The Complexity of Proving Ramsey Principles

Nicola Galesi

Dept. of Computer, Control and Management Engineering "A. Ruberti" (DIAG) Sapienza Università Roma

Pisa - July 9-11 2023
Workshop Logical methods in Ramsey theory and related topics

Proof systems

Definition (Proof system for L)

Polynomial time onto mapping $F:\{0,1\}^{*} \rightarrow L$

Our Settings

- $L=$ TAUT(resp.UNSAT)
- $F(x)=A$ means: x is a proof (resp. refutation) of A
- F thought as a polynomial time verifier $V(x, A)$ that x is a correct proof of A

Towards NP \neq coNP [Cook Reckhow 74]

Definition (Proof System)

A polynomial time Verifier $V($, $)$ s.t.

$$
A \in T A U T \equiv \exists x \in\{0,1\}^{*}: V(x, A)
$$

Definition (Polynomially bounded proof system)

A polynomial time Verifier $V($, $)$ s.t.

$$
A \in T A U T \equiv \exists x \in\{0,1\}^{*},|x| \leq|A|^{O(1)}: V(x, A)
$$

Theorem (Cook-Reckhow)

There exists a polynomially bounded proof system iff NP $=\operatorname{coNP}$

Resolution

$F\left(x_{1} \ldots, x_{n}\right)$ an UNSAT CNF formula.
Refutations of F are sequences A_{1}, \ldots, A_{m} of clauses, concluding with $A_{m}=\square$, formed according to:

Axioms

$$
A_{i} \in F
$$

Rule

$$
\frac{A \vee x \quad \bar{x} \vee B}{A \vee B}
$$

Resolution over k-DNF

Rules
(1) The \wedge-introduction rule

$$
\frac{\mathcal{D}_{1} \vee \bigwedge_{j \in J_{1}} I_{j} \quad \mathcal{D}_{2} \vee \bigwedge_{j \in J_{2}} I_{j}}{\mathcal{D}_{1} \vee \mathcal{D}_{2} \vee \bigwedge_{j \in J_{1} \cup J_{2}} I_{j}}
$$

provided that $\left|J_{1} \cup J_{2}\right| \leq k$.
(2) The cut (or resolution) rule

$$
\frac{\mathcal{D}_{1} \vee \bigvee_{j \in J} I_{j} \mathcal{D}_{2} \vee \bigwedge_{j \in J} \neg I_{j}}{\mathcal{D}_{1} \vee \mathcal{D}_{2}}
$$

Let us given an UNSAT CNF $F\left(x_{1}, \ldots, x_{n}\right)$.
Let $\pi=A_{1}, \ldots, A_{m}$ be a resolution refutation of $F(\vec{x})$.

$$
\begin{gathered}
S z(\pi)=m \\
S z(F \vdash)=\min _{F \vdash \pi \square} S z(\pi)
\end{gathered}
$$

Question (Res is not poly bounded)

Exhibit a family of UNSAT CNFs $\left(F_{n}\right)_{n \in \mathbb{N}}$ and prove that Sz $\left(F_{n} \vdash\right)=\Omega\left(\exp \left(\left|F_{n}\right|\right)\right)$ (a superpolynomial suffices)

In search for hard-to-prove formulas

Ramsey Theorem and its propositional formulation

Theorem (Ramsey Theorem)

There exists a number $r(k, s)$ that is the smallest number such that any graph with at least $r(k, s)$ vertices contains either a clique of size k or an independent set of size s.
[Krishnamurty Moll 81]]We are interested in propositional formulation of valid Ramsey statements

$$
n \longrightarrow(k)_{2}^{2}
$$

which expresses Ramsey theorem for $s=k$ and $r_{k}=r(k, k)$.

