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Proof systems

Definition (Proof system for L)

Polynomial time onto mapping F : {0,1}* — L

Our Settings
o L = TAUT (resp.UNSAT)
@ F(x) = A means: x is a proof (resp. refutation) of A

@ F thought as a polynomial time verifier V(x, A) that x is a
correct proof of A
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Towards NP # coNP [Cook Reckhow 74]

A polynomial time Verifier V(,) s.t.

Ae TAUT = 3x € {0,1}" : V(x,A)

Definition (Polynomially bounded proof system)

A polynomial time Verifier V() s.t.

A e TAUT = 3x € {0,1}*, |x| < |A|°W : V(x, A)

Theorem (Cook-Reckhow)

There exists a polynomially bounded proof system iff NP = coNP
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Resolution

F(x1...,%,) an UNSAT CNF formula.
Refutations of F are sequences A1, ..., A, of clauses, concluding
with A, = [, formed according to:

Axioms
A,'EF
Rule
AVx xXxVB
AV B
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Resolution over k-DNF

Rules
@ The A-introduction rule

Dy v /\ eJl Dy Vv /\jEJQ
D1VD2V/\€J1UJ2

)

provided that |J; U Jp| < k.
@ The cut (or resolution) rule

D1V Ve li D2V N\,
D1 VD, ’
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Let us given an UNSAT CNF F(xi,...,Xn).
Let 7 = A1, ..., Amn be a resolution refutation of F(X).

Sz(w)=m

Sz(FF)= Frping Sz(m)

Question (Res is not poly bounded)

Exhibit a family of UNSAT CNFs (F,)nen and prove that
Sz(Fn ) = Q(exp(|Fn|)) (a superpolynomial suffices)
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In search for hard-to-prove formulas
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Ramsey Theorem and its propositional formulation

Theorem (Ramsey Theorem)

There exists a number r(k,s) that is the smallest number such
that any graph with at least r(k,s) vertices contains either a clique
of size k or an independent set of size s.

[Krishnamurty Moll 81]|We are interested in propositional
formulation of valid Ramsey statements

n— (k)3

which expresses Ramsey theorem for s = k and ry = r(k, k).
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Ramsey Theorem and its propositional formulation

X C [n]
ci(X):= N Ey X is a clique
(i)e(3)
Ind(X) := /\ —Ej X is an independent set
(iNe(3)

RAM(n, k) := \/ Cli(X)v \/ Ind(X) is TAUT for n > r,
XCln], | X|=k XCln], | X|=k

| RAM(n, k)| = O(n*) it has (}) disjuncts each of size (g)
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Proof complexity of RAM(n, k) formulas

Theorem (Erdos ... )

2k/2 < < 4k

What is the complexity of proving RAM(rk, k) 7
@ Evidence that RAM(ry, k) is hard for RES (the width is at

least rx/2) is and is proved hard (an exponential lower bound
for the size required ) in RES*. [Krishnamurty Moll 81]

@ Hard (it requires exponential size proofs) to prove in constant
depth-Frege [Krajicek 11].
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Proof complexity of RAM(n, k) formulas

The problem with RAM(ry, k) is that we do not know the exact
value of ry, so that we cannot prove upper bounds on proofs of
RAM(ry, k)) to compare the lower bounds with.

Therefore researchers start to study the complexity of proofs of
RAM(4X, k) which is the same as RAM(n, 'Og")

@ RAM(n, |°g”) can be proved with quasipolynomial size proofs
in constant-depth Frege [Pudlak 91]

@ RAM(n, Iog”) requires exponential size proofs in RES [Pudlik
12]

@ RAM(n, I°§”) requires exponential size proofs in RES*(log)
[Krajicek 01]
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Complexity of certifying Ramsey graphs

RAM(n, '°§") suggests the following definition

Definition ( Lauria Rodl Pudldk Thapen 17 )

A graph over n vertices G is c-Ramsey if it has no clique or
independent set of size c log n.

Question (Complexity theory point of view)

@ Efficiency of construction: can these c-Ramsey graphs be
constructed in polynomial time ?

