The Complexity of Proving Ramsey Principles

Nicola Galesi

Dept. of Computer, Control and Management Engineering "A. Ruberti" (DIAG) Sapienza Università Roma

Pisa - July 9-11 2023 Workshop Logical methods in Ramsey theory and related topics

伺下 イラト イラ

Definition (Proof system for L)

Polynomial time onto mapping $F : \{0,1\}^* \to L$

Our Settings

- L = TAUT(resp.UNSAT)
- F(x) = A means: x is a proof (resp. refutation) of A
- F thought as a polynomial time verifier V(x, A) that x is a correct proof of A

Towards $NP \neq coNP$ [Cook Reckhow 74]

Definition (Proof System)

A polynomial time Verifier V(,) s.t.

$$A \in TAUT \equiv \exists x \in \{0,1\}^* : V(x,A)$$

Definition (Polynomially bounded proof system)

A polynomial time Verifier V(,) s.t.

$$A \in TAUT \equiv \exists x \in \{0,1\}^*, |x| \leq |A|^{O(1)} : V(x,A)$$

Theorem (Cook-Reckhow)

There exists a polynomially bounded proof system iff NP = coNP

< ロ > < 同 > < 三 > < 三 >

$F(x_1...,x_n)$ an UNSAT CNF formula. Refutations of F are sequences $A_1,...,A_m$ of clauses, concluding with $A_m = \Box$, formed according to:

Axioms

$$A_i \in F$$

Rule

$$\frac{A \lor x \quad \bar{x} \lor B}{A \lor B}$$

伺 ト イヨ ト イヨト

Rules

● The *∧*-*introduction rule*

$$\frac{\mathcal{D}_1 \vee \bigwedge_{j \in J_1} I_j \quad \mathcal{D}_2 \vee \bigwedge_{j \in J_2} I_j}{\mathcal{D}_1 \vee \mathcal{D}_2 \vee \bigwedge_{j \in J_1 \cup J_2} I_j},$$

provided that $|J_1 \cup J_2| \leq k$.

2 The cut (or resolution) rule

$$\frac{\mathcal{D}_1 \vee \bigvee_{j \in J} I_j \quad \mathcal{D}_2 \vee \bigwedge_{j \in J} \neg I_j}{\mathcal{D}_1 \vee \mathcal{D}_2},$$

★ ∃ ► < ∃ ►</p>

э

Let us given an UNSAT CNF $F(x_1, ..., x_n)$. Let $\pi = A_1, ..., A_m$ be a resolution refutation of $F(\vec{x})$.

$$Sz(\pi) = m$$

$$Sz(F \vdash) = \min_{F \vdash_{\pi} \Box} Sz(\pi)$$

Question (Res is not poly bounded)

Exhibit a family of UNSAT CNFs $(F_n)_{n \in \mathbb{N}}$ and prove that $Sz(F_n \vdash) = \Omega(\exp(|F_n|))$ (a superpolynomial suffices)

э

In search for hard-to-prove formulas

Nicola Galesi The Complexity of Proving Ramsey Principles

æ

Theorem (Ramsey Theorem)

There exists a number r(k, s) that is the smallest number such that any graph with at least r(k, s) vertices contains either a clique of size k or an independent set of size s.

[Krishnamurty Moll 81]]We are interested in propositional formulation of valid Ramsey statements

$$n \longrightarrow (k)_2^2$$

which expresses Ramsey theorem for s = k and $r_k = r(k, k)$.

Ramsey Theorem and its propositional formulation

 $X \subseteq [n]$

$$Cli(X) := \bigwedge_{\substack{(ij) \in \binom{X}{2} \\ ij \in \binom{X}{2}}} E_{ij}$$
$$Ind(X) := \bigwedge_{\substack{(ij) \in \binom{X}{2}}} \neg E_{ij}$$

X is a clique

X is an independent set

$$\mathsf{RAM}(n,k) := \bigvee_{X \subseteq [n], |X|=k} Cli(X) \lor \bigvee_{X \subseteq [n], |X|=k} Ind(X) \quad \text{ is TAUT for } n \ge r_k$$

 $|\mathsf{RAM}(n,k)| = O(n^k)$ it has $\binom{n}{k}$ disjuncts each of size $\binom{k}{2}$

• • = • • = •

э

Proof complexity of RAM(n, k) formulas

Theorem (Erdös ...)

$$2^{k/2} < r_k < 4^k$$

What is the complexity of proving $RAM(r_k, k)$?