Ramsey Theorem and its propositional formulation

$X \subseteq[n]$

$$
\begin{array}{ll}
\operatorname{Cli}(X):=\bigwedge_{(i j) \in\binom{x}{2}} E_{i j} & X \text { is a clique } \\
\operatorname{Ind}(X):=\bigwedge_{(i j) \in\binom{x}{2}} \neg E_{i j} & X \text { is an independent set }
\end{array}
$$

$$
\operatorname{RAM}(n, k):=\underset{X \subseteq[n],|X|=k}{ } \operatorname{Cli}(X) \vee \underset{X \subseteq[n],|X|=k}{\bigvee} \operatorname{Ind}(X) \quad \text { is TAUT for } n \geq r_{k}
$$

$|\operatorname{RAM}(n, k)|=O\left(n^{k}\right)$ it has $\binom{n}{k}$ disjuncts each of size $\binom{k}{2}$

Proof complexity of $\operatorname{RAM}(n, k)$ formulas

Theorem (Erdös ...)

$$
2^{k / 2}<r_{k}<4^{k}
$$

What is the complexity of proving $\operatorname{RAM}\left(r_{k}, k\right)$?
(1) Evidence that $\operatorname{RAM}\left(r_{k}, k\right)$ is hard for RES (the width is at least $r_{k} / 2$) is and is proved hard (an exponential lower bound for the size required) in RES*. [Krishnamurty Moll 81]
(2) Hard (it requires exponential size proofs) to prove in constant depth-Frege [Krajicek 11].

Proof complexity of $\operatorname{RAM}(n, k)$ formulas

The problem with $\operatorname{RAM}\left(r_{k}, k\right)$ is that we do not know the exact value of r_{k}, so that we cannot prove upper bounds on proofs of $\left.\operatorname{RAM}\left(r_{k}, k\right)\right)$ to compare the lower bounds with.

Therefore researchers start to study the complexity of proofs of $\operatorname{RAM}\left(4^{k}, k\right)$ which is the same as $\operatorname{RAM}\left(n, \frac{\log n}{2}\right)$
(1) $\operatorname{RAM}\left(n, \frac{\log n}{2}\right)$ can be proved with quasipolynomial size proofs in constant-depth Frege [Pudlák 91]
(2) $\operatorname{RAM}\left(n, \frac{\log n}{2}\right)$ requires exponential size proofs in RES [Pudlák 12]
(3) $\operatorname{RAM}\left(n, \frac{\log n}{2}\right)$ requires exponential size proofs in $\operatorname{RES}^{*}(\log)$ [Krajicek 01]

Complexity of certifying Ramsey graphs

RAM ($n, \frac{\log n}{2}$) suggests the following definition

Definition (Lauria Rödl Pudlák Thapen 17)

A graph over n vertices G is c-Ramsey if it has no clique or independent set of size $c \log n$.

Question (Complexity theory point of view)

(1) Efficiency of construction: can these c-Ramsey graphs be constructed in polynomial time?
(2) Verification: How hard is to certify that a graph with n vertices is c-Ramsey?

Natural certificates that a given graph G is c-Ramsey are proofs/refutations that G is/is not c-Ramsey

k-clique principle

$G=(V, E)$. We want to define a formula
Clique $_{k}(G)$ satisfiable iff G contains a k-clique.
$x_{i v} \equiv " v$ is the i-th node in the clique"
$\operatorname{Clique}_{k}(G)=\left\{\begin{array}{lll}\bigvee_{v \in V} x_{i, v} & i \in[k] & \text { a node in each position } \\ \neg x_{i, v} \vee \neg x_{i, u} & u \neq v \in V, i \in[k] & \text { no two nodes in one position } \\ \neg x_{i, u} \vee \neg x_{j, v} & (u, v) \notin E, i \neq j \in[k] & \text { "no-edges" are not in the clique }\end{array}\right.$

Fact
Clique $_{k}(G)$ UNSAT iff G does not have a k-clique

Motivation for k-clique: Parameterized Resolution

[Dantchev Martin Szeider 11]: a parameterized Resolution system where assignments are restricted to have weight at most k.

Let $F\left(x_{1}, \ldots, x_{n}\right)$ be an UNSAT CNF and let $E n c_{n, k}(\vec{x}, \vec{y})$ be a CNF encoding that assignments on \vec{x} with weight more than k are forbidden.

Problem (Proof complexity in ParaRes)

Minimal size of Resolution refutations for $F(\vec{x}) \wedge E n c_{n, k}(\vec{x}, \vec{y})$. (counting clauses in Enc $n, k(\vec{x}, \vec{y})$ only if used)

First Encoding

$$
E n c_{n, k}^{1}(\vec{x}):=\bigwedge_{i_{1}, \ldots, i_{k+1} \in[n]}\left(\bar{x}_{i_{1}} \vee \ldots \vee \bar{x}_{i_{k+1}}\right)
$$

- $F(\vec{x})+E n c_{n, k}^{1}(\vec{x})$ have size bounded by $n^{O(k)}$.

