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Roth’s Theorem

Let A ⊆ N. The upper Banach density of A is defined by

BD(A) = lim
n→∞

sup
k∈N

|(A ∩ [k , k + n − 1])|
n

.

Roth’s Theorem (1953) If A ⊆ N and BD(A) > 0, then A
contains a 3-term arithmetic progression, i.e. a set of the form
{a, a+ d , a+ 2d}.

This was the first step toward a solution to a question posed by
Erdős and Turán, who in 1936 conjectured that every set of
positive Banach Density contains arbitrarily long arithmetic
progressions. Szemerédi proved the full conjecture in 1975. Since
then of course there has been enormous work in combinatorics, by
many people, based on Furstenberg’s Ergodic Theory proof and
Gowers’ proof using techniques from Fourier Analysis.
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Lower Bounds

If we were to naively look for subsets of the natural numbers that
contain no 3-term arithmetic progressions, the most natural way to
construct them might be to start with a small set and then add in
successive numbers to the set whenever no 3-term a,p, is
introduced. Or, we might try a more “top down” Cantor type
approach of removing middle thirds or some similar type of
construction. These simple counterexamples would tend to lead to
sets of density 1

nc , for some constant c > 0. Thus if we let r(n) be
the maximal density of a subset of {1, ..., n} that contains no
3-term arithmetic progression, it is easy to see that for any fixed
c > 0, and for sufficiently large n

r(n) >
1

nc
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Lower Bounds

This simple lower bound was greatly improved in 1946 by Behrend,
using a construction that was based on the fact that any line can
intersect a sphere in at most two points. Behrend showed that for
sufficiently large n, and a constant c > 0 there exist subsets of
{1, ..., n} of density at least e−c(log n)(1/2) that contain no 3-term
arithmetic progression, so that

r(n) > e−c(log n)(1/2) .

Although there has been some improvement on the constant over
the years, the best known lower bound has not changed
significantly since Behrend’s result.
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Upper Bounds

Roth’s Theorem represented the first significant upper bound for
r(n), as it says that the cardinality of a the largest subset of
{1, 2, ...n} that contains no 3-term arithmetic progression must be
of order o(n), i.e. for any ϵ > 0 and sufficiently large n, r(n) < ϵ.

The search for better upper bounds has been extensive and in
some ways remarkably slow over the years, considering the number
of different and powerful techniques that have been developed to
address Szemerédi’s Theorem and related questions over the years.
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Upper Bounds and Conjectures

Erdős (and Turán) further conjectured that any subset A of N with
the property that the sum of the reciprocals of A diverges must
contain arbitrarily long arithmetic progressions. This question has,
up to this point, only been solved in the 3-term (Roth) case, and
only very recently.

Bloom and Sisask have shown, in a paper first posted to the arXiv
in 2020 (latest version September 2021), that any set A ⊆ N that
contains no 3-term arithmetic progression has asymptotic density
less than 1

log(n)1+c for some positive constant c . So, for sufficiently

large n

|A ∩ [1, n]|
n

<
1

log(n)1+c
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Conjectures and much stronger upper bounds

Bloom and Sisask indicated in their paper that they believed this
result is far from best possible, and conjectured that if we let r(n)
be the maximal density of a subset of {1, ..., n} that contains no
3-term arithmetic progression, then r(n) is on the order of

e−c ′(log n)c

for constants c , c ′ > 0.

Incredibly, this level of result was just recently achieved by Kelley
and Meka. Their groundbreaking paper (“Strong Bounds for
3-Progressions”) was posted on February 10th of this year, and a
revised version just came out on June 18th. Their appendix A in
that version contains a nice discussion of how their methods
compare to previous work on Roth’s Theorem and extensions.
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Kelley and Meka’s result

Kelley and Meka were able to show that

r(n) < e−c(log n)1/11

for some constant c > 0.