- Evidence that RAM(r_k, k) is hard for RES (the width is at least r_k/2) is and is proved hard (an exponential lower bound for the size required) in RES*. [Krishnamurty Moll 81]
- Hard (it requires exponential size proofs) to prove in constant depth-Frege [Krajicek 11].

▲□ ▶ ▲ □ ▶ ▲ □ ▶

The problem with $RAM(r_k, k)$ is that we do not know the exact value of r_k , so that we cannot prove upper bounds on proofs of $RAM(r_k, k)$) to compare the lower bounds with.

Therefore researchers start to study the complexity of proofs of $RAM(4^k, k)$ which is the same as $RAM(n, \frac{\log n}{2})$

- RAM(n, log n/2) can be proved with quasipolynomial size proofs in constant-depth Frege [Pudlák 91]
- RAM(n, log n) requires exponential size proofs in RES [Pudlák 12]
- RAM(n, log n/2) requires exponential size proofs in RES*(log) [Krajicek 01]

何 ト イヨ ト イヨ ト

Complexity of certifying Ramsey graphs

 $RAM(n, \frac{\log n}{2})$ suggests the following definition

Definition (Lauria Rödl Pudlák Thapen 17)

A graph over n vertices G is c-Ramsey if it has no clique or independent set of size $c \log n$.

Question (Complexity theory point of view)

- Efficiency of construction: can these c-Ramsey graphs be constructed in polynomial time ?
- Verification: How hard is to certify that a graph with n vertices is c-Ramsey ?

Natural certificates that a given graph G is c-Ramsey are proofs/refutations that G is/is not c-Ramsey

・ 同 ト ・ ヨ ト ・ ヨ ト

k-clique principle

G = (V, E). We want to define a formula Clique_k(G) satisfiable iff G contains a k-clique. $x_{iv} \equiv "v$ is the *i*-th node in the clique"

$$\mathsf{Clique}_{\mathsf{k}}(G) = \begin{cases} \bigvee_{v \in V} x_{i,v} & i \in [k] & \text{a node in each position} \\ \neg x_{i,v} \lor \neg x_{i,u} & u \neq v \in V, i \in [k] & \text{no two nodes in one position} \\ \neg x_{i,u} \lor \neg x_{j,v} & (u,v) \notin E, i \neq j \in [k] & \text{"no-edges" are not in the clique} \end{cases}$$

Fact

 $Clique_k(G)$ UNSAT iff G does not have a k-clique

[Dantchev Martin Szeider 11]: a parameterized Resolution system where assignments are restricted to have weight at most k.

Let $F(x_1, ..., x_n)$ be an UNSAT CNF and let $Enc_{n,k}(\vec{x}, \vec{y})$ be a CNF encoding that assignments on \vec{x} with weight more than k are forbidden.

Problem (Proof complexity in ParaRes)

Minimal size of Resolution refutations for $F(\vec{x}) \wedge Enc_{n,k}(\vec{x}, \vec{y})$. (counting clauses in $Enc_{n,k}(\vec{x}, \vec{y})$ only if used)

伺下 イヨト イヨト

$$Enc^{1}_{n,k}(\vec{x}) := \bigwedge_{i_1,\ldots,i_{k+1}\in[n]} (\bar{x}_{i_1}\vee\ldots\vee\bar{x}_{i_{k+1}})$$

• $F(\vec{x}) + Enc^{1}_{n,k}(\vec{x})$ have size bounded by $n^{O(k)}$.

Question

- Does $F(\vec{x}) + Enc_{n,k}^{1}(\vec{x})$ require refutations of size $n^{\Omega(k)}$?
- Or F(x) + Enc¹_{n,k}(x) can be refuted using size f(k)n^{O(1)}, for some f?