Question

- Does $F(\vec{x})+E n c_{n, k}^{1}(\vec{x})$ require refutations of size $n^{\Omega(k)}$?
- $\operatorname{Or} F(\vec{x})+E n c_{n, k}^{1}(\vec{x})$ can be refuted using size $f(k) n^{O(1)}$, for some f ?
[Beyersdorff Galesi Lauria Razborov 12]: $P H P_{n}+E n c_{n, k}^{1}(\vec{x})$ requires RES refutations of size $n^{\Omega(k)}$.

$$
\mathrm{PHP}_{n}^{m}: \begin{array}{ll}
\bigvee_{j=1}^{n} p_{i, j} & i \in[m] \\
\bar{p}_{i, j} \vee \bar{p}_{i^{\prime}, j} & i, \neq i^{\prime} \in[m], j \in[n]
\end{array}
$$

Second Enconding

Uses variable $s_{i j}$, for $i \in[k], j \in[n]$ and encode an injective mapping from $[k]$ to $[n]$

$$
E n c_{n, k}^{2}(\vec{x}, \vec{s}):= \begin{cases}\bar{x}_{i} \vee \bigvee_{j \in[k]} p_{i j} \quad i \in[n] \\ \bar{p}_{i j} \vee \bar{p}_{i^{\prime} j} & i \neq i^{\prime} \in[n], j \in[k]\end{cases}
$$

[Dantchev Martin Szeider 11]: $P H P_{n}+E n c_{n, k}^{2}(\vec{x})$ has proof of size $O\left(k n^{2}\right) 2^{k}$.

Problem

Prove $n^{\Omega(k)}$ lower bounds in Res $+E n c_{n, k}^{2}(\vec{x})$

Problem

$E_{n c}{ }^{2}(\vec{x}, \vec{p})$ is built-in for Clique ${ }_{k}^{n}(G)$. Prove there are no RES proofs of size $n^{O(1)} f(k)$ when G does not contain a k-clique

k-Clique

Given a graph $G=(V, E)$ and a parameter $k, \operatorname{Clique}_{\mathrm{k}}^{\mathrm{n}}(G)$ is:

$$
\begin{array}{ll}
\bigvee_{v \in V} x_{i, v} & i \in[k] \\
\neg x_{i, u} \vee \neg x_{j, v} & i, j \in[k], i \neq j \text { and }\{u, v\} \notin E \\
\neg x_{i, u} \vee \neg x_{i, v} & u \neq v \in V .
\end{array}
$$

$x_{i, v}$ means vertex v is the i th member of the clique.

Property

Clique ${ }_{k}^{n}(G)$ is satisfiable if and only if the graph G has a clique of size k.

Problem (Open)

$E_{n c}{ }^{2}(\vec{x}, \vec{p})$ is built-in for Clique ${ }_{k}^{n}(G, k)$. Prove there are no RES proofs of size $n^{O(1)} f(k)$ when G does not contain a k-clique

k-Clique Principle: Simplified version

- G formed from k blocks V_{b} of n nodes each:

$$
G=\left(\bigcup_{b \in[k]} V_{b}, E\right)
$$

- Variables $v_{i, q}$ with $i \in[k], a \in[n]$, with clauses

$$
\operatorname{Clique}_{\mathrm{k}}^{\mathrm{n}}(G)= \begin{cases}\neg v_{i, a} \vee \neg v_{j, b} & ((i, a),(j, b)) \notin E \\ \vee_{a \in[n]} v_{i, a} & i \in[k]\end{cases}
$$

Fact

Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G)$ UNSAT iff G does not have a k-clique

The case of the complete $(k-1)$-partite graph

The canonical graph without a k-clique is C_{n} the complete ($k-1$)-partite graph.

Theorem (Beyersdorff Galesi Lauria 12)

Clique ${ }_{k}^{n}\left(C_{n}\right)$ requires treelike RES* of size $n^{\Omega(k)}$ but have $O\left(2^{k} k^{2} n^{2}\right)$ RES refutations.

