence, ${}^*c(\overline{b}) = c_0$ by the choice of c_0 .

So, we can assume $b_1 \in \mathbb{N}_0$ and $b_n = x_n$. This means that one of the elements in $\{x_1, x_2, \ldots, x_n\}$ must not be in \overline{b} . Suppose that x_p for some $1 \le p < n$ is not in \overline{b} . We show that ${}^*c(\overline{b}) = c_0$.

Consider the elementary embedding $i_{p,n-1} : \mathfrak{A}_{n-1} \to \mathfrak{A}_n$. For each $b_j \in \overline{b}$, if $b_j < x_p$, then $i_{p,n-1}(b_j) = b_j$, and if $b_j = x_k > x_p$, then $i_{p,n-1}(x_{k-1}) = i_{0,n-1}(x_{k-1}) = x_k$. Let $\overline{b}' = i_{p,n-1}^{-1}(\overline{b})$. Then, $\overline{b}' \in [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n$. Hence, $*c(\overline{b}') = c_0$. So, $*c(\overline{b}) = c_0$ by the elementarity of $i_{p,n-1}$.

- 4 回 ト 4 ヨト 4 ヨト

Given any $\overline{b} := \{b_1 < b_2 < \cdots < b_n\} \in [A_{m+1} \cup \{x_1, \dots, x_n\}]^n$. If $b_n < x_n$, then $\overline{b} \in [A_{m+1} \cup \{x_1, \dots, x_{n-1}\}]^n$. Hence, $*c(\overline{b}) = c_0$ by the choice of a_{m+1} .

If $b_1 = x_1$, then $\overline{b} = \{x_1, x_2, \dots, x_n\}$. Hence, ${}^*c(\overline{b}) = c_0$ by the choice of c_0 .

So, we can assume $b_1 \in \mathbb{N}_0$ and $b_n = x_n$. This means that one of the elements in $\{x_1, x_2, \ldots, x_n\}$ must not be in \overline{b} . Suppose that x_p for some $1 \le p < n$ is not in \overline{b} . We show that ${}^*c(\overline{b}) = c_0$.

Consider the elementary embedding $i_{p,n-1} : \mathfrak{A}_{n-1} \to \mathfrak{A}_n$. For each $b_j \in \overline{b}$, if $b_j < x_p$, then $i_{p,n-1}(b_j) = b_j$, and if $b_j = x_k > x_p$, then $i_{p,n-1}(x_{k-1}) = i_{0,n-1}(x_{k-1}) = x_k$. Let $\overline{b}' = i_{p,n-1}^{-1}(\overline{b})$. Then, $\overline{b}' \in [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n$. Hence, $*c(\overline{b}') = c_0$. So, $*c(\overline{b}) = c_0$ by the elementarity of $i_{p,n-1}$.

(4 同) (4 回) (4 回)

Given any $\overline{b} := \{b_1 < b_2 < \cdots < b_n\} \in [A_{m+1} \cup \{x_1, \dots, x_n\}]^n$. If $b_n < x_n$, then $\overline{b} \in [A_{m+1} \cup \{x_1, \dots, x_{n-1}\}]^n$. Hence, ${}^*c(\overline{b}) = c_0$ by the choice of a_{m+1} .

If $b_1 = x_1$, then $\overline{b} = \{x_1, x_2, \dots, x_n\}$. Hence, ${}^*c(\overline{b}) = c_0$ by the choice of c_0 .

So, we can assume $b_1 \in \mathbb{N}_0$ and $b_n = x_n$. This means that one of the elements in $\{x_1, x_2, \ldots, x_n\}$ must not be in \overline{b} . Suppose that x_p for some $1 \le p < n$ is not in \overline{b} . We show that ${}^*c(\overline{b}) = c_0$.

Consider the elementary embedding $i_{p,n-1} : \mathfrak{A}_{n-1} \to \mathfrak{A}_n$. For each $b_j \in \overline{b}$, if $b_j < x_p$, then $i_{p,n-1}(b_j) = b_j$, and if $b_j = x_k > x_p$, then $i_{p,n-1}(x_{k-1}) = i_{0,n-1}(x_{k-1}) = x_k$. Let $\overline{b}' = i_{p,n-1}^{-1}(\overline{b})$. Then, $\overline{b}' \in [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n$. Hence, $*c(\overline{b}') = c_0$. So, $*c(\overline{b}) = c_0$ by the elementarity of $i_{p,n-1}$.

Given any $\overline{b} := \{b_1 < b_2 < \cdots < b_n\} \in [A_{m+1} \cup \{x_1, \dots, x_n\}]^n$. If $b_n < x_n$, then $\overline{b} \in [A_{m+1} \cup \{x_1, \dots, x_{n-1}\}]^n$. Hence, ${}^*c(\overline{b}) = c_0$ by the choice of a_{m+1} .

If $b_1 = x_1$, then $\overline{b} = \{x_1, x_2, \dots, x_n\}$. Hence, ${}^*c(\overline{b}) = c_0$ by the choice of c_0 .

