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General question

A solid way to compare definable functions on topological spaces:
m topologically relevant,
m combinatorially simple, and
m the finest possible to have these properties.

A general question. J

Find solid ways to compare Borel functions on Polish spaces.

Polish spaces, that is separable completely metrizable spaces,

Borel sets are in the smallest o-algebra generated by open
sets,

The classes 2, MO on the a-th level of the Borel hierarchy.

For any of these pointclasses I', a function is F-measurable if
preimages of open sets are in T,

m A function is Borel if it is Borel-measurable.

2/21



General question, more specific

m A quasi-order (qo) on a set Q is a reflexive and transitive
relation <C Q2.

m p<qwhen p<qbutqgZp,
m (<-equivalence) p =g when p<gandg<p
m A qo (Q, <) is finer than (Q,<’) if p < q implies p <’ q.
m Topological relevance: preserving I'-measurability:
If f < g and g is [-measurable, then so should be f.
m Combinatorial simplicity: well-quasi-order (wqo)
m there should be no infinite strictly descending chain, and
m no infinite set of pairwise incomparable elements (antichains).

A general question.

Find fine wqos for Borel functions on Polish spaces that preserve
I-measurability.
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Comparing subsets: Continuous, or Wadge reducibility

Definition (Wadge reduction)

For AC X and B C Y, we say that A continuously reduces to B
if there is a continuous function f : X — Y such that f~(B) = A.

A space is 0-dimensional if it has a basis of clopen sets.

Theorem (Wadge, Martin-Monk)

Continuous reducibility is a wgo on Borel subsets of Polish
0-dimensional spaces.

What about other spaces?

Theorem (Schlicht)

Continuous reducibility has infinite antichains on Borel sets of any
Polish non 0-dimensional space.

This is why we choose to focus on Polish 0-dimensional spaces.
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Weihrauch's continuous reducibility

Given topological spaces X, Y, X', Y/,
and two functions f : X — Y and g: X' — Y/,

Definition

A continuous reduction from f to g is a pair
(0: X=X ,7:Im(goc)— Y) of continuous
functions such that f =7o0goo.

Write f < g when f reduces continuously to g.

g
_—
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Some first remarks

Continuous reducibility:

Definition

f<gifff =170goo
for some continuous
maps o and 7.

preserves -measurability.

It is different from reduction on
graphs: there are
¥%_measurable functions with
closed graphs for arbitrarily
large o < wy.

ldx < Idy iff X topologically
embeds in Y.

]-A,X < ].B,y iff A S)V‘</’Y B or
A <Y -B.
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The main result

Continuous reducibility is a well-quasi-order on continuous
functions between Polish 0-dimensional spaces.
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Strong Weihrauch reducibility

A similar quasi-order in the context of computable analysis: strong
Weihrauch reducibility.

This is for F and G multi-functions and (o, 7) a pair of
computable functions.

Theorem (Dzhafarov)

Strong Weihrauch reducibility induces a (non-distributive) lattice in
which any countable distributive lattice embeds.

So this is (very) far from being wqo...

Continuous reducibility corresponds to topological strong
Weihrauch reducibility on single-valued functions.

One says that F is Weihrauch reducible to G if there is a pair
(o, 7) such that F(x) = 7(x, G o o(x)) for all x.

Topological Weihrauch reducibility makes all continuous functions
equivalent! We want finer.
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Going finer: Solecki's topological embeddability

Given two functions f : X =+ Y and g: X' — Y’

Definition

A topological embedding from f to g is a pair
(0: X = X',7:Im(f) = Y’) of continuous
embeddings such that 7o f = goo.

Note f C g when f embeds in g.

g
—_—
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Some finite basis results for topological embeddability

A subset P of a gqo @ has a finite basis if there is a finite B C P
such that for all p € P there is b € B with b <q p.

Q is wgo <= all P C @ have a finite basis.

Classes with a finite basis for topological embeddability:
m Borel functions between Polish spaces that have uncountable
image (size 1, ldyw).
m (Solecki, Zapletal, Pawlikovski-Sabok) Borel non o-continuous

functions from an analytic space to a separable metrizable one
(size 1! The Pawlikovski function P).

m (Carroy-Miller) All Baire-measurable functions from the Baire
space to a separable metric space (size 2).
m (Carroy-Miller) All functions from Q to a metric space (3).

m (Carroy-Miller) Non Baire class 1 analytic functions from an
analytic space to a separable metrizable one (6).

10/21



What about maximal functions?

The projection [0, 1]Y x [0, 1] — [0, 1] is a maximum for
topological embeddability on continuous function between
separable metrizable spaces.

Using a generalisation of the Bourgain rank due to Elekes, Kiss,
and Vidnyanszky, we see that larger classes don't have maximal
elements.

Theorem (Carroy - Pequignot - Vidnyanszky)

For countable o # 0, there is no C-maximal X9, ,-measurable
function between Polish 0-dimensional spaces.
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The complexity of topological embeddability

On the space C(X, Y) of continuous functions X — Y we put the
compact-open topology, generated by

Sx.v(K, U) = {f e C(X,Y) | f(K) € U},

for K € X compact and U C Y open.
If X is compact, it is a Polish topology.

Theorem (Carroy - Pequignot - Vidnyanszky)
If X is compact then (C(X, Y),C) is a X1 quasi-order.

Compactness is needed: there is a counter-example using a locally
compact domain.
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A dichotomy

Theorem (Carroy - Pequignot - Vidnyanszky)

If X has infinitely many limit points, and if Y is not discrete then
(C(X,Y),C) is a X}-hard quasi-order.

So, in these cases, topological embeddability reduces every Borel
quasi-order, so it is as far from being a wqo as possible.
In the other cases in which X is compact, it turns out to be wqgo!