@ \Verification: How hard is to certify that a graph with n
vertices is c-Ramsey ?

Natural certificates that a given graph G is c-Ramsey are
proofs/refutations that G is/is not c-Ramsey
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k-clique principle

G = (V,E). We want to define a formula
Cliquey(G) satisfiable iff G contains a k-clique.

Xjy = "v is the i-th node in the clique”
Viev Xiv i€ [k] a node in each position
Cliquex(G) = “XivVoxiy uFveV,ielk no two nodes in one position
“Xjy VX, (u,v)€E,i#j€[k] "no-edges’ are not in the clique

Cliquex(G) UNSAT iff G does not have a k-clique
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Motivation for k-clique: Parameterized Resolution

[Dantchev Martin Szeider 11]: a parameterized Resolution system
where assignments are restricted to have weight at most k.

Let F(x1,...,xn) be an UNSAT CNF and let Encp, (X, y) be a
CNF encoding that assignments on X with weight more than k are
forbidden.

Problem (Proof complexity in ParaRes)

Minimal size of Resolution refutations for F(X) A Encp (X, ).
(counting clauses in Encp, (X, y) only if used)
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First Encoding

Ench (%)= N\ (% V...V%.,)

e F(X)+ Enc%7k(%) have size bounded by n®().

e Does F(X) + Enc,ll’ ((X) require refutations of size nk) 7

o Or F(X) + Enc;. ,(X) can be refuted using size f(k)n®(), for
some f?

[Beyersdorff Galesi Lauria Razborov 12]: PHP, + Encj, ,(X)

requires RES refutations of size n2(K).

n . .
PHP™ . Y_{=1 Pij € m
Pi; vpl’,J I77é S [m]’./ € [n]
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Second Enconding

Uses variable s;;, for i € [k],j € [n] and encode an injective
mapping from [k] to [n]

. Xi V \/ Pij i€ [n]
Enc} (X,3) == { J e -
(X, 8) pi VP i i €[nl],j€[K]

[Dantchev Martin Szeider 11]: PHP, + Encik(i') has proof of size
O(kn?)2k.

Prove n{k) Jower bounds in Res+Enc? , (X)

Enc?(X, p) is built-in for Cliquel(G). Prove there are no RES
proofs of size "9V f(k) when G does not contain a k-clique
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k-Clique

Given a graph G = (V, E) and a parameter k, Clique](G) is:

Vyev Xiy i € [K]
“XiuV Xy i,j€k],i#jand {u,v} &E
“XiuV Xy utvev.

Xj.v means vertex v is the ith member of the clique.

Property

Clique(G) is satisfiable if and only if the graph G has a clique of
size k.

Problem (Open)

Enc?(%, p) is built-in for Cliquel(G, k). Prove there are no RES
proofs of size n° 1 f(k) when G does not contain a k-clique
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k-Clique Principle: Simplified version

@ G formed from k blocks V), of n nodes each:

G:(U Vb7E)

be[k]
o Variables v; , with i € [k], a € [n], with clauses

Cliquep(G) = { \ﬁ/ve[]vvﬁ:] ’ E(é [313] U E

(1,1) (3,1)

N o

Cliquep(G) UNSAT iff G does not have a k-clique
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The case of the complete (k — 1)-partite graph

The canonical graph without a k-clique is C, the complete
(k — 1)-partite graph.

Theorem (Beyersdorff Galesi Lauria 12)

Cliquel(C,) requires treelike RES*of size n®k) but have
O(2%k?n?) RES refutations.

Upper Bound Proof Idea. In O(k?n?) proof steps reduce to
PHP,’:_1 using the fact that proofs are trying to exclude the
presence of a k-clique into the complete (k — 1)-partite graph. Use
the mapping
Pih < \/ Xi,v-
vev,

Then use that PHP{_, has Resolution refutations of size O(2¥)
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Prover Delayer Games

Problem (

Given UNSAT CNF F(x,...xn) and a assignment & — X, find the
clause C € F such that C false under c.

[Pudldk Impagliazzo 00, Beyersdorff Galesi Lauria 12]: Two
persons (Prover, Delayer) game solving Search(F, «).