So, we can assume $b_1 \in \mathbb{N}_0$ and $b_n = x_n$. This means that one of the elements in $\{x_1, x_2, \ldots, x_n\}$ must not be in \overline{b} . Suppose that x_p for some $1 \le p < n$ is not in \overline{b} . We show that $*c(\overline{b}) = c_0$.

Consider the elementary embedding $i_{p,n-1} : \mathfrak{A}_{n-1} \to \mathfrak{A}_n$. For each $b_j \in \overline{b}$, if $b_j < x_p$, then $i_{p,n-1}(b_j) = b_j$, and if $b_j = x_k > x_p$, then $i_{p,n-1}(x_{k-1}) = i_{0,n-1}(x_{k-1}) = x_k$. Let $\overline{b}' = i_{p,n-1}^{-1}(\overline{b})$. Then, $\overline{b}' \in [A_{m+1} \cup \{x_1, x_2, \dots, x_{n-1}\}]^n$. Hence, $*c(\overline{b}') = c_0$. So, $*c(\overline{b}) = c_0$ by the elementarity of $i_{p,n-1}$.

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n] := \{0, 1, ..., n-1\}$.

Fix a dimension s. A homothetic copy of $[n]^s$ is a set of the form

 $HC_{\vec{a},d,n} := \vec{a} + d[n]^s = \{\vec{a} + d\vec{x} \mid \vec{x} \in [n]^s\}$

for some $\vec{a} \in \mathbb{N}^s$ and positive $d \in \mathbb{N}$. We omit *n* in $HC_{\vec{a},d,n}$ after *n* is fixed.

Theorem (Gallai)

Given any positive $r, n \in \mathbb{N}_0$, one can find an $N \in \mathbb{N}_0$ such that for every $c : [N]^s \to [r]$ there exists \vec{a}, d such that $c \upharpoonright HC_{\vec{a},d,n} \equiv c_0$ for some $c_0 \in [r]$.

The proof of the multidimensional van der Waerden's theorem in this talk is inspired by the proof of the one-dimensional version in A. Khinchin's book "Three Pearls of Number Theory."

イロン 不同 とくほう イロン

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n] := \{0, 1, \dots, n-1\}$.

Fix a dimension s. A homothetic copy of $[n]^s$ is a set of the form

$$HC_{\vec{a},d,n} := \vec{a} + d[n]^s = \{\vec{a} + d\vec{x} \mid \vec{x} \in [n]^s\}$$

for some $\vec{a} \in \mathbb{N}^s$ and positive $d \in \mathbb{N}$. We omit *n* in $HC_{\vec{a},d,n}$ after *n* is fixed.

Theorem (Gallai)

Given any positive $r, n \in \mathbb{N}_0$, one can find an $N \in \mathbb{N}_0$ such that for every $c : [N]^s \to [r]$ there exists \vec{a}, d such that $c \upharpoonright HC_{\vec{a},d,n} \equiv c_0$ for some $c_0 \in [r]$.

The proof of the multidimensional van der Waerden's theorem in this talk is inspired by the proof of the one-dimensional version in A. Khinchin's book "Three Pearls of Number Theory."

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n] := \{0, 1, \dots, n-1\}$.

Fix a dimension s. A homothetic copy of $[n]^s$ is a set of the form

$$HC_{\vec{a},d,n} := \vec{a} + d[n]^s = \{\vec{a} + d\vec{x} \mid \vec{x} \in [n]^s\}$$

for some $\vec{a} \in \mathbb{N}^s$ and positive $d \in \mathbb{N}$. We omit *n* in $HC_{\vec{a},d,n}$ after *n* is fixed.

Theorem (Gallai)

Given any positive $r, n \in \mathbb{N}_0$, one can find an $N \in \mathbb{N}_0$ such that for every $c : [N]^s \to [r]$ there exists \vec{a}, d such that $c \upharpoonright HC_{\vec{a},d,n} \equiv c_0$ for some $c_0 \in [r]$.

The proof of the multidimensional van der Waerden's theorem in this talk is inspired by the proof of the one-dimensional version in A. Khinchin's book "Three Pearls of Number Theory."

・ 同 ト ・ ヨ ト ・ ヨ ト …

The multidimensional van der Waerden's theorem is also called Gallai's theorem. Let $[n] := \{0, 1, \dots, n-1\}$.

Fix a dimension s. A homothetic copy of $[n]^s$ is a set of the form

$$HC_{\vec{a},d,n} := \vec{a} + d[n]^s = \{\vec{a} + d\vec{x} \mid \vec{x} \in [n]^s\}$$

for some $\vec{a} \in \mathbb{N}^s$ and positive $d \in \mathbb{N}$. We omit *n* in $HC_{\vec{a},d,n}$ after *n* is fixed.

Theorem (Gallai)

Given any positive $r, n \in \mathbb{N}_0$, one can find an $N \in \mathbb{N}_0$ such that for every $c : [N]^s \to [r]$ there exists \vec{a}, d such that $c \upharpoonright HC_{\vec{a},d,n} \equiv c_0$ for some $c_0 \in [r]$.

