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In fact, a graphon is a a measurable function  which 
represents the sequence  in the sense that certain graph invariants 
are transferred.

Γ : [0,1] × [0,1] → [0,1]
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limn→∞ t(F, Gn) = ∫[0,1]v(F) Πi,j∈E(F)Γ(xi, xj)Πi∈v(F)dxi

t(F, G) = hom(F, G)
|G ||F|

There is a notion of metric convergence for the sequence  
associated to this, cut metric.

⟨Gn : n < ω⟩
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for every finite graph F, where 

works well for sequences of dense graphs but is rather information-free for sparse 
graphs, as we get  in the limit. 

limn→∞ t(F, Gn) = ∫[0,1]v(F) Πi,j∈E(F)Γ(xi, xj)Πi∈v(F)dxi

t(F, G) = hom(F, G)
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0
To capture sparse graphs, a new theory was needed, developed by Benjamini-
Schramm and further by Nešetřil and Osona de Mendez. A unifying theory was 
given by the latter authors through the notion of

FIRST ORDER CONVERGENCE 

which leads to the limit notion called modeling. In the case of a sequence of dense 
graphs, a modeling reduces to a graphon.
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Then  is a FO-convergent if  

exists for all . 

⟨An : n < ω⟩ limn→∞⟨φ, An⟩

φ

In various situations there is a standard Borel space (so uncountable)   
which is a -structure and which satisfies  for all  

. This is the modeling. The notion encapsulates graphons.

A
τ ⟨φ, A⟩ = limn→∞⟨φn, A⟩

φ
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In fact, this construction is a special case of the classical Loeb’s measure on 
ultraproducts (1975) and a countably generated substructure.

In particular, any graphon can be obtained in this way.

GraphonsUltraproducts

This idea has been extended to measure preserving actions by Conley, Kechris and Tucker-Drob in  

    Ultraproducts of measure preserving actions and graph combinatorics (2012) 
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This is proved using Szemeredi Regularity Lemma

Tao (2012)  proved Tao’s algebraic regularity Lemma, 
as shown on the next slide.
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Starchenko and Pillay (unpublished preprint) and 
independently Hrushovski (letter to Tao), gave a proof using the 
theory of pseudofinite fields which removes the requirement of 
large characteristics.
Džamonja-Tomašić (submitted 2017) gave a proof using graphons, 
which inspired us to prove the following general theorem, regarding

0-1 graphons.

Theorem.  In the space of graphons, the set of accumulation 
points of the family of realisations of a definable bipartite graph 
over the structures ranging in an asymptotic class is a finite set 
of stepfunctions. 

(suggested in the private correspondance of Hrushovski to Tao)
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What is an asymptotic class ? 

It is a certain hereditary class of finite structures.

Macpherson  

and Steinhorn

“The graphons generated by graphs coming from a certain 

hereditary class are simple”
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2.4 Connections with  ages and classification 
theory
Question: Suppose that C is a hereditary class of graphs. Which 

conditions on C guarantee that the graphons generated by graphs in C 
are “simple” ? For example, have values 0 and 1.

An example of a hereditary class is the age= all finite substructures 
Age(G) of a countably infinite first order structure G. 

For example, a structure obtained through a Fraïssé construction.

If we know a model-theoretic classification of  G, 

what can we say about the graphons generated by Age(G)? 
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Very interesting theorems have been proven by Lovász-Szegedy (2010), 
which, translated in the language of model theory, imply things like:

Theorem (Lovász-Szegedy 2010) Suppose that G is a NIP graph. 
Then every graphon obtained from Age(G) is 0-1 valued almost 

everywhere.

There is no mention of NIP in their paper, they rather speak of 
Vapnik-Červonenkis dimension. But some translation using theorems 

from model theory gives the above. 

Fact. Stable graphs are NIP.



Paper with D. Bartosova, L. Scow and R. Patel, to appear
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The discussion about the connection between the properties of a 
hereditary class versus the shape of the of graphon space that it 
generates, illustrates that there is a connection between the countable 
limits and the uncountable ones. 

Countable limits we have seen so far: a simple union or a Fraïssé limit

Uncountable limits we have seen so far: 

ultraproducts, graphons, modelings

The connection exists but is not simple.

Idea: change the countable limit to better reflect the properties of the uncountable 
limit, notably through changing the logic.
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formulas, usually through a recursive definition, such as FO logic, 
connected to a semantical notion of interpreting these formulas, again 
recursively, by a definition like Tarski (Vaught)’s definition of truth.

However, in abstract model theory, a subject indeed started by Tarski 
and Vaught in the 1950s, there is much more variety as to what a logic 

might be and the semantic and syntax are not necessarily  connected. We 
were much inspired by the work of Karol Carp from 1959 to 1974, on 

chain logic. (Chain logic has nothing to do with this context, it was 
invented for singular cardinals).

In a Džamonja-Väänänen paper on connections between chain logics and 
Shelah’s logic  (accepted mod. revisions to Israel Journal of 

Mathematics), we used the following way of framing abstract logics and 
a way to compare them using Chu transforms. The concepts in the 

abstract were studied by Garica-Matos and Väänänen (2005).
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κ
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I have been interested to use these ideas to introduce new logics on 
countable models which will be used to relate them to uncountable models 
obtained as combinatorial limits. The following is my work in progress 
on this subject.
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For  and  we define  iff . φ ∈ L M ∈ S M ⊧* φ {n < ω : Mn ⊧ φ} ∈ *
Then one can check that  forms a nice logic. A simple 
consequence of Łos’s transfer theorem for FO logic is the following

(L, ⊧* , S)

Observation.  iff .M ⊧* φ Πn<ωMn/* ⊧ φ

Therefore we obtain a way to interpret the ultrafilter through a 
countable model.
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previous example, the set of all countable infinite -structures  

along with an increasing decomposition .

τ L
τ S

τ M
⟨Mn : n < ω⟩

Now we define the modeling satisfaction relation by saying

  iff .M ⊧ℳ φ limn→∞⟨φ, Mn⟩ = 1

Lemma : If there is a modeling  of  , then

  iff . In this case, the modeling logic  is a 
nice logic. 

A ⟨Mn : n < ω⟩
M ⊧ℳ φ A ⊧ φ (L, ⊧ℳ , S)

So now we have a countable ‘mirror’ of the uncountable modeling.
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Definition. Let  and  be two logics. 
We say that  iff there is a pair of functions 

 such that ,  onto, and the adjointness 
condition holds, which means  

ℒ = (ℒ, ⊧ , .) ℒ′ = (ℒ′ , ⊧′ , .′ )
(L, ⊧ , S) ≤ (L′ , ⊧′ , S′ )

( f, g) f : L → L′ g : S′ → S
M′ ⊧′ f(φ) ⟺ g(M′ ) ⊧ φ

Heuristic truth supported by various theorems. If , then the 
“nice properties” of  are inherited by . 

ℒ ≤ ℒ′ 

ℒ′ ℒ
Lemma. The modeling logic is  the ultrafilter logic.≤
Transfer principles à la Łos … 


