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Definition

Let A0 be a structure with the base set A0 containing all
standard real numbers and all subsets of standard real numbers
including N0 and R0. For example, let A be the superstructure
(V (X );∈) truncated at level 100.

(a) The structure A′ with base set A′ is called an elementary
extension of A0, denoted by A0 ≺ A′, if there is a proper
injection i : A0 → A′, called elementary embedding, such that

ϕ(a) is true in A0 ⇐⇒ ϕ(i(a)) is true in A′ (1)

for any first–order formula ϕ(x) in the language of A0 and
any tuple a in An

0.

(b) Let A′ and A′′ be two elementary extensions of A0. The
relation A′ ≺ A′′ and map i : A′ ≺ A′′ can be defined similarly
as in (a) with A0 and A′ being replaced by A′ and A′′.
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We often write A for a structure as well as the base set of the
structure for notational convenience.

Proposition

There is a chain of elementary extensions

A0 ≺ A1 ≺ A2 ≺ · · ·
such that the set Nm of all natural numbers in Am is an initial
segment of the set Nm+1 of all natural numbers in Am+1 and there
exist elementary embeddings im,n from An to An+1 for any
0 ≤ m ≤ n such that

(a) im,n(x) = x for x ∈ Nm and im,n �Ak = im,k for m ≤ k ≤ n,

(b) im,n[Nk \ Nk−1] ⊆ Nk+1 \ Nk for k = m + 1, . . . , n,

(c) im,n �Ak is an elementary embedding from (Ak ;Rk−l) to
(An+1;Rn+1−l) for m ≤ k ≤ n and 0 < l ≤ k −m, where
(Ak ;Rk−l) is the structure Ak augmented by Rk−l as a unary
relation.
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Remark

(1) Fix a non-principle ultrafilter F on N0. The elementary chain
A0 ≺ A1 ≺ A2 ≺ · · · can be constructed by iterating the
ultrapower construction of A0 modulo F .

(2) There are different ways of doing iterations. Let F ′ = F . For
example, to obtain A0 ≺ A1 ≺ A2, one can consider(

AN0
0 /F

)N0

/F ′ = AN0
1 /F ′ = A2,

which is called the external ultrapower construction, or(
AN0
0 /F

)N0

/F ′ =
(
AN1
1 ∩ A1

)
/
(
FN0/F ′

)
= A2,

which is called the internal ultrapower construction.
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Remark

(3) By the external ultrapower construction one can produce an
elementary embedding i0,1 : A1 → A2. Note that
i0,1[N1 \ N0] ⊆ N2 \ N1. By the internal ultrapower
construction one can produce another elementary embedding
i1,1 : A1 → A2 such that i1,1 �,N1 is an identity map.

(4) Since (A1;R0)N0/F ′ = (A2;R1), the map i0,1 is also an
elementary embedding from (A1;R0), i.e., the model A1

augmented with a new unary relation R0, to (A2;R1), i.e., the
model A2 augmented with a new unary relation R1.

(5) If one iterates internal ultrapowers of A0 m times followed by
external but Am–internal ultrapowers n −m times, one can
obtain an elementary embedding im,n : An → An+1 as stated
in the proposition.
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Theorem (Ramsey)

Given a coloring c : [N0]n → [r ] for some r ∈ N0, there exists an
infinite set A ⊆ N0 such that c � [A]n is a constant function.

Proof: Let x1 = [IdN0 ]F0 ∈ N1 \ N0 and let xj+1 = i0,n(xj) for
j = 1, 2, . . . , n − 1. Note that xj+1 is an equivalence class
represented by IdNj

: Nj → Nj . Let ∗c(x) = c0 ∈ [r ] where
x = {x1, x2, . . . , xn}. We find an infinite set A = {a1 < a2 < · · · }
in N0 by induction such that ∗c � [A ∪ x ]n ≡ c0.

The basic case for A = ∅ is trivially true.

Assume that Am = {a1 < a2 < · · · < am} has been constructed
such that ∗c � [Am ∪ x ]n ≡ c0.