The proof of the multidimensional van der Waerden's theorem in this talk is inspired by the proof of the one-dimensional version in A. Khinchin's book "Three Pearls of Number Theory."

伺 と く ヨ と く ヨ と

Let $\varphi_m(r, N)$ be the following first–order sentence:

 $\forall c : [N]^s \to [r] \ \exists HC_{\vec{s},d} \subseteq [N]^s \ \exists c_0 \in [r]$ $(c(HC_{\vec{s},d}(I)) = c_0 \ \text{for} \ I = 0, 1, \dots, m) .$ (2)

Claim (1)

Given $m \in [n^s]$, for every $r \in \mathbb{N}_0$, there exists an $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Note that the claim when $m = n^s - 1$ is the multidimensional van der Waerden's theorem.

Let $\varphi_m(r, N)$ be the following first-order sentence:

 $\forall c : [N]^s \to [r] \ \exists HC_{\vec{s},d} \subseteq [N]^s \ \exists c_0 \in [r]$ $(c(HC_{\vec{s},d}(l)) = c_0 \ \text{for} \ l = 0, 1, \dots, m).$ (2)

Claim(1)

Given $m \in [n^s]$, for every $r \in \mathbb{N}_0$, there exists an $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Note that the claim when $m = n^s - 1$ is the multidimensional van der Waerden's theorem.

・ロト ・同ト ・ヨト ・ヨト

Let $\varphi_m(r, N)$ be the following first-order sentence:

$$\forall c : [N]^s \to [r] \exists HC_{\vec{a},d} \subseteq [N]^s \exists c_0 \in [r] (c(HC_{\vec{a},d}(I)) = c_0 \text{ for } I = 0, 1, \dots, m).$$
(2)

Claim(1)

Given $m \in [n^s]$, for every $r \in \mathbb{N}_0$, there exists an $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Note that the claim when $m = n^s - 1$ is the multidimensional van der Waerden's theorem.

Let $\varphi_m(r, N)$ be the following first-order sentence:

$$\forall c : [N]^{s} \to [r] \ \exists HC_{\vec{a},d} \subseteq [N]^{s} \ \exists c_{0} \in [r] (c(HC_{\vec{a},d}(l)) = c_{0} \ \text{for} \ l = 0, 1, \dots, m) .$$
(2)

Claim (1)

Given $m \in [n^s]$, for every $r \in \mathbb{N}_0$, there exists an $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Note that the claim when $m = n^s - 1$ is the multidimensional van der Waerden's theorem.

Let $\varphi_m(r, N)$ be the following first-order sentence:

$$\forall c : [N]^{s} \to [r] \ \exists HC_{\vec{a},d} \subseteq [N]^{s} \ \exists c_{0} \in [r] (c(HC_{\vec{a},d}(l)) = c_{0} \ \text{for} \ l = 0, 1, \dots, m) .$$
(2)

Claim (1)

Given $m \in [n^s]$, for every $r \in \mathbb{N}_0$, there exists an $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Note that the claim when $m = n^s - 1$ is the multidimensional van der Waerden's theorem.

It suffices to prove the claim by induction on $m \le n^s - 1$. Call $HC_{\vec{s},d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for m = 0 is trivial.

Assume that the claim is true for m - 1. We prove that the claim is true for $m < n^s$.

Given $r \in \mathbb{N}_0$, the task now is to find $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Work within \mathfrak{A}_{r+1} . Choose any $N_r \in \mathbb{N}_{r+1} \setminus \mathbb{N}_r$. It suffices to prove that $\varphi_m(r, 2N_r)$ is true in \mathfrak{A}_r by the transfer principle.

・ 同 ト ・ ヨ ト ・ ヨ ト

It suffices to prove the claim by induction on $m \le n^s - 1$. Call $HC_{\vec{a},d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for m = 0 is trivial.

Assume that the claim is true for m - 1. We prove that the claim is true for $m < n^s$.

Given $r \in \mathbb{N}_0$, the task now is to find $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Work within \mathfrak{A}_{r+1} . Choose any $N_r \in \mathbb{N}_{r+1} \setminus \mathbb{N}_r$. It suffices to prove that $\varphi_m(r, 2N_r)$ is true in \mathfrak{A}_r by the transfer principle.

・ 同 ト ・ ヨ ト ・ ヨ ト

It suffices to prove the claim by induction on $m \le n^s - 1$. Call $HC_{\vec{a},d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for m = 0 is trivial.

Assume that the claim is true for m - 1. We prove that the claim is true for $m < n^s$.

Given $r \in \mathbb{N}_0$, the task now is to find $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Work within \mathfrak{A}_{r+1} . Choose any $N_r \in \mathbb{N}_{r+1} \setminus \mathbb{N}_r$. It suffices to prove that $\varphi_m(r, 2N_r)$ is true in \mathfrak{A}_r by the transfer principle.

(4月) イヨト イヨト

It suffices to prove the claim by induction on $m \le n^s - 1$. Call $HC_{\vec{a},d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for m = 0 is trivial.

Assume that the claim is true for m - 1. We prove that the claim is true for $m < n^s$.