Upper Bound Proof Idea. In $O\left(k^{2} n^{2}\right)$ proof steps reduce to $P H P_{k-1}^{k}$ using the fact that proofs are trying to exclude the presence of a k-clique into the complete $(k-1)$-partite graph. Use the mapping

$$
p_{i, h} \longleftrightarrow \bigvee_{v \in V_{h}} x_{i, v}
$$

Then use that $P H P_{k-1}^{k}$ has Resolution refutations of size $O\left(2^{k}\right)$

Prover Delayer Games

Problem (Search ($F, a)$)

Given UNSAT CNF $F\left(x_{1}, \ldots x_{n}\right)$ and a assignment $\vec{\alpha} \mapsto \vec{x}$, find the clause $C \in F$ such that C false under α.
[Pudlák Impagliazzo 00, Beyersdorff Galesi Lauria 12]: Two persons (Prover, Delayer) game solving Search (F, α).

Game: In each round, Prover places a variable x_{i}, and Delayer either chooses a value 0 or 1 for x_{i} or leaves decision to the Prover. In this last case the Delayer gets 1 points. The assignment is recorded in α.

Stop: first round α falsifies a clause in F
Cost: number of points earned by Delayer

The Asymmetric Case

Game: In each round, the number of points Delayer earns depends on the variable x_{i}, the assignment α constructed so far in the game, and two functions c_{0} and c_{1}.

$$
\begin{array}{cl}
0 & \text { if Delayer chooses the value, } \\
\log c_{0}\left(x_{i}, \alpha\right) & \text { if Prover sets } x_{i} \text { to } 0, \text { and } \\
\log c_{1}\left(x_{i}, \alpha\right) & \text { if Prover sets } x_{i} \text { to } 1 .
\end{array}
$$

c_{0} and c_{1} are non negative and are chosen in such a way that for each variable x and assignment α

$$
\begin{equation*}
\frac{1}{c_{0}(x, \alpha)}+\frac{1}{c_{1}(x, \alpha)}=1 \tag{1}
\end{equation*}
$$

Delayer Strategies give Lower Bounds

> Theorem (Pudlák Impagliazzo 00, Beyersdorff Galesi Lauria 12)
> If $\left(F_{n}\right)_{n \in \mathbb{N}}$ have treelike Resolution refutations of size S, then for each $\left(c_{0}, c_{1}\right)$-game played on $\left(F_{n}\right)$ there is a Prover strategy leaving at most $\log S$ points to the Delayer.

Theorem (Beyersdorff Galesi Lauria 12)

There are c_{0} and c_{1} s.t. in any APD-game on $\operatorname{Clique}\left(C_{n}, k\right)$, Delayer earns $(k-1) \log n$ points.

The set of vertices of the graph C_{n} is partitioned into the sets V_{1}, \ldots, V_{k-1} of size n each.

Delayer strategy objective: at the end of the game the partial assignment always has $k-1$ indexes assigned to specific vertices in different blocks.

Score function: on each block Delayer scores exactly $\log n$ points.
Conclusion:Delayer always wins $\geq(k-1) \log n$ points

Delayer info: keeps $k-1$ sets $Z_{j} \subseteq V_{j}, j \in[k-1]$ which represent the excluded vertices in each block.

Delayer Strategy: Let α current ass and $x_{i, v}$ for $v \in V_{j}$ the variable queried.

Then Delayer sets $x_{i v}$ to:
(1) 0 if $\alpha\left(x_{i w}\right)=1$ for some $w \neq v$;
(2) 0 if $\alpha\left(x_{/ w}\right)=1$ for some $I \in[k] \backslash\{i\}$ and some $w \in V_{j}$;
(3) 0 if $v \in Z_{j}$;
(9) 1 if $v \notin Z_{j}$ and $Z_{j}=V_{j} \backslash\{v\}$;
(5) and leave decision to Prover otherwise.

Delayer Update of Z_{j} 's:

- If Delayer sets $x_{i v}$, then Z_{j} remains unaltered.
- if Prover decides 0 then $Z_{j}:=Z_{j} \cup\{v\}$.
- If Prover decides 1 , then $Z_{j}:=V_{j} \backslash\{v\}$.