[Beyersdorff Galesi Lauria Razborov 12]: $PHP_n + Enc_{n,k}^1(\vec{x})$ requires RES refutations of size $n^{\Omega(k)}$.

$$\mathsf{PHP}_n^m: \begin{array}{ll} \bigvee_{j=1}^n p_{i,j} & i \in [m] \\ \overline{p}_{i,j} \lor \overline{p}_{i',j} & i, \neq i' \in [m], j \in [n] \end{array}$$

Second Enconding

Uses variable s_{ij} , for $i \in [k], j \in [n]$ and encode an injective mapping from [k] to [n]

$$Enc_{n,k}^{2}(\vec{x},\vec{s}) := \begin{cases} \bar{x}_{i} \lor \bigvee_{j \in [k]} p_{ij} & i \in [n] \\ \bar{p}_{ij} \lor \bar{p}_{i'j} & i \neq i' \in [n], j \in [k] \end{cases}$$

[Dantchev Martin Szeider 11]: $PHP_n + Enc_{n,k}^2(\vec{x})$ has proof of size $O(kn^2)2^k$.

Problem

Prove $n^{\Omega(k)}$ lower bounds in Res+Enc²_{n,k}(\vec{x})

Problem

 $Enc^{2}(\vec{x}, \vec{p})$ is built-in for Cliqueⁿ_k(G). Prove there are no RES proofs of size $n^{O(1)}f(k)$ when G does not contain a k-clique

- 4 周 ト 4 戸 ト 4 戸 ト

k-Clique

Given a graph G = (V, E) and a parameter k, $\text{Clique}_{k}^{n}(G)$ is:

$$\begin{array}{ll} \bigvee_{v \in V} x_{i,v} & i \in [k] \\ \neg x_{i,u} \lor \neg x_{j,v} & i,j \in [k], \ i \neq j \ \text{and} \ \{u,v\} \notin E \\ \neg x_{i,u} \lor \neg x_{i,v} & u \neq v \in V. \end{array}$$

 $x_{i,v}$ means vertex v is the *i*th member of the clique.

Property

Cliqueⁿ_k(G) is satisfiable if and only if the graph G has a clique of size k.

Problem (Open)

 $Enc^{2}(\vec{x}, \vec{p})$ is built-in for Cliqueⁿ_k(G, k). Prove there are no RES proofs of size $n^{O(1)}f(k)$ when G does not contain a k-clique

k-Clique Principle: Simplified version

- G formed from k blocks V_b of n nodes each: $G = (\bigcup_{b \in [k]} V_b, E)$
- Variables $v_{i,q}$ with $i \in [k], a \in [n]$, with clauses

$$\mathsf{Clique}_{\mathsf{k}}^{\mathsf{n}}(G) = \begin{cases} \neg v_{i,a} \lor \neg v_{j,b} & ((i,a), (j,b)) \notin E \\ \bigvee_{a \in [n]} v_{i,a} & i \in [k] \end{cases}$$

The case of the complete (k-1)-partite graph

The canonical graph without a k-clique is C_n the complete (k-1)-partite graph.

Theorem (Beyersdorff Galesi Lauria 12)

Cliqueⁿ_k(C_n) requires treelike RES^{*} of size $n^{\Omega(k)}$ but have $O(2^k k^2 n^2)$ RES refutations.

Upper Bound Proof Idea. In $O(k^2n^2)$ proof steps reduce to PHP_{k-1}^k using the fact that proofs are trying to exclude the presence of a k-clique into the complete (k-1)-partite graph. Use the mapping

$$p_{i,h}\longleftrightarrow \bigvee_{v\in V_h} x_{i,v}.$$

Then use that PHP_{k-1}^k has Resolution refutations of size $O(2^k)$

Problem (Search(F, α))

Given UNSAT CNF $F(x_1, ..., x_n)$ and a assignment $\vec{\alpha} \mapsto \vec{x}$, find the clause $C \in F$ such that C false under α .

[Pudlák Impagliazzo 00, Beyersdorff Galesi Lauria 12]: Two persons (Prover, Delayer) game solving Search(F, α).

Game: In each round, Prover places a variable x_i , and Delayer either chooses a value 0 or 1 for x_i or leaves decision to the Prover. In this last case the Delayer gets 1 points. The assignment is recorded in α .

Stop: first round α falsifies a clause in F

Cost: number of points earned by Delayer

伺下 イヨト イヨト

Game: In each round, the number of points Delayer earns depends on the variable x_i , the assignment α constructed so far in the game, and two functions c_0 and c_1 .