Until Bloom and Sisask’s result in 2021 a variety of strong results
over the years, using a wide variety of different methods, had
succeeded in approaching the logarithmic barrier, i.e. had shown
that for sufficiently large n,

r(n) <
1

(log n)c

for constants that were getting closer and closer to 1. Bloom and
Sisask’s result achieved c > 1 for the first time. Kelley and Meka’s
result implies that this is true for all c.
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Jin’s Version of Tao’s version of a proof of Szemerédi’s
Theorem

All currently known proofs of Szemerédi’s Theorem are difficult in
their own way. Szemerédi’s original proof is generally considered a
masterpiece of combinatorial reasoning, but is extremely difficult to
fully understand. Tao rewrote the proof several times, and in 2017
asked if nonstandard methods could make the proof simpler and
more accessible. In 2022 Jin succeeded in using a nonstandard
framework to simplify and clarify Tao’s version of Szemerédi’s
proof, and discussed his proof at “UltraMath 2022” here in Pisa.

Armed with a much better understanding of Szemerédi’s Theorem
due to Jin’s proof, I was interested in the question of whether or
not the combinatorial proof in the nonstandard setting could
provide a pathway to proofs for the cases of smaller density.
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Theorem

All currently known proofs of Szemerédi’s Theorem are difficult in
their own way. Szemerédi’s original proof is generally considered a
masterpiece of combinatorial reasoning, but is extremely difficult to
fully understand. Tao rewrote the proof several times, and in 2017
asked if nonstandard methods could make the proof simpler and
more accessible. In 2022 Jin succeeded in using a nonstandard
framework to simplify and clarify Tao’s version of Szemerédi’s
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The framework for the Tao/Jin Roth proof

We assume for the sake of contradiction that Roth’s Theorem is
not true, so that there exists a minimal α > 0 such that any
sufficiently large set of density greater than α contains a 3-term
a.p., but that for every ϵ > 0 there exist arbitrarily large finite n,
and sets An, such that An contains no 3-term a.p. and

An ∩ [0, n] > (α− ϵ)n.

For any internal set B ⊆ N and any non-finite H, we will write

δH(B) :=
|B|
H

and µH(B) for the Loeb measure of B with respect to H. We note
that δH(B) is an internal quantity and µH(B) is external.
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super uniformity of density

We let N ∈ ∗N \ N, and A ⊆ [1,N] = [N] be a maximal
counterexample to Roth’s Theorem. Then

δN(A) ≈ α and µN(A) = α,

and this maximal counterexample has a sort of “super uniformity”
property of densities:

Any arithmetic progression P of non-finite length in [N] must
satisfy µl(P)(A ∩ P) ≤ α.

Any collection of arithmetic progressions {Pi ⊆ [N] : i ∈ [I ]}
of non-finite length L such that µN(I ) > 0 must satisfy
µL(A ∩ Pi ) = α for (µI )-almost all i ∈ [I ].

For any H non-infinitesimal compared to N, and for all
x ∈ [N − H]

µH(A ∩ (x + [H])) = α
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Slight Variation of the Tao/Jin Proof for Roth

Let E0 be the set of all points in [0,H] that are halfway between
the point 0 and an element of A. Equivalently, if we let Ae be the
even elements in A ∩ [0, 2H], then E0 =

1
2Ae .

It is easy to see that E0 has the same “super uniformity” properties
as A, and is also a maximally dense set with no 3-term arithmetic
progressions with µH(E0) = α

Although stated in a different form, Tao and Jin’s proofs of Roth’s
Theorem use a version of the Regularity Lemma to show that
almost all elements of [0,H] are in A− E0.