Score Function: Measure the information of the degree of freedom of Delayer to answer 0 to the variable queried in the block j.

- $c_{1}=\left|V_{j}\right|-\left|Z_{j}\right|$.
- $c_{0}=\frac{\left|V_{j}\right|-\left|Z_{j}\right|}{\left|V_{j}\right|-\left|Z_{j}\right|-1}$
($k-1$) indices at the end: by contradiction assume no index in V_{j}. Consider the last moment in the game in which $x_{i v}=0$ has been assigned for some $v \in V_{j}$. All variables $x_{i u}$ for $u \in V_{j} \backslash\{v\}$ have been queried before and set to 0 . According to the Delayer strategy, either $x_{i u}=0$ was set by Delayer by rule 3, or $x_{i, u}=0$ was decided by Prover. In both cases $u \in Z_{j}$ and therefore $Z_{j}=V_{j} \backslash\{v\}$. But then Delayer would assign $x_{i v}$ to 1 according to item 4 of her strategy, a contradiction.

Number of points in each block: Fix a block i. Exactly one variable $x_{i v}$ is set to one. Let us say that $\left|Z_{i}\right|=z$ right before that decision. Until that moment $\left|Z_{i}\right|$ increases one by one every time Delayer scores some point on Prover deciding for some $x_{i u}$ to be zero. Delayer scores

$$
\sum_{t=0}^{z-1} \log \frac{\left|V_{i}\right|-t}{\left|V_{i}\right|-t-1}=\log \left|V_{i}\right|-\log \left(\left|V_{i}\right|-z\right)
$$

Delayer chooses to set $x_{i v}=1$ if and only if $z=\left|V_{i}\right|-1$, otherwise the Prover chooses which gives $\log \left(\left|V_{i}\right|-z\right)$ points to Delayer. In both cases Delayer scores $\log \left|V_{i}\right|$ points on block i. Thus in the end, Delayer gets exactly $(k-1) \log n$ points.

Finding graphs hard to certify to be c-Ramsey in RES

Distribution of graphs $\mathcal{G}_{k, \epsilon}$:
Consider $V=k n$ vertices divided into k blocks of n vertices:
$V_{1}, V_{2}, \ldots, V_{k} .0<\epsilon<1$.

- $(u, v) \in E$ with $u \in V_{i}, v \in V_{j}$ and $i<j$, the edge $\{u, v\}$ is present with probability $p=n^{-(1+\epsilon)_{k-1}^{2}}$.

Slight variation of the Erdős-Rényi model $G(n, p)$.

Fact

It is known that k-cliques appear at the threshold probability $p^{*}=n^{-\frac{2}{k-1}}$. If $p<p^{*}$, then with high probability in $G \sim \mathcal{G}_{k, \epsilon}$ there is no k-clique;

All graphs in $\mathcal{G}_{k, \epsilon}$ are properly colorable with k colors.

Random graphs make hard Cliqueek (G) for RES*

Simplified Clique ${ }_{k}^{n}(G)$: In a k-colorable graph G with color classes V_{1}, \ldots, V_{k} a k-clique contains exactly one vertex per color class. In this case we can simplify formula Clique ${ }_{k}^{n}(G)$ by setting $x_{i, v}=0$ for every $i \in[k]$ and $v \in V_{j}$ such that $i \neq j$. Essentially we are forcing the i th vertex in the clique to be in the ith block.

$$
\text { Clique }_{\mathrm{k}}^{\mathrm{n}}(G):= \begin{cases}\bigvee_{v \in V_{i}} x_{v} & i \in[k] \\ \neg x_{u} \vee \neg x_{v} & \{u, v\} \notin E(G)\end{cases}
$$

Theorem (Beyersdorff Galesi Lauria 12)

Let $0<\epsilon<1$. For a random graph $G \sim \mathcal{G}_{k, \epsilon}$, then w.h.p. the smallest RES* refutations of Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G)$ has size $n^{\Omega(k(1-\epsilon))}$.

Complexity of Clique ${ }_{k}^{n}(G)$ in RES: a challenge

Problem (Difficult Open Problem)

Prove significative lower bounds for refutations of Clique $_{k}^{n}(G)$ in RES when $G \sim \mathcal{G}_{k, \epsilon}$.

