Continuous reducibility is a well-quasi-order on the class of continuous functions with Polish 0-dimensional domains

Raphaël Carroy

Università di Torino

Logical methods in Ramsey theory and related topics Università di Pisa, Italia

July 10th, 2023

General question

A solid way to compare definable functions on topological spaces:

- topologically relevant,
- combinatorially simple, and
- the finest possible to have these properties.

A general question.

Find solid ways to compare Borel functions on Polish spaces.

- Polish spaces, that is separable completely metrizable spaces,
- Borel sets are in the smallest σ-algebra generated by open sets,
- The classes Σ^0_{α} , Π^0_{α} on the α -th level of the Borel hierarchy.
- For any of these pointclasses Γ, a function is Γ-measurable if preimages of open sets are in Γ,
- A function is **Borel** if it is Borel-measurable.

General question, more specific

- A **quasi-order** (qo) on a set Q is a reflexive and transitive relation $\leq \subseteq Q^2$.
 - p < q when $p \leq q$ but $q \not\leq p$,
 - (\leq -equivalence) $p \equiv q$ when $p \leq q$ and $q \leq p$
- A qo (Q, \leq) is finer than (Q, \leq') if $p \leq q$ implies $p \leq' q$.
- **Topological relevance: preserving** Γ **-measurability**: If $f \leq g$ and g is Γ -measurable, then so should be f.
- Combinatorial simplicity: well-quasi-order (wqo)
 - there should be no infinite strictly descending chain, and
 - no infinite set of pairwise incomparable elements (antichains).

A general question.

Find fine wqos for Borel functions on Polish spaces that preserve $\pmb{\Gamma}\text{-measurability.}$

Comparing subsets: Continuous, or Wadge reducibility

Definition (Wadge reduction)

For $A \subseteq X$ and $B \subseteq Y$, we say that A continuously reduces to B if there is a continuous function $f : X \to Y$ such that $f^{-1}(B) = A$.

A space is **0-dimensional** if it has a basis of clopen sets.

Theorem (Wadge, Martin-Monk)

Continuous reducibility is a wqo on Borel subsets of Polish 0-dimensional spaces.

What about other spaces?

Theorem (Schlicht)

Continuous reducibility has infinite antichains on Borel sets of any Polish non 0-dimensional space.

This is why we choose to focus on **Polish 0-dimensional** spaces.

Weihrauch's continuous reducibility

Given topological spaces X, Y, X', Y', and two functions $f : X \to Y$ and $g : X' \to Y'$,

Definition

A continuous reduction from f to g is a pair $(\sigma : X \to X', \tau : \text{Im}(g \circ \sigma) \to Y)$ of continuous functions such that $f = \tau \circ g \circ \sigma$.

Write $f \leq g$ when f reduces continuously to g.

Some first remarks

Continuous reducibility:

Definition

 $f \leq g$ iff $f = \tau \circ g \circ \sigma$ for some **continuous maps** σ and τ .

- preserves **Γ**-measurability.
- It is different from reduction on graphs: there are Σ_{α}^{0} -measurable functions with closed graphs for arbitrarily large $\alpha < \omega_{1}$.
- Id_X ≤ Id_Y iff X topologically embeds in Y.

•
$$\mathbf{1}_{A,X} \leq \mathbf{1}_{B,Y}$$
 iff $A \leq_W^{X,Y} B$ or $A \leq_W^{X,Y} \neg B$.

Theorem (Carroy-Pequignot)

Continuous reducibility is a well-quasi-order on continuous functions between Polish 0-dimensional spaces.

Strong Weihrauch reducibility

A similar quasi-order in the context of computable analysis: strong Weihrauch reducibility.

```
This is for F and G multi-functions and (\sigma, \tau) a pair of computable functions.
```

Theorem (Dzhafarov)

Strong Weihrauch reducibility induces a (non-distributive) lattice in which any countable distributive lattice embeds.

So this is (very) far from being wqo...

Continuous reducibility corresponds to topological strong Weihrauch reducibility on single-valued functions.

One says that F is **Weihrauch reducible** to G if there is a pair (σ, τ) such that $F(x) = \tau(x, G \circ \sigma(x))$ for all x.

Topological Weihrauch reducibility makes all continuous functions equivalent! We want finer.

Going finer: Solecki's topological embeddability

Given two functions $f:X \to Y$ and $g:X' \to Y'$

Definition

A **topological embedding** from f to g is a pair $(\sigma : X \to X', \tau : \text{Im}(f) \to Y')$ of continuous embeddings such that $\tau \circ f = g \circ \sigma$.

Note $f \sqsubseteq g$ when f embeds in g.

Some finite basis results for topological embeddability

A subset *P* of a qo *Q* has a **finite basis** if there is a finite $B \subseteq P$ such that for all $p \in P$ there is $b \in B$ with $b \leq_Q p$.

Q is wqo \iff all $P \subseteq Q$ have a finite basis.