This means that µ((A− E0) ∩ E0) = α, so that there exists a
non-trivial intersection of A− E0 and E0, i.e. an e1 ̸= e2 and an
a ∈ A such that a = e1 + e2. It is easy to see that this implies that
{2e1, a, 2e2} is a 3-term arithmetic progression.
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A version of Szemerédi’s Regularity Lemma

The following version of the Weak Regularity Lemma is used in
their proofs:
Weak Regularity Lemma Let V ,W be finite sets, let ϵ > 0, and
for each w ∈ W , let Ew be a subset of V . Then there exists a
partition V = V1 ∪ V2 ∪ ... ∪ Vn with n = O(b1/ϵ) for some
standard real b > 1, and real numbers 0 ≤ ci ,w ≤ 1 for i ≤ n and
w ∈ W such that for any set ⊆ V , one has∣∣∣∣|F ∩ Ew | −

n∑
i=1

ci ,w |F ∩ Vi |
∣∣∣∣ ≤ ϵ|V |

for all but ϵ|W | values of w ∈ W .

If we want to use this approach on sets of density 1
log n or less, then

we can only choose epsilons that are roughly the same size as our
densities, which is not sufficient for obtaining useful results.
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Moving toward extensions

With this in mind I have continued to think about ways to prove
Roth’s Theorem using this nonstandard approach, while only using
tools that have a reasonable chance of working for smaller density
sets. I have not yet been successful in this regard, but I would like
to outline some of the approaches that look somewhat promising.

Ideally we will be able to prove that A− E0 contains almost all of
[0,H] without the Regularity Lemma. A proof that succeeds in this
regard would be a very good model for sets of lower density, but
this is more than is needed to complete the proof of Roth’s
Theorem. Since both A and E0 have the “super uniformity”
density condition, it is sufficient to prove that the set of points
that are contained in arithmetic progressions of non-finite length in
A− E0 or in E0 + E0 is of positive measure and the differences of
the progression are the same. I think this is true even if the
differences are not the same, but the proof is not yet clear to me.
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A starting Lemma

Lemma

Let 1 ≪ N, A ⊆ [N] be a maximal counterexample to Roth’s
theorem as before, 1 ≪ H < N/2, and R ⊆ [N − H] be an a.p.
with |R| ≫ 1.
Then:
(i) For a set E ⊆ H with µH(E ) > 0, and for any a.p. P ⊆ R of
non-finite length, there is an x ∈ P such that

µH(A ∩ (x + E )) ≥ αµH(E )

(ii) Let E ⊆ H with µH(E ) > 0. Then for any non-infinitesimal
ϵ > 0, and any a.p. P ⊆ R of non-finite length, there exists an
interval I ⊆ P of non-finite length such that for all x in I ,

δH(A ∩ (x + E )) ≥ (1− ϵ)αδH(E ).
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Proof Sketch

The proof of part (i) is the same double counting argument used
by Jin (this form of the statement is taken directly from that
proof). Intuitively, for a fixed element of E , as we move through
the x ’s in P, we will almost always intersect with α many elements
in A, and will never intersect with more than that. If no x satisfies
the conclusion we get a contradiction by double counting αµH(E ).

We note that part (i) immediately implies that there exists some
finite m such that every interval of length m in any arithmetic
progression contains an element of A− E , in fact an element that
is the difference of at least (1− ϵ)αδH(E ) different elements in A
(and corresponding elements in E ).
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Proof Sketch continued

If the conclusion for part (ii) is not true, then for some finite m,
every interval of length m in P contains an x such that

δH(A ∩ (x + Ew )) < (1− ϵ)αδH(Ew ).

We now “color” the blocks of length m in Ew in m colors based on
where the first such x in each block occurs.

By van Der Waerden’s Theorem, there exist arbitrarily long blocks
in which there is such a “bad” x in the same position. By
“overspill” there exists an infinitely long progression of such blocks
in P, and therefore there exists an infinitely long progression of
such x themselves. This contradicts part (i) with E = Ew .
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An observation

If we apply the Lemma to E = E0, it is problematic that the
densities of the A ∩ (x + E0)) sets are not uniform in measure (or
not easily seen to be somewhat uniform without the Regularity
Lemma). For example, if we knew that the measures never get
much above α2 then there could not be many x for which the
measure is zero, and A− E0 would be large.