It suffices to find am+1 > am in N0 and Am+1 = Am ∪ {am+1}
such that ∗c � [Am+1 ∪ x ]n ≡ c0.
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Note that the sentence

ϕ(i0,n(Am), i0,n(x1), i0,n(x2), . . . , i0,n(xn−1)) :

∃x ∈ N1 greater than am such that
∗c � [Am ∪ {x , i0,n(x1), i0,n(x2), . . . , i0,n(xn−1)]n ≡ c0

is true in (An;R1).

By the transfer principle, the sentence ϕ(Am, x1, x2, . . . , xn−1) is
true in (An−1;R0), i.e., there is an am+1 > am in N0 such that
∗c � [Am+1 ∪ {x1, x2, . . . , xn−1}]n ≡ c0 where Am+1 = Am ∪ {am+1}.

We show next that ∗c � [Am+1 ∪ {x1, x2, . . . , xn−1, xn}]n ≡ c0
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Given any b := {b1 < b2 < · · · < bn} ∈ [Am+1 ∪ {x1, . . . , xn}]n.

If bn < xn, then b ∈ [Am+1 ∪ {x1, . . . , xn−1}]n. Hence,
∗c(b) = c0 by the choice of am+1.

If b1 = x1, then b = {x1, x2, . . . , xn}. Hence, ∗c(b) = c0 by the
choice of c0.

So, we can assume b1 ∈ N0 and bn = xn. This means that one
of the elements in {x1, x2, . . . , xn} must not be in b. Suppose that
xp for some 1 ≤ p < n is not in b. We show that ∗c(b) = c0.

Consider the elementary embedding ip,n−1 : An−1 → An. For
each bj ∈ b, if bj < xp, then ip,n−1(bj) = bj , and if bj = xk > xp,

then ip,n−1(xk−1) = i0,n−1(xk−1) = xk . Let b
′

= i−1p,n−1(b). Then,

b
′ ∈ [Am+1 ∪ {x1, x2, . . . , xn−1}]n. Hence, ∗c(b

′
) = c0. So,

∗c(b) = c0 by the elementarity of ip,n−1.
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Proof of multidimensional van der Waerden’s theorem

The multidimensional van der Waerden’s theorem is also called
Gallai’s theorem. Let [n] := {0, 1, . . . , n − 1}.

Fix a dimension s. A homothetic copy of [n]s is a set of the form

HC~a,d ,n := ~a + d [n]s = {~a + d~x | ~x ∈ [n]s}

for some ~a ∈ Ns and positive d ∈ N. We omit n in HC~a,d ,n after n
is fixed.

Theorem (Gallai)

Given any positive r , n ∈ N0, one can find an N ∈ N0 such that
for every c : [N]s → [r ] there exists ~a, d such that c �HC~a,d ,n ≡ c0
for some c0 ∈ [r ].

The proof of the multidimensional van der Waerden’s theorem in
this talk is inspired by the proof of the one-dimensional version in
A. Khinchin’s book “Three Pearls of Number Theory.”
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Proof: Fix n ∈ N0. Let � be the lexicographical order of HC~a,d .
For each 0 ≤ l < ns let HC~a,d(l) denote the l-th element of HC~a,d

under �. Note that HC~a,d(0) = ~a.

Let ϕm(r ,N) be the following first–order sentence:

∀c : [N]s → [r ] ∃HC~a,d ⊆ [N]s ∃c0 ∈ [r ](
c(HC~a,d(l)) = c0 for l = 0, 1, . . . ,m

)
. (2)

Claim (1)

Given m ∈ [ns ], for every r ∈ N0, there exists an N ∈ N0 such
that ϕm(r ,N) is true in A0.

Note that the claim when m = ns − 1 is the multidimensional
van der Waerden’s theorem.
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Note also that N ∈ N0 depends on r , and if N ′ > N, then
ϕm(r ,N) implies ϕ(r ,N ′). Hence, if N is hyperfinite, then
(∀r ∈ N0)ϕm(r ,N) is true.

It suffices to prove the claim by induction on m ≤ ns − 1. Call
HC~a,d in (2) monochromatic up to m with respect to c.

Proof of Claim (1): The case for m = 0 is trivial.

Assume that the claim is true for m − 1. We prove that the
claim is true for m < ns .

Given r ∈ N0, the task now is to find N ∈ N0 such that
ϕm(r ,N) is true in A0.