Classes with a finite basis for topological embeddability:

- Borel functions between Polish spaces that have uncountable image (size 1, Id_{N^N}).
- (Solecki, Zapletal, Pawlikovski-Sabok) Borel non σ-continuous functions from an analytic space to a separable metrizable one (size 1! The Pawlikovski function P).
- (Carroy-Miller) All Baire-measurable functions from the Baire space to a separable metric space (size 2).
- (Carroy-Miller) All functions from \mathbb{Q} to a metric space (3).
- (Carroy-Miller) Non Baire class 1 analytic functions from an analytic space to a separable metrizable one (6).

What about maximal functions?

The projection $[0,1]^{\mathbb{N}}\times [0,1]^{\mathbb{N}}\to [0,1]^{\mathbb{N}}$ is a maximum for topological embeddability on continuous function between separable metrizable spaces.

Using a generalisation of the Bourgain rank due to Elekes, Kiss, and Vidnyánszky, we see that larger classes don't have maximal elements.

Theorem (Carroy - Pequignot - Vidnyánszky)

For countable $\alpha \neq 0$, there is no \sqsubseteq -maximal $\Sigma^{0}_{\alpha+1}$ -measurable function between Polish 0-dimensional spaces.

The complexity of topological embeddability

On the space C(X, Y) of continuous functions $X \to Y$ we put the **compact-open topology**, generated by

$$S_{X,Y}(K,U) = \{f \in C(X,Y) \mid f(K) \subseteq U\},\$$

for $K \subseteq X$ compact and $U \subseteq Y$ open. If X is compact, it is a Polish topology.

Theorem (Carroy - Pequignot - Vidnyánszky)

If X is compact then $(C(X, Y), \sqsubseteq)$ is a Σ_1^1 quasi-order.

Compactness is needed: there is a counter-example using a locally compact domain.

A dichotomy

Theorem (Carroy - Pequignot - Vidnyánszky)

If X has infinitely many limit points, and if Y is not discrete then $(C(X, Y), \sqsubseteq)$ is a Σ_1^1 -hard quasi-order.

So, in these cases, topological embeddability reduces every Borel quasi-order, so it is as far from being a wqo as possible. In the other cases in which X is compact, it turns out to be wqo!

Theorem (Carroy - Pequignot - Vidnyánszky)

If X and Y are Polish 0-dimensional and X is compact then

• either $(C(X, Y), \sqsubseteq)$ is a Σ_1^1 -complete quasi-order,

or it is wqo.

Continuous reducibility has maximal functions

We call **continuously complete** for a class C a function that belongs to C and that reduces all other functions of C. On Polish 0-dimensional spaces:

- $\blacksquare \mbox{ Id}_{\mathbb{N}^{\mathbb{N}}}$ is continuously complete for continuous functions
- The limit function lim, mapping a converging sequence $(x_n)_{n\in\mathbb{N}}\subseteq\mathbb{N}^{\mathbb{N}}$ to its limit, is continuously complete for Σ_2^0 -measurable functions.
- The Turing Jump is continuously complete for Σ₂⁰-measurable functions.
- J^(α) and lim^(α) are Σ⁰_{α+1}-measurable continuously complete, for 0 < α < ω₁.

Proposition

All Σ_2^0 -measurable, non σ -continuous functions between Polish spaces are continuously equivalent.

Because $\lim \leq P...$ Generalized by Marks-Montalban.

Well-quasi-order results

Theorem (Wadge, Martin-Monk, van Engelen-Miller-Steel)

Continuous reducibility is a well-quasi-order on Borel functions from the Baire space to a finite set.

Theorem (Carroy-Pequignot)

Continuous reducibility is a well-quasi-order on continuous functions between Polish 0-dimensional spaces.

Here is the strategy that we follow. The first step is to get rid of continuous functions with uncountable image.

Proposition

All continuous functions from a Polish 0-dimensional space that have uncountable image are continuously equivalent to $Id_{\mathbb{N}^{\mathbb{N}}}$.

So we can focus on continuous functions with countable image.

The Cantor-Bendixson rank of a function.

Notation

C denotes the class of continuous functions between Polish 0-dimensional spaces that have countable image.

Say $x \in dom(f)$ is *f*-isolated if *f* is locally constant in *x*.

For $f \in C$, f-isolated points form a dense open subset of dom(f), so we can define as usual by induction a decreasing sequence of closed derivatives.

Definition

•
$$CB_0(f) = dom(f)$$
,

• $CB_{\alpha+1}(f) = \{x \in CB_{\alpha}(f) \mid x \text{ is not } f|_{CB_{\alpha}(f)}\text{-isolated}\},\$

•
$$\mathsf{CB}_{\lambda}(f) = \bigcap_{\alpha \in \lambda} \mathsf{CB}_{\alpha}(f)$$
 for λ limit.

If $f \in C$, then for some $\alpha < \omega_1 \operatorname{CB}_{\alpha}(f) = \emptyset$.

The Cantor-Bendixson rank of a function.

Say $x \in dom(f)$ is *f*-isolated if *f* is locally constant in *x*.