Theorem ([Atserias Bonacina de Rezende Lauria Nördstrom Razborov 21])
 If $G \sim \mathcal{G}_{k, \epsilon}$, then with high probability Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G)$ require r.o.RES refutations of size $n^{\Omega(k)}$.

The Binary Clique Principle: Bin-Clique ${ }_{k}^{n}(G)$

- (Bit-)Variables: $\omega_{i, j}$, for $i \in[k], j \in[\log n]$
- Notation:

$$
\begin{gathered}
\omega_{i, j}^{a_{j}}= \begin{cases}\omega_{i, j} & \text { if } a_{j}=1 \\
\neg \omega_{i, j} & \text { if } a_{j}=0\end{cases} \\
v_{i, j} \equiv\left(\omega_{i, 1}^{a_{1}} \wedge \ldots \wedge \omega_{i, \log n}^{a_{\log n}}\right), \text { where }(j)_{2}=\vec{a}
\end{gathered}
$$

$$
\operatorname{Bin}^{-C_{i q u}}{ }_{k}^{\mathrm{n}}(G)=\bigwedge_{((i, a),(j, b)) \notin E}\left(\left(\omega_{i, 1}^{1-a_{1}} \vee \ldots \vee \omega_{i, \log n}^{\left.1-a_{\log n}\right)}\right) \vee\left(\omega_{j, 1}^{1-b_{1}} \vee \ldots \vee \omega_{j, \log n}^{\left.1-b_{\log n}\right)}\right)\right.
$$

The complexity of Bin-Cliqueen (G) in RES

Binary versions of combinatorial principles:

- preserve the combinatorial hardness of the unary principle;
- are less exposed to details of the encoding when attacked with a lower bound technique;
- give significative lower bounds.

Theorem ([Lauria Pudlák Rödl Thapen 17])

If $G \sim \mathcal{G}_{k, \epsilon}$, then with high probability $\operatorname{Bin-Clique}{ }_{k}^{n}(G)$ requires
RES refutations of size $n^{\Omega(k)}$.

$\operatorname{Res}(k)$: Resolution with k-conjunctions

A refutation system for k - DNFs. Disjunctions of k-terms. Rules
(1) \wedge-introduction is

$$
\frac{\mathcal{D}_{1} \vee \bigwedge_{j \in J_{1}} I_{j} \quad \mathcal{D}_{2} \vee \bigwedge_{j \in J_{2}} I_{j}}{\mathcal{D}_{1} \vee \mathcal{D}_{2} \vee \bigwedge_{j \in J_{1} \cup J_{2}} I_{j}}
$$

provided that $\left|J_{1} \cup J_{2}\right| \leq s$.
(2) cut is

$$
\frac{\mathcal{D}_{1} \vee \bigvee_{j \in J} I_{j} \quad \mathcal{D}_{2} \vee \bigwedge_{j \in J} \neg I_{j}}{\mathcal{D}_{1} \vee \mathcal{D}_{2}}
$$

(3) weakening are

$$
\frac{\mathcal{D}}{\mathcal{D} \vee \bigwedge_{j \in J} I_{j}} \quad \text { and } \quad \frac{\mathcal{D} \vee \bigwedge_{j \in J_{1} \cup J_{2} l_{j}}}{\mathcal{D} \vee \bigwedge_{j \in J_{1}} l_{j}}
$$

provided that $|J| \leq s$.

Unifying Unary and Binary case for the clique principle

Lemma ([Dantchev Galesi Martin 18])

Let $G \sim \mathcal{G}^{k, \epsilon}$ and suppose there are RES refutations of Clique ${ }_{\mathrm{k}}^{\mathrm{n}}(G)$ of size S. Then there are RES $(\log n)$ refutations of $B_{i n-C l i q u e}^{k}{ }_{k}^{n}(G)$ of size S.