Game: In each round, Prover places a variable x;, and Delayer
either chooses a value 0 or 1 for x; or leaves decision to the Prover.
In this last case the Delayer gets 1 points. The assignment is
recorded in .

Stop: first round « falsifies a clause in F

Cost: number of points earned by Delayer
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The Asymmetric Case

Game: In each round, the number of points Delayer earns depends
on the variable x;, the assignment « constructed so far in the
game, and two functions ¢y and ¢;.

0 if Delayer chooses the value,
log co(xi, )  if Prover sets x; to 0, and
log c1(xi, ) if Prover sets x; to 1.

¢p and ¢ are non negative and are chosen in such a way that for
each variable x and assignment «

1 1

a(x,a)  alx,a) =1 (1)
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Delayer Strategies give Lower Bounds

Theorem (Pudldk Impagliazzo 00, Beyersdorff Galesi Lauria 12)

If (Fn)nen have treelike Resolution refutations of size S, then for
each (¢, c1)-game played on (F,) there is a Prover strategy
leaving at most log S points to the Delayer.

Theorem (Beyersdorff Galesi Lauria 12)

There are ¢y and ¢; s.t. in any APD-game on Clique(C,, k),
Delayer earns (k — 1) log n points.
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The set of vertices of the graph C, is partitioned into the sets
Vi, ..., Vk_q of size n each.

Delayer strategy objective: at the end of the game the partial
assignment always has k — 1 indexes assigned to specific vertices in
different blocks.

Score function: on each block Delayer scores exactly log n points.

Conclusion:Delayer always wins > (k — 1) log n points
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Delayer info: keeps k — 1 sets Z; C V;,j € [k — 1] which represent
the excluded vertices in each block.

Delayer Strategy: Let a current ass and x; , for v € V; the
variable queried.

Then Delayer sets x;, to:
Q 0if a(x) = 1 for some w # v;
Q 0if a(xy) =1 for some | € [k] \ {i} and some w € V;;

Q@ 0ifvelZ;
Q lifv¢g Zyand Z; = Vj\ {v};
© and leave decision to Prover otherwise.
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Delayer Update of Z;'s :
o If Delayer sets x;,, then Z; remains unaltered.
e if Prover decides 0 then Z; := Z; U {v}.
o If Prover decides 1, then Z; := V; \ {v}.

Score Function: Measure the information of the degree of
freedom of Delayer to answer 0 to the variable queried in the block
J.
° a = V|-l
_ _vi-1Zl
° Q= Wiz
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(k — 1) indices at the end: by contradiction assume no index in V;. Consider
the last moment in the game in which x;, = 0 has been assigned for some

v € Vj. All variables xj, for u € V;\ {v} have been queried before and set to 0.
According to the Delayer strategy, either xj, = 0 was set by Delayer by rule 3,
or x;,u = 0 was decided by Prover. In both cases u € Z; and therefore

Zj = V; \ {v}. But then Delayer would assign x;, to 1 according to item 4 of
her strategy, a contradiction.

Number of points in each block: Fix a block i. Exactly one variable x;, is set
to one. Let us say that |Zj| = z right before that decision. Until that moment
|Z;| increases one by one every time Delayer scores some point on Prover
deciding for some xj, to be zero. Delayer scores

Vi
Zlogwl| = = log |Vi| — log(| Vi| — 2).

Delayer chooses to set x;, = 1 if and only if z = |V;| — 1, otherwise the Prover
chooses which gives log(|V;| — z) points to Delayer. In both cases Delayer
scores log | V;| points on block i. Thus in the end, Delayer gets exactly

(k — 1) log n points.
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Finding graphs hard to certify to be c-Ramsey in RES

Distribution of graphs Gy .:

Consider V = kn vertices divided into k blocks of n vertices:
Vi,Vo,..., V. 0<e< 1.

@ (u,v) € Ewithue V;, veVand i<, the edge {u, v} is present

with probability p = =

Slight variation of the Erdés-Rényi model G(n, p).