Theorem (Carroy - Pequignot - Vidnyanszky)
If X and Y are Polish 0-dimensional and X is compact then
m either (C(X, Y),C) is a Xi-complete quasi-order,

m or it is wqo.
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Continuous reducibility has maximal functions

We call continuously complete for a class C a function that
belongs to C and that reduces all other functions of C.
On Polish 0-dimensional spaces:

m |dyw is continuously complete for continuous functions

m The limit function lim, mapping a converging sequence
(xn)nen € NN to its limit, is continuously complete for
> 9-measurable functions.

m The Turing Jump is continuously complete for X9-measurable
functions.

m J@ and lim(®) are ZgH—measurable continuously complete,
for 0 < a < ws.

Proposition

All Zg—measurable, non o-continuous functions between Polish
spaces are continuously equivalent.

Because lim < P... Generalized by Marks-Montalban.
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Well-quasi-order results

Theorem (Wadge, Martin-Monk, van Engelen-Miller-Steel)

Continuous reducibility is a well-quasi-order on Borel functions
from the Baire space to a finite set.

Theorem (Carroy-Pequignot)

Continuous reducibility is a well-quasi-order on continuous
functions between Polish 0-dimensional spaces.

Here is the strategy that we follow. The first step is to get rid of
continuous functions with uncountable image.

Proposition

All continuous functions from a Polish 0-dimensional space that
have uncountable image are continuously equivalent to ldyw.

So we can focus on continuous functions with countable image.
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The Cantor-Bendixson rank of a function.

Notation

C denotes the class of continuous functions between Polish
0-dimensional spaces that have countable image.

Say x € dom(f) is f-isolated if f is locally constant in x.

For f € C, f-isolated points form a dense open subset of dom(f),
so we can define as usual by induction a decreasing sequence of
closed derivatives.
Definition

m CBy(f) = dom(f),

m CBoy1(f) = {x € CBu(f) | x is not f|cp, ()-isolated},

m CB)(f) = Naer CBa(f) for X limit.

If £ € C, then for some a < wy CB,(f) = 0.
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The Cantor-Bendixson rank of a function.

Say x € dom(f) is f-isolated if f is locally constant in x.
Definition
m CBy(f) = dom(f),
| Cch—i—l(f) = {X € CBa(f) ’ X is not f|CBa(f)-isoIated},
B CB)(f) = Naer CBa(f) for A limit.

If f € C, then for some a < w1 CB,(f) = 0.

Definition
The minimal such « is the Cantor-Bendixson rank of f, denoted
by CB(f).

For a closed set F, a point x € F is isolated iff it is |df-isolated, so
the usual Cantor-Bendixson rank of F is in fact the rank of Idg.
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The Cantor-Bendixson type of a function.

Notation
For a < wy, denote C, = {f € C | CB(f) = a}. J

If CB(f) = o+ 1, then f|cg, () is locally constant. Denote Ny the
cardinal of its image. Define N¢ to be 0 if CB(f) is limit.

Set the type of f € C to be tp(f) = (CB(f), Nf). |

The type is an invariant for continuous reducibility on C:
for f,g € C, f < g implies tp(f) <jex tp(g).
The converse is not true in general, but

Theorem (Carroy)

Suppose that f, g are in C and f has compact domain, then
tp(f) <lex tp(g) implies f < g.

18/21



A result on the general structure of C.

In particular,

m Continuous reduction is a well-order of length w; + 1 on
functions in C that have compact domain,

m If K € NV is compact of type (o + 1,1) then Idyk is minimal
for functions in C of rank > o.

Theorem (Carroy)

Suppose that f, g € C satisfy CB(f) = A+ n and CB(g) = « for
some A < wy limit or null, n € w, and o < wy:

Ifn=0 and CB(f) = X\ = a = CB(g), then f < g.
IfAX+2n< a, then f < g.

As a consequence,

Corollary
If C,, is wqo for all & < wjy then C is wqo. J
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The finite generation method.

Suppose that A; € NN for all i € N, then the gluing of the sets
A;is BjA; = U,-(I')AA,'.

Similarly if f; : A; — B; for all i € N then the gluing of the
functions f; is ©if; : ;A — @;B;, (i)~x — (i)~fi(x).

A class C of functions is finitely generated if there is a finite set
G such that every function of C is (continuously equivalent to) a
finite gluing of functions in G.

Theorem (Carroy-Pequignot)

The class C,, is finitely generated for all o < wj.

Since any finitely generated class is a well-quasi-order under
continuous reducibility, continuous functions are well-quasi-ordered
under continuous reducibility.
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A summarizing table.

Here C abbreviates C(X, Y) and X3(X, Y) stands for the
¥ 9-measurable functions.
LC means locally compact and cpt means compact, while Z%—c.

and X1-h. mean analytic complete and analytic hard, respectively.

w L X WwC X
Xis | Xnot | |[Y|[<® | YZ=w w+1lCY
LC LC X cpt | X not cpt
(GC,C) | WQO | wQO? WQO Tic >i-h.
(x9,0) ? WQO | Xi-h? Tl-h.
C€,<) WQO
(29, <) ? \ WQO \ 7

21/21




A summarizing table.

Here C abbreviates C(X, Y) and X3(X, Y) stands for the

¥ 9-measurable functions.

LC means locally compact and cpt means compact, while Z%—c.
and X1-h. mean analytic complete and analytic hard, respectively.

w L X WwC X
Xis | Xnot | |[Y|[<® | YZ=w w+1lCY
LC LC X cpt | X not cpt
(GC,C) | WQO | wQO? WQO Tic >i-h.
(x9,0) ? WQO | Xi-h? Tl-h.
C€,<) WQO
(29, <) ? \ WQO \ 7

Thank you!
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