> 0 if Delayer chooses the value, log $c_0(x_i, \alpha)$ if Prover sets x_i to 0, and log $c_1(x_i, \alpha)$ if Prover sets x_i to 1.

 c_0 and c_1 are non negative and are chosen in such a way that for each variable x and assignment α

$$\frac{1}{c_0(x,\alpha)} + \frac{1}{c_1(x,\alpha)} = 1$$
 (1)

Theorem (Pudlák Impagliazzo 00, Beyersdorff Galesi Lauria 12)

If $(F_n)_{n \in \mathbb{N}}$ have treelike Resolution refutations of size S, then for each (c_0, c_1) -game played on (F_n) there is a Prover strategy leaving at most log S points to the Delayer.

Theorem (Beyersdorff Galesi Lauria 12)

There are c_0 and c_1 s.t. in any APD-game on Clique(C_n, k), Delayer earns $(k - 1) \log n$ points.

・ 同 ト ・ ヨ ト ・ ヨ ト

The set of vertices of the graph C_n is partitioned into the sets V_1, \ldots, V_{k-1} of size *n* each.

Delayer strategy objective: at the end of the game the partial assignment always has k - 1 indexes assigned to specific vertices in different blocks.

Score function: on each block Delayer scores exactly log *n* points.

Conclusion: Delayer always wins $\geq (k-1) \log n$ points

Delayer info: keeps k - 1 sets $Z_j \subseteq V_j, j \in [k - 1]$ which represent the excluded vertices in each block.

Delayer Strategy: Let α current ass and $x_{i,v}$ for $v \in V_j$ the variable queried.

Then Delayer sets x_{iv} to:

• 0 if
$$\alpha(x_{iw}) = 1$$
 for some $w \neq v$;

2 0 if $\alpha(x_{lw}) = 1$ for some $l \in [k] \setminus \{i\}$ and some $w \in V_j$;

$$0 if v \in Z_j;$$

• 1 if
$$v \notin Z_j$$
 and $Z_j = V_j \setminus \{v\}$;

I and leave decision to Prover otherwise.

Delayer Update of Z_j 's :

- If Delayer sets x_{iv} , then Z_j remains unaltered.
- if Prover decides 0 then $Z_j := Z_j \cup \{v\}$.
- If Prover decides 1, then $Z_j := V_j \setminus \{v\}$.

Score Function: Measure the information of the degree of freedom of Delayer to answer 0 to the variable queried in the block j.

•
$$c_1 = |V_j| - |Z_j|.$$

• $c_0 = \frac{|V_j| - |Z_j|}{|V_j| - |Z_j| - 1}$

(k-1) indices at the end: by contradiction assume no index in V_j . Consider the last moment in the game in which $x_{iv} = 0$ has been assigned for some $v \in V_j$. All variables x_{iu} for $u \in V_j \setminus \{v\}$ have been queried before and set to 0. According to the Delayer strategy, either $x_{iu} = 0$ was set by Delayer by rule 3, or $x_{i,u} = 0$ was decided by Prover. In both cases $u \in Z_j$ and therefore $Z_j = V_j \setminus \{v\}$. But then Delayer would assign x_{iv} to 1 according to item 4 of her strategy, a contradiction.

Number of points in each block: Fix a block *i*. Exactly one variable x_{iv} is set to one. Let us say that $|Z_i| = z$ right before that decision. Until that moment $|Z_i|$ increases one by one every time Delayer scores some point on Prover deciding for some x_{iu} to be zero. Delayer scores

$$\sum_{t=0}^{z-1} \log \frac{|V_i| - t}{|V_i| - t - 1} = \log |V_i| - \log(|V_i| - z).$$

Delayer chooses to set $x_{iv} = 1$ if and only if $z = |V_i| - 1$, otherwise the Prover chooses which gives $\log(|V_i| - z)$ points to Delayer. In both cases Delayer scores $\log |V_i|$ points on block *i*. Thus in the end, Delayer gets exactly $(k - 1) \log n$ points.

イロト イヨト イヨト

Distribution of graphs $\mathcal{G}_{k,\epsilon}$:

Consider V = kn vertices divided into k blocks of n vertices: V_1, V_2, \ldots, V_k . $0 < \epsilon < 1$.