Given $r \in \mathbb{N}_0$, the task now is to find $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Work within \mathfrak{A}_{r+1} . Choose any $N_r \in \mathbb{N}_{r+1} \setminus \mathbb{N}_r$. It suffices to prove that $\varphi_m(r, 2N_r)$ is true in \mathfrak{A}_r by the transfer principle.

・ 同 ト ・ ヨ ト ・ ヨ ト

It suffices to prove the claim by induction on $m \le n^s - 1$. Call $HC_{\vec{a},d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for m = 0 is trivial.

Assume that the claim is true for m - 1. We prove that the claim is true for $m < n^s$.

Given $r \in \mathbb{N}_0$, the task now is to find $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Work within \mathfrak{A}_{r+1} . Choose any $N_r \in \mathbb{N}_{r+1} \setminus \mathbb{N}_r$. It suffices to prove that $\varphi_m(r, 2N_r)$ is true in \mathfrak{A}_r by the transfer principle.

・ 同 ト ・ ヨ ト ・ ヨ ト

It suffices to prove the claim by induction on $m \le n^s - 1$. Call $HC_{\vec{s},d}$ in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for m = 0 is trivial.

Assume that the claim is true for m - 1. We prove that the claim is true for $m < n^s$.

Given $r \in \mathbb{N}_0$, the task now is to find $N \in \mathbb{N}_0$ such that $\varphi_m(r, N)$ is true in \mathfrak{A}_0 .

Work within \mathfrak{A}_{r+1} . Choose any $N_r \in \mathbb{N}_{r+1} \setminus \mathbb{N}_r$. It suffices to prove that $\varphi_m(r, 2N_r)$ is true in \mathfrak{A}_r by the transfer principle.

- 4 同 6 4 日 6 4 日 6

It suffices to find a $HC_{\vec{a},d} \subseteq [2N_r]^s$ which is monochromatic up to *m* with respect to *c*.

Choose any $N_j \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j$ for $j = 0, 1, \ldots, r-1$. Since \mathbb{N}_{j+1} is an end-extension of \mathbb{N}_j , the number $r^{(2N_{j-1})^s}$ is infinitely smaller than N_j .

For any $\vec{x}, \vec{y} \in [N_r]^s$ we say that \vec{x} and \vec{y} have the same $2N_j$ -type if $c(\vec{x} + \vec{z}) = c(\vec{y} + \vec{z})$ for any $\vec{z} \in [2N_j]^s$.

伺下 イヨト イヨ

It suffices to find a $HC_{\vec{a},d} \subseteq [2N_r]^s$ which is monochromatic up to m with respect to c.

Choose any $N_j \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j$ for $j = 0, 1, \dots, r-1$. Since \mathbb{N}_{j+1} is an end-extension of \mathbb{N}_j , the number $r^{(2N_{j-1})^s}$ is infinitely smaller than N_j .

For any $\vec{x}, \vec{y} \in [N_r]^s$ we say that \vec{x} and \vec{y} have the same $2N_j$ -type if $c(\vec{x} + \vec{z}) = c(\vec{y} + \vec{z})$ for any $\vec{z} \in [2N_j]^s$.

It suffices to find a $HC_{\vec{a},d} \subseteq [2N_r]^s$ which is monochromatic up to *m* with respect to *c*.

Choose any $N_j \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j$ for $j = 0, 1, \ldots, r-1$. Since \mathbb{N}_{j+1} is an end-extension of \mathbb{N}_j , the number $r^{(2N_{j-1})^s}$ is infinitely smaller than N_j .

For any $\vec{x}, \vec{y} \in [N_r]^s$ we say that \vec{x} and \vec{y} have the same $2N_j$ -type if $c(\vec{x} + \vec{z}) = c(\vec{y} + \vec{z})$ for any $\vec{z} \in [2N_j]^s$.

It suffices to find a $HC_{\vec{a},d} \subseteq [2N_r]^s$ which is monochromatic up to *m* with respect to *c*.

Choose any $N_j \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j$ for $j = 0, 1, \ldots, r-1$. Since \mathbb{N}_{j+1} is an end-extension of \mathbb{N}_j , the number $r^{(2N_{j-1})^s}$ is infinitely smaller than N_j .

For any $\vec{x}, \vec{y} \in [N_r]^s$ we say that \vec{x} and \vec{y} have the same $2N_j$ -type if $c(\vec{x} + \vec{z}) = c(\vec{y} + \vec{z})$ for any $\vec{z} \in [2N_j]^s$.

伺下 イヨト イヨト

$$(\forall r' \in \mathbb{N}_0) (\forall N \in \mathbb{N}_1 \setminus \mathbb{N}_0) \varphi_{m-1}(r', N)$$

is true in $(\mathfrak{A}_1; \mathbb{R}_0)$, the sentence

 $(\forall r' \in \mathbb{N}_j) (\forall N \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j) \varphi_{m-1}(r', N)$

is true in $(\mathfrak{A}_{j+1}; \mathbb{R}_j)$ for $j = 1, 2, \ldots, r$.

