# Numerical Non-standard Calculus: Applications and Software Implementation

Lorenzo Fiaschi July 10, 2023

Department of Information Engineering University of Pisa lorenzo.fiaschi@ing.unipi.it

# The vision

# The goal of this research

- Make NSA numerical and use it in Engineering applications
- The steps:
  - 1. Propose a numerical encoding for non-standard numbers
  - 2. Implement a software library to execute non-standard computations
  - 3. Identify and tackle real-world Engineering applications
  - 4. Design a hardware accelerator for non-standard computations (co-processor)
- Five applications:
  - × Linear Programming
  - × Game Theory
  - ✓ Quadratic Programming
  - × Evolutionary Optimization
  - ✓ Reinforcement Learning

# Non-standard model

# Alpha Theory

# **Axiom (Existence)** Every sequence $\varphi(n)$ has a unique $\alpha$ -limit denoted by $\lim_{n\uparrow\alpha}\varphi(n)$ .

#### **Axiom (Alpha Number)** The $\alpha$ -limit of the identity sequence i(n) = n is a number denoted by $\alpha$ , that is $\lim_{n\uparrow\alpha} n = \alpha \notin \mathbb{N}$ .

#### Axiom (Field Axiom) The set of all $\alpha$ -limits of real sequences

$${}^{*}\mathbb{R} = \left\{ \lim_{n\uparrow\alpha} \varphi(n) \Big| \varphi \colon \mathbb{N} \to \mathbb{R} \right\}$$

is a field, called the hyperreal field, where:

- $\lim_{n\uparrow\alpha}\varphi(n) + \lim_{n\uparrow\alpha}\psi(n) = \lim_{n\uparrow\alpha}(\varphi(n) + \psi(n))$
- $\lim_{n\uparrow\alpha}\varphi(n)\cdot\lim_{n\uparrow\alpha}\psi(n)=\lim_{n\uparrow\alpha}(\varphi(n)\cdot\psi(n))$

From theory to computations: the bounded algorithmic numbers and the BANs library

# Definition (monosemium)

 $\xi \in {}^*\mathbb{R}$  is called monosemium if  $\exists r \in \mathbb{R}$  and  $p \in \mathbb{Q}$  such that

$$\xi = r\alpha^p.$$

#### Definition (Algorithmic number)

A number  $\xi \in \mathbb{R}$  is called algorithmic if it can be represented as a finite sum of monosemia, namely

$$\xi = \sum_{k=1}^{\ell} r_k \alpha^{s_k}; \ r_k \in \mathbb{R}, \ s_k \in \mathbb{Q}; \ s_k > s_{k+1}.$$

**Proposition (AN normal form)** Any AN can be represented in the following "normal form":

$$\xi = \alpha^p P\left(\eta^{\frac{1}{m}}\right),$$

where  $p \in \mathbb{Q}$ ,  $m \in \mathbb{N}$ , and P(x) is a polynomial with real coefficients such that  $P(0) \neq 0$ .

#### ANs still require infinite memory

- Not closed w.r.t. division ( $\eta := \alpha^{-1}$ )

$$\frac{1}{\alpha+1} = \eta - \eta^2 + \eta^3 - \ldots = \sum_{i=1}^{\infty} (-1)^{i-1} \eta^i$$

• Requires exact arithmetic for representing rational powers

$$\alpha^{\frac{1}{6}} \cdot \alpha^2 = \alpha^{\frac{2}{6}} = \alpha^{\frac{1}{3}}$$

# Bounded algorithmic numbers

**Definition (Truncation function)** Given a polynomial  $P(x) = p_0 x^{z_0} + \ldots + p_m x^{z_m}$ ,  $z_{i-1} < z_i$ ,  $i = 1, \ldots, m$ , the truncation function  $\mathfrak{tr}$  with truncation parameter n is defined as follows:

$$\mathfrak{tr}_n\left[P\left(x\right)\right] = \begin{cases} P(x) & n \ge m \\ p_0 x^{z_0} + \ldots + p_n x^{z_n} & n < m \end{cases}$$

#### **Definition (Bounded algorithmic number)** A BAN is any AN who admits the following normal form:

$$\xi = \alpha^{p} P(\eta),$$

where  $p \in \mathbb{Z}$  and  $P(0) \neq 0$ .