• $(u, v) \in E$ with $u \in V_i$, $v \in V_j$ and i < j, the edge $\{u, v\}$ is present with probability $p = n^{-(1+\epsilon)\frac{2}{k-1}}$.

Slight variation of the Erdős-Rényi model G(n, p).

Fact

It is known that k-cliques appear at the threshold probability $p^* = n^{-\frac{2}{k-1}}$. If $p < p^*$, then with high probability in $G \sim \mathcal{G}_{k,\epsilon}$ there is no k-clique;

All graphs in $\mathcal{G}_{k,\epsilon}$ are properly colorable with k colors.

Simplified Cliqueⁿ_k(G): In a k-colorable graph G with color classes V_1, \ldots, V_k a k-clique contains exactly one vertex per color class. In this case we can simplify formula $\text{Clique}_k^n(G)$ by setting $x_{i,v} = 0$ for every $i \in [k]$ and $v \in V_j$ such that $i \neq j$. Essentially we are forcing the *i*th vertex in the clique to be in the *i*th block.

$$\mathsf{Clique}_{\mathsf{k}}^{\mathsf{n}}(G) := \begin{cases} \bigvee_{v \in V_i} x_v & i \in [k] \\ \neg x_u \lor \neg x_v & \{u, v\} \notin E(G). \end{cases}$$

Theorem (Beyersdorff Galesi Lauria 12)

Let $0 < \epsilon < 1$. For a random graph $G \sim \mathcal{G}_{k,\epsilon}$, then w.h.p. the smallest RES^{*} refutations of $\text{Clique}_{k}^{n}(G)$ has size $n^{\Omega(k(1-\epsilon))}$.

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Complexity of Clique $_{k}^{n}(G)$ in RES: a challenge

Problem (Difficult Open Problem)

Prove significative lower bounds for refutations of $Clique_k^n(G)$ in RES when $G \sim \mathcal{G}_{k,\epsilon}$.

Theorem ([Atserias Bonacina de Rezende Lauria Nördstrom Razborov 21])

If $G \sim \mathcal{G}_{k,\epsilon}$, then with high probability $\text{Clique}_k^n(G)$ require r.o.RES refutations of size $n^{\Omega(k)}$.

伺 ト イヨト イヨト

The Binary Clique Principle: Bin-Cliqueⁿ_k(G)

- (Bit-)Variables: $\omega_{i,j}$, for $i \in [k], j \in [\log n]$
- Notation: $\omega_{i,j}^{a_j} = \begin{cases} \omega_{i,j} & \text{if } a_j = 1 \\ \neg \omega_{i,j} & \text{if } a_j = 0 \end{cases}$

$$v_{i,j} \equiv (\omega_{i,1}^{a_1} \wedge \ldots \wedge \omega_{i,\log n}^{a_{\log n}}), \text{ where } (j)_2 = \vec{a}$$

$$\mathsf{Bin-Clique}^{\mathsf{n}}_{\mathsf{k}}(G) = \bigwedge_{((i,a),(j,b)) \notin E} \left(\left(\omega_{i,1}^{1-a_1} \vee \ldots \vee \omega_{i,\log n}^{1-a_{\log n}} \right) \vee \left(\omega_{j,1}^{1-b_1} \vee \ldots \vee \omega_{j,\log n}^{1-b_{\log n}} \right) \right)$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Binary versions of combinatorial principles:

- preserve the combinatorial hardness of the unary principle;
- are less exposed to details of the encoding when attacked with a lower bound technique;
- give significative lower bounds.

Theorem ([Lauria Pudlák Rödl Thapen 17])

If $G \sim \mathcal{G}_{k,\epsilon}$, then with high probability Bin-Cliqueⁿ_k(G) requires RES refutations of size $n^{\Omega(k)}$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Res(*k*): Resolution with *k*-conjunctions

A refutation system for k- DNFs. Disjunctions of k-terms. Rules

$$\frac{\mathcal{D}_1 \vee \bigwedge_{j \in J_1} I_j \quad \mathcal{D}_2 \vee \bigwedge_{j \in J_2} I_j}{\mathcal{D}_1 \vee \mathcal{D}_2 \vee \bigwedge_{j \in J_1 \cup J_2} I_j},$$

provided that $|J_1 \cup J_2| \leq s$.