In particular, $\varphi_{m-1}(r^{(2N_{j-1})^s}, N_j)$ is true in \mathfrak{A}_{j+1} for $j = 1, 2, \dots, r$.

Since the number of $2N_{j-1}$ -types is at most $r^{(2N_{j-1})^s}$, we can find $HC_{\vec{a}_j,d_j} \subseteq [N_j]^s$ such that $HC_{\vec{a}_j,d_j}$ is monochromatic up to m-1 with respect to $2N_{j-1}$ -types, i.e., $HC_{\vec{a}_j,d_j}(I)$ for $I = 0, 1, \ldots, m-1$ have the same $2N_{i-1}$ -type.

$$(\forall r' \in \mathbb{N}_0) \, (\forall N \in \mathbb{N}_1 \setminus \mathbb{N}_0) \, \varphi_{m-1}(r', N)$$

is true in $(\mathfrak{A}_1; \mathbb{R}_0)$, the sentence

$$(\forall r' \in \mathbb{N}_j) (\forall N \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j) \varphi_{m-1}(r', N)$$

is true in $(\mathfrak{A}_{j+1}; \mathbb{R}_j)$ for $j = 1, 2, \ldots, r$.

In particular, $\varphi_{m-1}(r^{(2N_{j-1})^s},N_j)$ is true in \mathfrak{A}_{j+1} for $j=1,2,\ldots,r.$

Since the number of $2N_{j-1}$ -types is at most $r^{(2N_{j-1})^s}$, we can find $HC_{\vec{a}_j,d_j} \subseteq [N_j]^s$ such that $HC_{\vec{a}_j,d_j}$ is monochromatic up to m-1 with respect to $2N_{j-1}$ -types, i.e., $HC_{\vec{a}_j,d_j}(I)$ for $I = 0, 1, \ldots, m-1$ have the same $2N_{i-1}$ -type.

$$(\forall r' \in \mathbb{N}_0) \, (\forall N \in \mathbb{N}_1 \setminus \mathbb{N}_0) \, \varphi_{m-1}(r', N)$$

is true in $(\mathfrak{A}_1; \mathbb{R}_0)$, the sentence

$$(\forall r' \in \mathbb{N}_j) \, (\forall N \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j) \, \varphi_{m-1}(r', N)$$

is true in $(\mathfrak{A}_{j+1}; \mathbb{R}_j)$ for $j = 1, 2, \ldots, r$.

In particular, $\varphi_{m-1}(r^{(2N_{j-1})^s}, N_j)$ is true in \mathfrak{A}_{j+1} for $j = 1, 2, \ldots, r$.

Since the number of $2N_{j-1}$ -types is at most $r^{(2N_{j-1})^s}$, we can find $HC_{\vec{a}_j,d_j} \subseteq [N_j]^s$ such that $HC_{\vec{a}_j,d_j}$ is monochromatic up to m-1 with respect to $2N_{j-1}$ -types, i.e., $HC_{\vec{a}_j,d_j}(I)$ for $I = 0, 1, \ldots, m-1$ have the same $2N_{j-1}$ -type.

$$(\forall r' \in \mathbb{N}_0) \, (\forall N \in \mathbb{N}_1 \setminus \mathbb{N}_0) \, \varphi_{m-1}(r', N)$$

is true in $(\mathfrak{A}_1; \mathbb{R}_0)$, the sentence

$$(\forall r' \in \mathbb{N}_j) \, (\forall N \in \mathbb{N}_{j+1} \setminus \mathbb{N}_j) \, \varphi_{m-1}(r', N)$$

is true in $(\mathfrak{A}_{j+1}; \mathbb{R}_j)$ for $j = 1, 2, \ldots, r$.

In particular, $\varphi_{m-1}(r^{(2N_{j-1})^s}, N_j)$ is true in \mathfrak{A}_{j+1} for j = 1, 2, ..., r.

Since the number of $2N_{j-1}$ -types is at most $r^{(2N_{j-1})^s}$, we can find $HC_{\vec{a}_j,d_j} \subseteq [N_j]^s$ such that $HC_{\vec{a}_j,d_j}$ is monochromatic up to m-1 with respect to $2N_{j-1}$ -types, i.e., $HC_{\vec{a}_j,d_j}(I)$ for $I = 0, 1, \ldots, m-1$ have the same $2N_{j-1}$ -type.

Find $HC_{\vec{a}_{r-1},d_{r-1}} \subseteq [N_{r-1}]^s$ such that $\vec{a}_r + HC_{\vec{a}_{r-1},d_{r-1}}$ is monochromatic up to m-1 with respect to $2N_{r-2}$ -types.

Find $HC_{\vec{a}_{r-2},d_{r-2}} \subseteq [N_{r-2}]^s$ such that $\vec{a}_r + \vec{a}_{r-1} + HC_{\vec{a}_{r-2},d_{r-2}}$ is monochromatic up to m-1 with respect to $2N_{r-3}$ -types.

.

Find $HC_{ec{a}_1,d_1} \subseteq [N_1]^s$ such that $\sum_{j=2}^r ec{a}_j + HC_{ec{a}_1,d_1}$ is monochromatic up to m-1 with respect to 2 N_0 -types.