Definition

•
$$CB_0(f) = dom(f)$$
,

• $CB_{\alpha+1}(f) = \{x \in CB_{\alpha}(f) \mid x \text{ is not } f|_{CB_{\alpha}(f)}\text{-isolated}\},\$

•
$$CB_{\lambda}(f) = \bigcap_{\alpha \in \lambda} CB_{\alpha}(f)$$
 for λ limit

If
$$f \in \mathsf{C}$$
, then for some $\alpha < \omega_1 \ \mathsf{CB}_{\alpha}(f) = \emptyset$.

Definition

The minimal such α is the **Cantor-Bendixson rank of** f, denoted by CB(f).

For a closed set F, a point $x \in F$ is isolated iff it is Id_F -isolated, so the usual Cantor-Bendixson rank of F is in fact the rank of Id_F .

The Cantor-Bendixson type of a function.

Notation

For $\alpha < \omega_1$, denote $C_{\alpha} = \{f \in C \mid CB(f) = \alpha\}$.

If $CB(f) = \alpha + 1$, then $f|_{CB_{\alpha}(f)}$ is locally constant. Denote N_f the cardinal of its image. Define N_f to be 0 if CB(f) is limit.

Set the **type** of $f \in C$ to be $tp(f) = (CB(f), N_f)$.

The type is an invariant for continuous reducibility on C: for $f, g \in C$, $f \leq g$ implies $tp(f) \leq_{lex} tp(g)$. The converse is not true in general, but

Theorem (Carroy)

Suppose that f,g are in C and f has compact domain, then $tp(f) \leq_{lex} tp(g)$ implies $f \leq g$.

A result on the general structure of C.

In particular,

- Continuous reduction is a well-order of length $\omega_1 + 1$ on functions in C that have compact domain,
- If $K \subset \mathbb{N}^{\mathbb{N}}$ is compact of type $(\alpha + 1, 1)$ then Id_K is minimal for functions in C of rank > α .

Theorem (Carroy)

Suppose that $f, g \in C$ satisfy $CB(f) = \lambda + n$ and $CB(g) = \alpha$ for some $\lambda < \omega_1$ limit or null, $n \in \omega$, and $\alpha < \omega_1$:

If
$$n = 0$$
 and $CB(f) = \lambda = \alpha = CB(g)$, then $f \leq g$.

2 If
$$\lambda + 2n < \alpha$$
, then $f \leq g$.

As a consequence,

Corollary

If C_{α} is wqo for all $\alpha < \omega_1$ then C is wqo.

The finite generation method.

Suppose that $A_i \subset \mathbb{N}^{\mathbb{N}}$ for all $i \in \mathbb{N}$, then the **gluing of the sets** A_i is $\bigoplus_i A_i = \bigcup_i (i) \frown A_i$.

Similarly if $f_i : A_i \to B_i$ for all $i \in \mathbb{N}$ then the **gluing of the** functions f_i is $\bigoplus_i f_i : \bigoplus_i A_i \to \bigoplus_i B_i$, $(i) \frown x \mapsto (i) \frown f_i(x)$.

A class C of functions is **finitely generated** if there is a finite set G such that every function of C is (continuously equivalent to) a finite gluing of functions in G.

Theorem (Carroy-Pequignot)

The class C_{α} is finitely generated for all $\alpha < \omega_1$.

Since any finitely generated class is a well-quasi-order under continuous reducibility, continuous functions are well-quasi-ordered under continuous reducibility.

A summarizing table.

Here C abbreviates C(X, Y) and $\Sigma_2^0(X, Y)$ stands for the Σ_2^0 -measurable functions. LC means locally compact and cpt means compact, while Σ_1^1 -c. and Σ_1^1 -h. mean analytic complete and analytic hard, respectively.

	$\omega^2 \not\sqsubseteq X$		$\omega^2 \sqsubseteq X$			
	X is	X not	$ Y < \aleph_0$	$Y \cong \omega$	$\omega + 1 \sqsubseteq Y$	
	LC	LC			X cpt	X not cpt
(C,⊑)	WQO	WQO?	WQO		Σ ₁ ¹ -c.	Σ_1^1 -h.
$(\mathbf{\Sigma}_2^0, \sqsubseteq)$?		WQO	Σ ¹ ₁ -h?	Σ_1^1 -h.	
(C,≤)	WQO					
$(\mathbf{\Sigma}_{2}^{0},\leq)$?		WQO	?		

A summarizing table.

Here C abbreviates C(X, Y) and $\Sigma_2^0(X, Y)$ stands for the Σ_2^0 -measurable functions. LC means locally compact and cpt means compact, while Σ_1^1 -c. and Σ_1^1 -h. mean analytic complete and analytic hard, respectively.

 $\omega^2 \not \sqsubset X$ $\Box X$ $\overline{Y} \cong \omega$ X is $|Y| < \aleph_0$ X not $\omega + 1 \sqsubseteq Y$ I C LC X cpt X not cpt **Σ**¹₁-c. **Σ**¹₁-h. WQO WQO? WQO (C, ⊑ Σ_1^1 -h. $(\mathbf{\Sigma}_{2}^{0}, \sqsubseteq)$ WQO **Σ**¹₁-h? WQO (C, <) WQO 7

Thank you!