2 cut is

$$\frac{\mathcal{D}_1 \vee \bigvee_{j \in J} I_j \quad \mathcal{D}_2 \vee \bigwedge_{j \in J} \neg I_j}{\mathcal{D}_1 \vee \mathcal{D}_2},$$

Weakening are

$$\frac{\mathcal{D}}{\mathcal{D} \vee \bigwedge_{j \in J} I_j} \quad \text{and} \quad \frac{\mathcal{D} \vee \bigwedge_{j \in J_1 \cup J_2} I_j}{\mathcal{D} \vee \bigwedge_{j \in J_1} I_j},$$

provided that $|J| \leq s$.

()

э

Lemma ([Dantchev Galesi Martin 18])

Let $G \sim \mathcal{G}^{k,\epsilon}$ and suppose there are RES refutations of $Clique_k^n(G)$ of size S. Then there are RES(log n) refutations of Bin-Clique_k^n(G) of size S.

Corollary

Prove $n^{\Omega(k)}$ lower bounds in RES(log n) for Bin-Cliqueⁿ_k(G) to catch $n^{\Omega(k)}$ lower bounds in RES for Cliqueⁿ_k(G)

Theorem ([Dantchev Galesi Ghani Martin *To appear*])

If $G \sim \mathcal{G}_{k,\epsilon}$, then $\operatorname{Bin-Clique}_{k}^{n}(G)$ require $\operatorname{RES}(\sqrt{\log \log n})$ refutations of size $n^{\Omega(k)}$.

< ロ > < 同 > < 三 > < 三 >

Main Tools (for Binary Principles):

- Overing Number on s-DNFs [1]
 - $\operatorname{RES}(s)$ proofs with small CN efficiently simulated in $\operatorname{RES}(s-1)$
 - Bottlenecks
- 2 (Random) restrictions for binary principles
- Solution Hardness properties of Bin-Cliqueⁿ_k(G), when $G \sim \mathcal{G}(n, p)$ [2]
- Induction on s.
 - Base Case: known hardness on RES(1) [3].

```
[1]=[Segerlind Buss Impagliazzo 04]
[2]=[Beyersdorff Galesi Lauria 13 ]
[3]=[Lauria Pudlák Rödl Thapen 17]
```

• • = • • = •

A covering set for a s-DNF \mathcal{F} is a set of literals L such that each term of \mathcal{F} has at least a literal in L.

The covering number $cv(\mathcal{F})$ of a s-DNF \mathcal{F} is the minimal size of a covering set for \mathcal{D} .

$$\mathit{CN}(\pi) = \max_{\mathcal{F} \in \pi} c(\mathcal{F})$$

Lemma (Simulation Lemma)

If F has a refutation π in RES(s) with $CN(\pi) < d$, then F has a RES(s - 1) refutation of size at most $2^{d+2}N$.

Put π upside-down. Get a restricted branching *s*-program whose nodes are labelled by *s*-CNFs and at each node some *s*-disjunction $\bigvee_{i \in [s]} I_i$ is queried.

Example

伺 ト イヨ ト イヨト

Let $cv(\mathcal{C}) < d$, witnessed by variable set $\{v_1, \ldots, v_d\}$.

æ

A *c*-bottleneck in a RES(*s*) proof is a *s*-DNF *F* whose $cv(F) \ge c$. c(s) is the *bottleneck number* at RES(*s*).

Fact (Independence)

If c = rs, $r \ge 1$ and $cv(F) \ge c$, then in F it is always possible to find r pairwise disjoint s-tuples of literals $T_1 = (\ell_1^1, \ldots, \ell_1^s), \ldots, T_r = (\ell_r^1, \ldots, \ell_r^s)$ such that the $\bigwedge T_i$'s are terms of F.

周 🕨 🖌 🖻 🕨 🖌 🗐 🕨

A *s*-restriction assigns $\lfloor \frac{\log n}{2^{s+1}} \rfloor$ bit-variables $\omega_{i,j}$ in each block $i \in [k]$.

Fact

if σ and τ are (disjoint) s-restrictions, then $\sigma\tau$ is a (s-1)-restriction

A random s-restriction for Bin-Cliqueⁿ_k(G) is an s-restriction obtained by choosing independently in each block i, $\lfloor \frac{\log n}{2^{s+1}} \rfloor$ variables among $\omega_{i,1}, \ldots, \omega_{i,\log n}$, and setting these uniformly at random to 0 or 1.