Find
$$HC_{\vec{a}_0,d_0} \subseteq [N_0]^s$$
 such that $\sum_{j=1}^{\cdot} \vec{a}_j + HC_{\vec{a}_0,d_0}$ is nonochromatic up to $m-1$ with respect to c .

Find $HC_{\vec{a}_{r-1},d_{r-1}} \subseteq [N_{r-1}]^s$ such that $\vec{a}_r + HC_{\vec{a}_{r-1},d_{r-1}}$ is monochromatic up to m-1 with respect to $2N_{r-2}$ -types.

Find $HC_{\vec{a}_{r-2},d_{r-2}} \subseteq [N_{r-2}]^s$ such that $\vec{a}_r + \vec{a}_{r-1} + HC_{\vec{a}_{r-2},d_{r-2}}$ is monochromatic up to m-1 with respect to $2N_{r-3}$ -types.

.

Find $HC_{\vec{a}_1,d_1} \subseteq [N_1]^s$ such that $\sum_{j=2}^r \vec{a}_j + HC_{\vec{a}_1,d_1}$ is monochromatic up to m-1 with respect to $2N_0$ -types. Find $HC_{\vec{a}_0,d_0} \subseteq [N_0]^s$ such that $\sum_{i=1}^r \vec{a}_j + HC_{\vec{a}_0,d_0}$ is

monochromatic up to m-1 with respect to c.

Find $HC_{\vec{a}_{r-1},d_{r-1}} \subseteq [N_{r-1}]^s$ such that $\vec{a}_r + HC_{\vec{a}_{r-1},d_{r-1}}$ is monochromatic up to m-1 with respect to $2N_{r-2}$ -types.

Find $HC_{\vec{a}_{r-2},d_{r-2}} \subseteq [N_{r-2}]^s$ such that $\vec{a}_r + \vec{a}_{r-1} + HC_{\vec{a}_{r-2},d_{r-2}}$ is monochromatic up to m-1 with respect to $2N_{r-3}$ -types.

.

Find $HC_{\vec{a}_1,d_1} \subseteq [N_1]^s$ such that $\sum_{j=2}^r \vec{a}_j + HC_{\vec{a}_1,d_1}$ is monochromatic up to m-1 with respect to $2N_0$ -types. Find $HC_{\vec{a}_0,d_0} \subseteq [N_0]^s$ such that $\sum_{j=1}^r \vec{a}_j + HC_{\vec{a}_0,d_0}$ is

monochromatic up to m-1 with respect to c.

Find $HC_{\vec{a}_{r-1},d_{r-1}} \subseteq [N_{r-1}]^s$ such that $\vec{a}_r + HC_{\vec{a}_{r-1},d_{r-1}}$ is monochromatic up to m-1 with respect to $2N_{r-2}$ -types.

Find $HC_{\vec{a}_{r-2},d_{r-2}} \subseteq [N_{r-2}]^s$ such that $\vec{a}_r + \vec{a}_{r-1} + HC_{\vec{a}_{r-2},d_{r-2}}$ is monochromatic up to m-1 with respect to $2N_{r-3}$ -types.

....

Find $HC_{\vec{a}_1,d_1} \subseteq [N_1]^s$ such that $\sum_{j=2}^r \vec{a}_j + HC_{\vec{a}_1,d_1}$ is monochromatic up to m-1 with respect to $2N_0$ -types. Find $HC_{\vec{a}_0,d_0} \subseteq [N_0]^s$ such that $\sum_{j=1}^r \vec{a}_j + HC_{\vec{a}_0,d_0}$ is monochromatic up to m-1 with respect to c.

Find $HC_{\vec{a}_{r-1},d_{r-1}} \subseteq [N_{r-1}]^s$ such that $\vec{a}_r + HC_{\vec{a}_{r-1},d_{r-1}}$ is monochromatic up to m-1 with respect to $2N_{r-2}$ -types.

Find $HC_{\vec{a}_{r-2},d_{r-2}} \subseteq [N_{r-2}]^s$ such that $\vec{a}_r + \vec{a}_{r-1} + HC_{\vec{a}_{r-2},d_{r-2}}$ is monochromatic up to m-1 with respect to $2N_{r-3}$ -types.

.

Find $HC_{\vec{a}_1,d_1} \subseteq [N_1]^s$ such that $\sum_{j=2}^r \vec{a}_j + HC_{\vec{a}_1,d_1}$ is monochromatic up to m-1 with respect to $2N_0$ -types.

Find
$$HC_{ec{a}_0,d_0}\subseteq [N_0]^s$$
 such that $\sum_{j=1}^{'}ec{a}_j+HC_{ec{a}_0,d_0}$ is nonochromatic up to $m-1$ with respect to $c.$

Find $HC_{\vec{a}_{r-1},d_{r-1}} \subseteq [N_{r-1}]^s$ such that $\vec{a}_r + HC_{\vec{a}_{r-1},d_{r-1}}$ is monochromatic up to m-1 with respect to $2N_{r-2}$ -types.