Work within Ar+1. Choose any Nr ∈ Nr+1 \ Nr . It suffices to
prove that ϕm(r , 2Nr ) is true in Ar by the transfer principle.
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Fix c : [2Nr ]s → [r ].

It suffices to find a HC~a,d ⊆ [2Nr ]s which is monochromatic up
to m with respect to c .

Choose any Nj ∈ Nj+1 \ Nj for j = 0, 1, . . . , r − 1. Since Nj+1 is
an end-extension of Nj , the number r (2Nj−1)

s
is infinitely smaller

than Nj .

For any ~x , ~y ∈ [Nr ]s we say that ~x and ~y have the same
2Nj -type if c(~x + ~z) = c(~y + ~z) for any ~z ∈ [2Nj ]

s .
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Since the first–order sentence

(∀r ′ ∈ N0) (∀N ∈ N1 \ N0)ϕm−1(r ′,N)

is true in (A1;R0), the sentence

(∀r ′ ∈ Nj) (∀N ∈ Nj+1 \ Nj)ϕm−1(r ′,N)

is true in (Aj+1;Rj) for j = 1, 2, . . . , r .

In particular, ϕm−1(r (2Nj−1)
s
,Nj) is true in Aj+1 for

j = 1, 2, . . . , r .

Since the number of 2Nj−1-types is at most r (2Nj−1)
s
, we can

find HC~aj ,dj ⊆ [Nj ]
s such that HC~aj ,dj is monochromatic up to

m − 1 with respect to 2Nj−1-types, i.e., HC~aj ,dj (l) for
l = 0, 1, . . . ,m − 1 have the same 2Nj−1-type.
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Find HC~ar ,dr ⊆ [Nr ]s which is monochromatic up to m − 1 with
respect to 2Nr−1-types.

Find HC~ar−1,dr−1
⊆ [Nr−1]s such that ~ar + HC~ar−1,dr−1

is
monochromatic up to m − 1 with respect to 2Nr−2-types.

Find HC~ar−2,dr−2
⊆ [Nr−2]s such that ~ar +~ar−1 + HC~ar−2,dr−2

is
monochromatic up to m − 1 with respect to 2Nr−3-types.

• • • • ••

Find HC~a1,d1 ⊆ [N1]s such that
r∑

j=2

~aj + HC~a1,d1 is

monochromatic up to m − 1 with respect to 2N0-types.

Find HC~a0,d0 ⊆ [N0]s such that
r∑

j=1

~aj + HC~a0,d0 is

monochromatic up to m − 1 with respect to c .
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Define HC~a,d ⊕ HC~a′,d ′ := HC~a+~a′,d+d ′ . Clearly, for any l < ns

we have

(HC~a,d ⊕ HC~a′,d ′)(l) = HC~a,d(l) + HC~a′,d ′(l).

For each j = 0, 1, . . . , r let

~yj := HC~ar ,dr (0)+· · ·+HC~aj ,dj (0)+HC~aj−1,dj−1
(m)+· · ·+HC~a0,d0(m).

There must exist 0 ≤ j1 < j2 ≤ r such that c(~yj1) = c(~yj2). Let

D := HC~ar ,dr (0) + · · ·+ HC~aj2 ,dj2
(0)

+HC~aj2−1
⊕ · · · ⊕ HC~aj1 ,dj1

+HC~aj1−1,dj1−1
(m) + · · ·+ HC~a0,d0(m).

Then D is a homothetic copy of [n]s .
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Claim (2)

The homothetic copy D is monochromatic up to m.

Proof of Claim (2) Note that all elements

D(l) := HC~ar ,dr (0) + · · ·+ HC~aj2 ,dj2
(0)

+HC~aj2−1
(l)⊕ · · · ⊕ HC~aj1 ,dj1

(l)

+HC~aj1−1,dj1−1
(m) + · · ·+ HC~a0,d0(m).

for l = 0, 1, . . . ,m − 1 have the same c–value.

Note also that D(0) = ~yj1 and D(m) = ~yj2 have the same
c–value. Hence, the homothetic copy D of [n]s is monochromatic
up to m with respect to c. This completes the proof.
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The End

Thank you for your attention.
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