Hardness Properties

$$G = (\bigcup_{b \in [k]} V_b, E)$$
 and $0 < \alpha < 1$. U is α -transversal if:

 $| \boldsymbol{U} | \leq \alpha \boldsymbol{k}, \text{ and }$

2 for all
$$b \in [k]$$
, $|V_b \cap U| \le 1$.

Let $B(U) \subseteq [k]$ be the set of blocks mentioned in U, and $\overline{B(U)} = [k] \setminus B(U)$.

U is extendible in a block $b \in \overline{B(U)}$ if there exists a vertex $a \in V_b$ which is a common neighbour of all nodes in *U*.

A restriction σ is *consistent* with v = (i, a) if for all $j \in [\log n]$, $\sigma(\omega_{i,j})$ is either a_j or not assigned (i.e. assigns the right bit or can do it in the future)

Definition

Let $0 < \alpha, \beta < 1$. A α -transversal U is β -extendible, if for all β -restriction σ , there is a node v^b in each block $b \in \overline{B(U)}$, such that σ is consistent with v^b .

Lemma (Extension Lemma, similar to [1])

Let $0 < \epsilon < 1$, let $k \le \log n$. Let $1 > \alpha > 0$ and $1 > \beta > 0$ such that $1 - \beta > \alpha(2 + \epsilon)$. Let $G \sim \mathcal{G}(n, p)$. With high probability both properties hold:

- **1** all α -transversal sets U are β -extendible;
- Q G does not have a k-clique.

[1]=[Beyersodrff Galesi Lauria 13]

Idea of the proof

Property (Clique(G, s, k))

For any s-restriction ρ , there are no Res(s) refutations of Bin-Cliqueⁿ_k(G)_{ρ} of size less than $n^{\frac{\delta(k-1)}{d(s)}}$.

Theorem

If Clique(G, s, k) holds, then there are no RES(s) proofs of Bin-Cliqueⁿ_k(G) with size $n^{\frac{\delta(k-1)}{d(s)}}$.

Corollary

Let $1 < s = o(\sqrt{\log \log n})$. There exists a graph G such that RES(s) refutations of Bin-Cliqueⁿ_k(G) are $n^{\Omega(k)}$.

By Extension Lemma there exists a $G \sim \mathcal{G}_{k,\epsilon}$ with the extension properties.

Lemma		
Clique(G, 1, k) holds. (use [1])		
[1]=[Lauria Pudlák Rödl Thapen 17]	< 급> < 클> < 클> < 클> < 클 > < 클	2 (
Nicola Galesi	The Complexity of Proving Ramsey Principles	

Steps of the proof

Lemma

$$\mathsf{Clique}(G, s-1, k) \Rightarrow \mathsf{Clique}(G, s, k) \text{ as long as } s = o(\sqrt{\log \log n}).$$

We prove that $\neg \operatorname{Clique}(G, s, k) \Rightarrow \neg \operatorname{Clique}(G, s-1, k)$. Let $L(s) = n^{\frac{\delta(k-1)}{d(s)}}$.

- Since ¬ Clique(G, s, k), then ∃ a s-restriction ρ and π a proof of Bin-Cliqueⁿ_k(G)[↑]_ρ, such that |π| < L(s).</p>
- 2 Let c = c(s) be the bottleneck number and r = cs
- $\circ \sigma$ be a *s*-random restriction on Bin-Cliqueⁿ_k(G)_{ρ}.
- 9 Pr[bottleneck F survives in $\pi \upharpoonright_{\sigma} \le e^{-\frac{r}{p(s)}}$. Use Independence Property.
- So $\Pr[CN(\pi \upharpoonright_{\sigma}) \ge c] < 1$. Union bound.
- Obfine τ = σρ and apply Simulation Lemma to π↾σ. We get a (s-1)-restriction τ and a ≤ L(s)2^{c+2} size proof in Res(s − 1) of Bin-Cliqueⁿ_k(G)↾τ. If L(s)2^{c+2} < L(s − 1), this is ¬Clique(G, s − 1, k).</p>
- knowing p(s), define d(s) and c(s) in such a way to force L(s)2^{c+2} < L(s - 1) and union bound to work.</p>

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

3