It is known that k-cliques appear at the threshold probability p* = NI,
If p < p*, then with high probability in G ~ Gy . there is no k-clique;

All graphs in G . are properly colorable with k colors.
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Random graphs make hard Clique](G) for RES™

Simplified Clique(G): In a k-colorable graph G with color classes
Vi, ..., Vk a k-clique contains exactly one vertex per color class.
In this case we can simplify formula Clique](G) by setting x;, =0
for every i € [k] and v € Vj such that i # j. Essentially we are
forcing the ith vertex in the clique to be in the ith block.

. n o \/VE iXV i€ [k]
Clawf(c) = { Ve oW

Theorem (Beyersdorff Galesi Lauria 12)

Let 0 < e < 1. For a random graph G ~ Gy ., then w.h.p. the

smallest RES* refutations of Clique](G) has size n*(k(1=€)),
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Complexity of Clique](G) in RES: a challenge

Problem (Difficult Open Problem)

Prove significative lower bounds for refutations of Clique(G) in
RES when G ~ Gy ..

RES ................. » r.o.RES ................. > RES*

Theorem ([Atserias Bonacina de Rezende Lauria Nordstrom

Razborov 21])

If G ~ Gy, then with high probability Clique(G) require r.0.RES

refutations of size n2(k).
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The Binary Clique Principle: Bin-Clique](G)

e (Bit-)Variables: w;j, for i € [k],/ € [logn]
o Notation:

Wl { Wi j ifaj =1

o Wi j ifaj:0

vij = (wlall AL /\wi'ff;n), where (j)o = a

Bin-Cliquef(G) = /\ ((w,{;"l VoV weeEn) v (wi P VLY w},;;":g"))
((i,2),(j,b))E
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The complexity of Bin-Clique;(G) in RES

Binary versions of combinatorial principles:
@ preserve the combinatorial hardness of the unary principle;

@ are less exposed to details of the encoding when attacked with
a lower bound technique;

@ give significative lower bounds.

Theorem ([Lauria Pudldk Rédl Thapen 17])

If G ~ Gy, then with high probability Bin-Cliquey(G) requires
RES refutations of size n®*(k).
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Res(k): Resolution with k-conjunctions

A refutation system for k- DNFs. Disjunctions of k-terms.

Rules
@ A-introduction is
D1VAJ€J D2\//\J€J2
DivD2 v /\jEJ1UJ2 7
provided that |1 U | < s.
Q cutis
'D1V\/J€J DQVAJEJ
D1V D> ’
© weakening are
D and Dv AJEJluJQ j
DV Nje,y i DV Njey i

provided that |J| < s.
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Unifying Unary and Binary case for the clique principle

Lemma ([Dantchev Galesi Martin 18])

Let G ~ G*€ and suppose there are RES refutations of Cliquel(G)
of size S . Then there are RES(log n) refutations of
Bin-Clique}(G) of size S.

Prove n™) Jower bounds in RES(log n) for Bin-Clique](G) to
catch n*k) Jower bounds in RES for Clique}(G)

Theorem ([Dantchev Galesi Ghani Martin To appear])

If G ~ Gy, then Bin-Clique(G) require RES(y/log log n)
refutations of size (k)

.
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Lower Bound Proof for RES(log log n)

Main Tools (for Binary Principles):

@ Covering Number on s-DNFs [1]

o RES(s) proofs with small CN efficiently simulated in
RES(s — 1)
o Bottlenecks

@ (Random) restrictions for binary principles
© Hardness properties of Bin-Clique(G), when G ~ G(n, p) [2]
© Induction on s.

o Base Case: known hardness on RES(1) [3].

[1]=[Segerlind Buss Impagliazzo 04]
[2]=[Beyersdorff Galesi Lauria 13 ]
[3]=[Lauria Pudlak Radl Thapen 17]
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Covering number of a RES(s) proof

A covering set for a s-DNF F is a set of literals L such that each
term of F has at least a literal in L.

The covering number cv(F) of a s-DNF F is the minimal size of a
covering set for D.

CN(m) = max c(F)
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Small covering number vs simulations

Lemma (Simulation Lemma)

If F has a refutation w in RES(s) with CN(7) < d, then F has a
RES(s — 1) refutation of size at most 2912 N.