Find $HC_{\vec{a}_{r-2},d_{r-2}} \subseteq [N_{r-2}]^s$ such that $\vec{a}_r + \vec{a}_{r-1} + HC_{\vec{a}_{r-2},d_{r-2}}$ is monochromatic up to m-1 with respect to $2N_{r-3}$ -types.

.

m

Find $HC_{\vec{a}_1,d_1} \subseteq [N_1]^s$ such that $\sum_{j=2}^{'} \vec{a}_j + HC_{\vec{a}_1,d_1}$ is monochromatic up to m-1 with respect to $2N_0$ -types.

Find
$$HC_{\vec{a}_0,d_0} \subseteq [N_0]^s$$
 such that $\sum_{j=1}^{'} \vec{a}_j + HC_{\vec{a}_0,d_0}$ is nonochromatic up to $m-1$ with respect to c .

$$(HC_{\vec{a},d} \oplus HC_{\vec{a}',d'})(I) = HC_{\vec{a},d}(I) + HC_{\vec{a}',d'}(I).$$

For each j = 0, 1, ..., r let $\vec{y}_j := HC_{\vec{a}_r, d_r}(0) + \cdots + HC_{\vec{a}_j, d_j}(0) + HC_{\vec{a}_{j-1}, d_{j-1}}(m) + \cdots + HC_{\vec{a}_0, d_0}(m).$ There must exist $0 \le j_1 < j_2 \le r$ such that $c(\vec{y}_{j_1}) = c(\vec{y}_{j_2})$. Let

$$D := HC_{\vec{a}_{r},d_{r}}(0) + \dots + HC_{\vec{a}_{j_{2}},d_{j_{2}}}(0) + HC_{\vec{a}_{j_{2}-1}} \oplus \dots \oplus HC_{\vec{a}_{j_{1}},d_{j_{1}}} + HC_{\vec{a}_{j_{1}-1},d_{j_{1}-1}}(m) + \dots + HC_{\vec{a}_{0},d_{0}}(m)$$

Then D is a homothetic copy of $[n]^s$.

$$(\mathit{HC}_{\vec{a},d} \oplus \mathit{HC}_{\vec{a}',d'})(I) = \mathit{HC}_{\vec{a},d}(I) + \mathit{HC}_{\vec{a}',d'}(I).$$

For each j = 0, 1, ..., r let $\vec{y}_j := HC_{\vec{a}_r, d_r}(0) + \cdots + HC_{\vec{a}_j, d_j}(0) + HC_{\vec{a}_{j-1}, d_{j-1}}(m) + \cdots + HC_{\vec{a}_0, d_0}(m).$ There must exist $0 \le j_1 < j_2 \le r$ such that $c(\vec{y}_{j_1}) = c(\vec{y}_{j_2})$. Let

$$D := HC_{\vec{a}_{r},d_{r}}(0) + \dots + HC_{\vec{a}_{j_{2}},d_{j_{2}}}(0) \\ + HC_{\vec{a}_{j_{2}-1}} \oplus \dots \oplus HC_{\vec{a}_{j_{1}},d_{j_{1}}} \\ + HC_{\vec{a}_{j_{1}-1},d_{j_{1}-1}}(m) + \dots + HC_{\vec{a}_{0},d_{0}}(m)$$

Then D is a homothetic copy of $[n]^s$.

$$(\mathit{HC}_{\vec{a},d} \oplus \mathit{HC}_{\vec{a}',d'})(I) = \mathit{HC}_{\vec{a},d}(I) + \mathit{HC}_{\vec{a}',d'}(I).$$

For each j = 0, 1, ..., r let $\vec{y_j} := HC_{\vec{a}_r, d_r}(0) + \cdots + HC_{\vec{a}_j, d_j}(0) + HC_{\vec{a}_{j-1}, d_{j-1}}(m) + \cdots + HC_{\vec{a}_0, d_0}(m).$ There must exist $0 \le j_1 < j_2 \le r$ such that $c(\vec{y}_{j_1}) = c(\vec{y}_{j_2})$. Let

$$D := HC_{\vec{a}_{r},d_{r}}(0) + \dots + HC_{\vec{a}_{j_{2}},d_{j_{2}}}(0)$$
$$+ HC_{\vec{a}_{j_{2}-1}} \oplus \dots \oplus HC_{\vec{a}_{j_{1}},d_{j_{1}}}$$
$$+ HC_{\vec{a}_{j_{1}-1},d_{j_{1}-1}}(m) + \dots + HC_{\vec{a}_{0},d_{0}}(m)$$

Then *D* is a homothetic copy of $[n]^s$.

$$(\mathit{HC}_{\vec{a},d} \oplus \mathit{HC}_{\vec{a}',d'})(I) = \mathit{HC}_{\vec{a},d}(I) + \mathit{HC}_{\vec{a}',d'}(I).$$