Corollary

Prove $n^{\Omega(k)}$ lower bounds in RES(log $\left.n\right)$ for $\operatorname{Bin-Clique}{ }_{k}^{n}(G)$ to catch $n^{\Omega(k)}$ lower bounds in RES for Clique ${ }_{k}^{n}(G)$

Theorem ([Dantchev Galesi Ghani Martin To appear])

If $G \sim \mathcal{G}_{k, \epsilon}$, then Bin-Clique ${ }_{k}^{\mathrm{n}}(G)$ require $\operatorname{RES}(\sqrt{\log \log n})$ refutations of size $n^{\Omega(k)}$.

Lower Bound Proof for RES($\log \log n)$

Main Tools (for Binary Principles):
(1) Covering Number on s-DNFs [1]

- RES(s) proofs with small CN efficiently simulated in RES $(s-1)$
- Bottlenecks
(2) Random) restrictions for binary principles

(9) Induction on s.
- Base Case: known hardness on $\operatorname{RES}(1)$ [3].
[1] =[Segerlind Buss Impagliazzo 04]
[2]=[Beyersdorff Galesi Lauria 13]
[3]=[Lauria Pudlák Rödl Thapen 17]

Covering number of a RES(s) proof

A covering set for a s-DNF \mathcal{F} is a set of literals L such that each term of \mathcal{F} has at least a literal in L.

The covering number $\operatorname{cv}(\mathcal{F})$ of a s-DNF \mathcal{F} is the minimal size of a covering set for \mathcal{D}.

$$
C N(\pi)=\max _{\mathcal{F} \in \pi} c(\mathcal{F})
$$

Small covering number vs simulations

Lemma (Simulation Lemma)

If F has a refutation π in $\operatorname{RES}(s)$ with $C N(\pi)<d$, then F has a RES $(s-1)$ refutation of size at most $2^{d+2} N$.

Put π upside-down. Get a restricted branching s-program whose nodes are labelled by s-CNFs and at each node some s-disjunction $\bigvee_{j \in[s]} l_{j}$ is queried.

Example

$$
\begin{align*}
& \begin{array}{cc}
\vdots & \\
? \bigvee_{j \in[s]} l_{j} & \\
& \searrow 0
\end{array} \tag{2}\\
& \mathcal{C} \wedge \bigvee_{j \in[s]} l_{j} \\
& 1 \swarrow \quad ? \bigvee_{j \in[s]}^{l_{j}} \quad \searrow 0 \\
& \mathcal{C} \wedge \bigwedge_{j \in[s]} \neg I_{j}
\end{align*}
$$

Let $c v(\mathcal{C})<d$, witnessed by variable set $\left\{v_{1}, \ldots, v_{d}\right\}$.

Bottlenecks in RES(s)

A c-bottleneck in a $\operatorname{RES}(s)$ proof is a s-DNF F whose $c v(F) \geq c$. $c(s)$ is the bottleneck number at RES(s).

Fact (Independence)

If $c=r s, r \geq 1$ and $c v(F) \geq c$, then in F it is always possible to find r pairwise disjoint s-tuples of literals
$T_{1}=\left(\ell_{1}^{1}, \ldots, \ell_{1}^{s}\right), \ldots, T_{r}=\left(\ell_{r}^{1}, \ldots, \ell_{r}^{s}\right)$ such that the $\bigwedge T_{i}$'s are terms of F.

Restrictions

A s-restriction assigns $\left\lfloor\frac{\log n}{2^{s+1}}\right\rfloor$ bit-variables $\omega_{i, j}$ in each block $i \in[k]$.

Fact

if σ and τ are (disjoint) s-restrictions, then $\sigma \tau$ is a ($s-1$)-restriction

A random s-restriction for $\operatorname{Bin}-$ Clique $_{k}^{n}(G)$ is an s-restriction obtained by choosing independently in each block $i,\left\lfloor\frac{\log n}{2^{s+1}}\right\rfloor$ variables among $\omega_{i, 1}, \ldots, \omega_{i, \log n}$, and setting these uniformly at random to 0 or 1 .

Hardness Properties

$G=\left(\bigcup_{b \in[k]} V_{b}, E\right)$ and $0<\alpha<1 . U$ is α-transversal if:
(1) $|U| \leq \alpha k$, and
(2) for all $b \in[k],\left|V_{b} \cap U\right| \leq 1$.

Let $B(U) \subseteq[k]$ be the set of blocks mentioned in U, and $B(U)=[k] \backslash B(U)$.
U is extendible in a block $b \in \overline{B(U)}$ if there exists a vertex $a \in V_{b}$ which is a common neighbour of all nodes in U.