Put 7 upside-down. Get a restricted branching s-program whose nodes are labelled by
s-CNFs and at each node some s-disjunction Vje[s] lj is queried.

Example
c
? Vje[s] IJ (2)
A"

CA Ve li CANjepg
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Let cv(C) < d, witnessed by variable set {vi,...,vg}.

\
o/\1
o N2
\/d’ \d
0/ 1 oN
A‘ e . K fg
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Bottlenecks in RES(s)

A c-bottleneck in a RES(s) proof is a s-DNF F whose cv(F) > c.
c(s) is the bottleneck number at RES(s).

Fact (Independence)

Ifc=rs, r>1and cv(F) > c, then in F it is always possible to
find r pairwise disjoint s-tuples of literals

To=(0,....65),..., T, = (¢%,...,¢5) such that the \ T;'s are
terms of F.
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A s-restriction assigns Lg’iﬂ bit-variables wj j in each block i € [k].

if o and T are (disjoint) s-restrictions, then o7 is a (s — 1)-restriction

A random s-restriction for Bin-Clique}}(G) is an s-restriction

obtained by choosing independently in each block i, LI;S%J
variables among w; 1, ..., Wi ogn, and setting these uniformly at

random to 0 or 1.
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Hardness Properties

G = (Upepy V- E) and 0 < a < 1. U'is a-transversal if:
Q |U| < ak, and
@ forall be[k], [VonU| < 1.
Let B(U) C [k] be the set of blocks mentioned in U, and
B(U) =[]\ B(V).

U is extendible in a block b € B(U) if there exists a vertex a € V}, which
is a common neighbour of all nodes in U.
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A restriction o is consistent with v = (i, a) if for all j € [log n], o(w;;) is
either a; or not assigned (i.e. assigns the right bit or can do it in the
future)

Definition

Let 0 < a, 8 < 1. A a-transversal U is [-extendible, if for all
[B-restriction o, there is a node v? in each block b € B(U), such that o is
consistent with v®.

Lemma (Extension Lemma, similar to [1])

Let 0 <e<1, let k<logn. Let1>a>0and1l > >0 such that
1—8>a(2+¢€). Let G ~ G(n,p). With high probability both properties
hold:

© all a-transversal sets U are B-extendible;

@ G does not have a k-clique.

[1]=[Beyersodrff Galesi Lauria 13]



Idea of the proof

Property (Clique(G, s, k))

For any s-restriction p, there are no Res(s) refutations of Bin-Cliqueg(G), of
3(k—1)
size less than n 4¢) .

Theorem
If Clique(G, s, k) holds, then there are no RES(s) proofs of Bin-Clique}(G)

. . S(k—1)
with size n 46) |

Corollary

Let 1 < s = o(+/loglog n). There exists a graph G such that RES(s)

refutations of Bin-Clique](G) are n®*).

By Extension Lemma there exists a G ~ Gi . with the extension properties.

Clique(G, 1, k) holds. (use [1])

[1]=[Lauria Pudldk Radl Thapen 17]
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Steps of the proof

Clique(G,s — 1, k) = Clique(G, s, k) as long as s = o(+/log log n).

5(k—1)
We prove that — Clique(G, s, k) = = Clique(G,s — 1, k). Let L(s) =n 9 .

@ Since — Clique(G, s, k), then 3 a s-restriction p and 7 a proof of
Bin-Clique(G),, such that |7| < L(s).

Let ¢ = ¢(s) be the bottleneck number and r = cs

o be a s-random restriction on Bin-Cliqueg(G),.

Pr[bottleneck F survives in 7[,] < e 79 . Use Independence Property.
Pr[CN(x]s) > ¢] < 1. Union bound.

©00 00

Define 7 = op and apply Simulation Lemma to w[,. We get a
(s-1)-restriction 7 and a < L(s)2°" size proof in Res(s — 1) of
Bin-Cliquef (G)[-. If L(s)2°" < L(s — 1), this is = Clique(G,s — 1, k).

knowing p(s), define d(s) and c(s) in such a way to force
L(s)2°"? < L(s — 1) and union bound to work.

(<)
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