For each j = 0, 1, ..., r let $\vec{y_j} := HC_{\vec{a}_r, d_r}(0) + \cdots + HC_{\vec{a}_j, d_j}(0) + HC_{\vec{a}_{j-1}, d_{j-1}}(m) + \cdots + HC_{\vec{a}_0, d_0}(m).$ There must exist $0 \le j_1 < j_2 \le r$ such that $c(\vec{y_{j_1}}) = c(\vec{y_{j_2}})$. Let

$$D := HC_{\vec{a}_{r},d_{r}}(0) + \dots + HC_{\vec{a}_{j_{2}},d_{j_{2}}}(0) \\ + HC_{\vec{a}_{j_{2}-1}} \oplus \dots \oplus HC_{\vec{a}_{j_{1}},d_{j_{1}}} \\ + HC_{\vec{a}_{j_{1}-1},d_{j_{1}-1}}(m) + \dots + HC_{\vec{a}_{0},d_{0}}(m)$$

Then *D* is a homothetic copy of [*n*]^{*s*}.

$$(\mathit{HC}_{\vec{a},d} \oplus \mathit{HC}_{\vec{a}',d'})(I) = \mathit{HC}_{\vec{a},d}(I) + \mathit{HC}_{\vec{a}',d'}(I).$$

For each j = 0, 1, ..., r let $\vec{y}_j := HC_{\vec{a}_r, d_r}(0) + \cdots + HC_{\vec{a}_j, d_j}(0) + HC_{\vec{a}_{j-1}, d_{j-1}}(m) + \cdots + HC_{\vec{a}_0, d_0}(m).$ There must exist $0 \le j_1 < j_2 \le r$ such that $c(\vec{y}_{j_1}) = c(\vec{y}_{j_2})$. Let

$$D := HC_{\vec{a}_{r},d_{r}}(0) + \dots + HC_{\vec{a}_{j_{2}},d_{j_{2}}}(0) \\ + HC_{\vec{a}_{j_{2}-1}} \oplus \dots \oplus HC_{\vec{a}_{j_{1}},d_{j_{1}}} \\ + HC_{\vec{a}_{j_{1}-1},d_{j_{1}-1}}(m) + \dots + HC_{\vec{a}_{0},d_{0}}(m)$$

Then D is a homothetic copy of $[n]^s$.

Claim (2)

The homothetic copy D is monochromatic up to m.

Proof of Claim (2) Note that all elements $D(I) := HC_{\vec{a}_r, d_r}(0) + \dots + HC_{\vec{a}_{j_2}, d_{j_2}}(0) + HC_{\vec{a}_{j_2-1}}(I) \oplus \dots \oplus HC_{\vec{a}_{j_1}, d_{j_1}}(I) + HC_{\vec{a}_{j_1-1}, d_{j_1-1}}(m) + \dots + HC_{\vec{a}_0, d_0}(m)$

for $l = 0, 1, \ldots, m - 1$ have the same *c*-value.

Note also that $D(0) = \vec{y}_{j_1}$ and $D(m) = \vec{y}_{j_2}$ have the same c-value. Hence, the homothetic copy D of $[n]^s$ is monochromatic up to m with respect to c. This completes the proof.

- 4 同 6 4 日 6 4 日 6

Claim (2)

The homothetic copy D is monochromatic up to m.

Proof of Claim (2) Note that all elements

$$D(I) := HC_{\vec{a}_{r},d_{r}}(0) + \dots + HC_{\vec{a}_{j_{2}},d_{j_{2}}}(0) \\ + HC_{\vec{a}_{j_{2}-1}}(I) \oplus \dots \oplus HC_{\vec{a}_{j_{1}},d_{j_{1}}}(I) \\ + HC_{\vec{a}_{j_{1}-1},d_{j_{1}-1}}(m) + \dots + HC_{\vec{a}_{0},d_{0}}(m)$$

for $l = 0, 1, \ldots, m-1$ have the same *c*-value.

Note also that $D(0) = \vec{y}_{j_1}$ and $D(m) = \vec{y}_{j_2}$ have the same *c*-value. Hence, the homothetic copy *D* of $[n]^s$ is monochromatic up to *m* with respect to *c*. This completes the proof.

・ 同 ト ・ ヨ ト ・ ヨ ト

Claim (2)

The homothetic copy D is monochromatic up to m.

Proof of Claim (2) Note that all elements

$$\begin{split} D(I) &:= HC_{\vec{a}_r, d_r}(0) + \dots + HC_{\vec{a}_{j_2}, d_{j_2}}(0) \\ &+ HC_{\vec{a}_{j_2-1}}(I) \oplus \dots \oplus HC_{\vec{a}_{j_1}, d_{j_1}}(I) \\ &+ HC_{\vec{a}_{j_1-1}, d_{j_1-1}}(m) + \dots + HC_{\vec{a}_0, d_0}(m) \end{split}$$

for $l = 0, 1, \ldots, m - 1$ have the same *c*-value.

Note also that $D(0) = \vec{y}_{j_1}$ and $D(m) = \vec{y}_{j_2}$ have the same c-value. Hence, the homothetic copy D of $[n]^s$ is monochromatic up to m with respect to c. This completes the proof.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The End

Thank you for your attention.

Renling Jin College of Charleston, SC Proof of Multidimensional van der Waerden's Theorem