A restriction σ is consistent with $v=(i, a)$ if for all $j \in[\log n], \sigma\left(\omega_{i, j}\right)$ is either a_{j} or not assigned (i.e. assigns the right bit or can do it in the future)

Definition

Let $0<\alpha, \beta<1$. A α-transversal U is β-extendible, if for all β-restriction σ, there is a node v^{b} in each block $b \in \overline{B(U)}$, such that σ is consistent with v^{b}.

Lemma (Extension Lemma, similar to [1])

Let $0<\epsilon<1$, let $k \leq \log n$. Let $1>\alpha>0$ and $1>\beta>0$ such that $1-\beta>\alpha(2+\epsilon)$. Let $G \sim \mathcal{G}(n, p)$. With high probability both properties hold:
(1) all α-transversal sets U are β-extendible;
(2) G does not have a k-clique.
[1]=[Beyersodrff Galesi Lauria 13]

Idea of the proof

Property $(\operatorname{Clique}(G, s, k))$

For any s-restriction ρ, there are no $\operatorname{Res}(s)$ refutations of ${\operatorname{Bin}-C l i q u e_{k}^{n}}_{\mathrm{n}}(G)\lceil\rho$ of size less than $n^{\frac{\delta(k-1)}{d(s)}}$.

Theorem

If Clique (G, s, k) holds, then there are no $\operatorname{RES}(s)$ proofs of $\operatorname{Bin-Clique}{ }_{k}^{n}(G)$ with size $n^{\frac{\delta(k-1)}{d(s)}}$.

Corollary

Let $1<s=o(\sqrt{\log \log n})$. There exists a graph G such that RES(s) refutations of $\operatorname{Bin}-$ Clique $_{k}^{n}(G)$ are $n^{\Omega(k)}$.

By Extension Lemma there exists a $G \sim \mathcal{G}_{k, \epsilon}$ with the extension properties.

Lemma

Clique ($G, 1, k$) holds. (use [1])
$[1]=[$ Lauria Pudlák Rödl Thapen 17]

Steps of the proof

Lemma

$\operatorname{Clique}(G, s-1, k) \Rightarrow \operatorname{Clique}(G, s, k)$ as long as $s=o(\sqrt{\log \log n})$.
We prove that $\neg \operatorname{Clique}(G, s, k) \Rightarrow \neg \operatorname{Clique}(G, s-1, k)$. Let $L(s)=n^{\frac{\delta(k-1)}{\mathrm{d}(s)}}$.
(1) Since $\neg \operatorname{Clique}(G, s, k)$, then \exists a s-restriction ρ and π a proof of ${\operatorname{Bin}-C_{i q u e}^{n}}_{\mathrm{k}}(G) \mid \rho$, such that $|\pi|<L(s)$.
(2) Let $c=c(s)$ be the bottleneck number and $r=c s$
(3) σ be a s-random restriction on $\left.\operatorname{Bin}^{-C_{i q u}}{ }_{k}^{n}(G)\right|_{\rho}$.
(4) $\operatorname{Pr}\left[\right.$ bottleneck F survives in $\left.\pi \upharpoonright_{\sigma}\right] \leq e^{-\frac{r}{p(s)}}$. Use Independence Property.
(5) $\operatorname{Pr}\left[C N\left(\pi \upharpoonright_{\sigma}\right) \geq c\right]<1$. Union bound.
(6) Define $\tau=\sigma \rho$ and apply Simulation Lemma to $\pi \upharpoonright_{\sigma}$. We get a (s-1)-restriction τ and a $\leq L(s) 2^{c+2}$ size proof in $\operatorname{Res}(s-1)$ of $\left.\operatorname{Bin}^{-C_{l i q u e}^{k}} \mathrm{k}(G)\right|_{\tau}$. If $L(s) 2^{c+2}<L(s-1)$, this is $\neg \operatorname{Clique}(G, s-1, k)$.
(7) knowing $\mathrm{p}(s)$, define $\mathrm{d}(s)$ and $c(s)$ in such a way to force $L(s) 2^{c+2}<L(s-1)$ and union bound to work.