Interestingly, the Lemma shows us that the set of x ’s for which the
measure is infinitesimally close to α2 is “large” in some “van Der
Waerden sense.”
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An observation

More specifically, if we were to pick any standard ϵ > 0 and
three-color the x values based on those that have

1) δH(A ∩ (x + E0)) < α2 − ϵ

2) α2 − ϵ < δH(A ∩ (x + E0)) < α2 + ϵ

3) δH(A ∩ (x + E0)) > α2 − ϵ

Then by the lemma and the super uniformity condition, there must
be arbitrarily long arithmetic progressions for color 2 (and none for
the other colors).
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Many long progressions in A− E0

Define

G := {x ∈ H : δH(A ∩ (x + E0)} ≥ (1− ϵ)α2

Note that G ⊂ A− E0. More specifically, G is the set of all
elements of A− E0 that are the difference of at least (1− ϵ)α2H
many points in A and corresponding points in E0.

From the lemma we know that G is not only of positive Loeb
measure, but is, in fact syndetic. Thus, the next result seems to be
an important step toward a proof of Roth’s Theorem. Without the
Regularity Lemma it is very difficult to control both the location
and the size of the differences in progressions, but the next result
shows that every element of G is an a long arithmetic progression.
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and the size of the differences in progressions, but the next result
shows that every element of G is an a long arithmetic progression.
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Many long progressions in A− E0

Proposition

Every element u ∈ G is an initial point of an arithmetic progression
of infinite length in G .

Proof
Let u be any element in G , and consider the arithmetic
progressions Pn that start at u and increase by multiples of n. If
the elements of these progressions are in G for arbitrarily long
initial segments, then the result follows by overspill, since in that
case there must be some N for which the first element not in
G ∩ PN is a non-finite multiple of N.
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Proof of the Proposition, continued

If not, then for some finite m, one of the first m elements in each
Pn is not in G . We color the natural numbers n in m colors based
on which element is the first in Pn to not be in G .

We can then obtain arbitrarily long arithmetic progressions
corresponding to some fixed number k ≤ m. Then k times this
progression of n values is an arbitrarily long a.p. of elements not in
G , contradicting the lemma.
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Translates/Shifts

It is now helpful to insert many “shifts,” with the goal of packing
the progressions closer together (even at the cost of shortening
them considerably). The next lemma is one way to start on this
goal.

For simplicity the finite number m is playing a dual role in the
lemma below, although this could be confusing. The point is that
the set of all x ’s for which A ∩ (x + A)− E0 contains no gaps
greater than m is itself a set with no gap of size greater than m.
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Proof

Proof By part (ii) of Lemma 1, there exists an m1 such that
every interval of length m1 contains an x such that

δH(A ∩ (x + a)) ≥ (1− ϵ)α2.

By the super-uniformity property of E0, there exists an m2 such
that the collection of intervals of length m2 that intersect E0 has
measure greater than 1− α2. Then for any k there exists j such
that both

[(j+k)m2, (j+k)m2+m2)]∩(A∩(x+A) and [jm2, jm2+m2)]∩E0

are nonempty. This means that there is an element of
A ∩ (x + A)− E0 in the interval [km2, km2 +m2].
We may now let m be the larger of m1 and m2.
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It might be better to use the fact that that we can continue to
translate by arbitrarily many finite values. Since both A and E0

satisfy the super-uniformity conditions, we may continue to insert
various “translates” into the situation. For example, for arbitrarily
long sequences of xi ’s in [0,H],

µ(x1 + A) ∩ (x2 + E0) ∩ (x3 + A) ∩ ... ∩ (x2n + E0) ≥ α2n.

Of course, since the densities are decreasing there is no longer a
fixed m as in the previous result. So, we cannot make sure that
these values are close together. Nevertheless, it seems that a large
measure of long arithmetic progressions, together with the ability
to translate them, or parts of them, should allow us to get a
positive measure of long progressions of one fixed difference, which
is sufficient to prove the result.
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Thank you to the organizers of this lovely event!!!!

and to our friend Mauro......
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Salute!
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