#### **BANs** library

```
abstract type AbstractAlgNum <: Number end
                                                                    julia
const SIZE = 3:
# Ban declaration
mutable struct Ban <: AbstractAlgNum
   # Members
   p::Int
   coef::Arrav{T.1} where T<:Real
   # Constructor
   Ban(p::Int,coef::Array{T,1}, check::Bool) where T <: Real = new(p,copy(coef))
   Ban(p::Int.coef::Arrav{T.1}) where T <: Real =
                               ( constraints satisfaction(p,coef) && new(p,copy(coef)))
   Ban(a::Ban) = new(a.p.copy(a.coef))
   Ban(x::Bool) = one(Ban)
   Ban(x::T) where T<:Real = ifelse(isinf(x), Ban(0, ones(SIZE).*x), one(Ban)*x)
end
# α constant
const \alpha = Ban(1, [one(Int64); zeros(Int64, SIZE-1)], false);
# n constant
const \eta = Ban(-1, [one(Int64); zeros(Int64, SIZE-1)]. false):
```

# Lexicographic multi-objective optimization

**Definition (lexicographic multi-objective program)** Let  $\mathbb{V}$  and  $\mathbb{F}$  be a vectorial space and a number field, respectively. Let also  $f_1, \ldots, f_n$  be a finite sequence of scalar functions such that  $f_i \colon \mathbb{V} \to \mathbb{F}$ ,  $i = 1, \ldots, n$ . Then, a lexicographic multi-objective optimization problem consists of the following programs in cascade:

 $\begin{array}{ll} \min \quad f_1(x) \\ \text{s.t.} \quad x \in \Omega \\ \end{array} \begin{array}{ll} \min \quad f_i(x) \\ \text{s.t.} \quad x \in \Omega, \\ f_j(x) = \bar{f}_j \quad j = 1, \dots, i-1 \end{array}$ 

where  $\Omega \subseteq \mathbb{V}$  is the problem domain and  $\overline{f}_j$  is the optimal value of the *j*-th program, j = 1, ..., n - 1.

#### A result

#### Theorem

Consider an n-objective LMOP, where  $f_i: \Omega \to \mathbb{R}$ , i = 1, ..., n,  $\Omega \subseteq \mathbb{R}^m$ ,  $m \in \mathbb{N}$ , and the priority is induced by the natural order. Then,  $\exists F: \Omega \to {}^*\mathbb{R}$  such that the following is an equivalent scalar program:

min F(x)

 ${\rm s.t.} \quad x\in \Omega$ 

In particular

$$F(x) = \beta_1 f_1(x) + \ldots + \beta_n f_n(x),$$
  
$$\beta_i \in {}^*\mathbb{R}^+ \quad \forall i = 1, \ldots, n,$$

and

$$\frac{\beta_{i+1}}{\beta_i} \approx 0 \quad \forall i = 1, \dots, n-1.$$

#### Preemptive

$$\begin{array}{ll} \min & f_1(x) & \min & f_i(x) \\ \text{s.t.} & x \in \Omega & & \\ & & f_j(x) = \bar{f}_j \quad j = 1, \dots, i-1 \end{array}$$

- Direct application of the definition
- Inefficient
- Different optimizers could be needed
- Equivalent to the original problem

#### Scalarization

min  $W_1f_1(x) + \ldots + W_nf_n(x)$ s.t.  $x \in \Omega$ 

- $w_i \in \mathbb{R}^+, i = 1, \ldots, n$
- $\frac{w_{i+1}}{w_i} \ll 1, i = 1, ..., n-1$
- Efficient optimization
- Reuse of existing algorithms
- Lack of guarantee to be equivalent to the original problem

Application to lexicographic quadratic programming

#### **Definition (Quadratic program)** A quadratic program is an optimization problem having the following form:

 $\begin{array}{ll} \min & \frac{1}{2} x^T Q x + c^T x & \max_{X, \lambda} & -\frac{1}{2} x^T Q x + b^T \lambda \\ \text{s.t.} & A x = b, & \text{s.t.} & A^T \lambda - Q x + s = c, \\ & x \ge 0 & x, s \ge 0 \end{array}$ 

where  $Q \in \mathbb{R}^{n \times n}$ ,  $Q \succeq 0$ , and  $c \in \mathbb{R}^n$  constitute the objective function,  $A \in \mathbb{R}^{m \times n}$  is the constraint matrix, n > m,  $b \in \mathbb{R}^m$  is the constant term vector, and  $x \in \mathbb{R}^n$  is the unknown.

In the NS case:  $Q \in {}^*\mathbb{R}^{n \times n}$ , and  $c \in {}^*\mathbb{R}^n$ 

### Solving algorithm: Interior Point Method

First order conditions

$$\begin{bmatrix} -Q & A^T & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} x \\ \lambda \\ s \end{bmatrix} = \begin{bmatrix} c \\ b \\ 0 \end{bmatrix}$$

Iterative scheme

$$\begin{bmatrix} -Q & A^{T} & I \\ A & 0 & 0 \\ S & 0 & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_{c} \\ -r_{b} \\ \sigma\mu\mathbf{1} - XS\mathbf{1} \end{bmatrix}$$

In the NS case: (full) NS Interior Point Method

#### NS-IPM at work



#### NS-IPM at work

| iter | $oldsymbol{\mu} \in \mathbb{R}$ | $\mathbf{x} \in \mathbb{R}^3$ | $f(x) \in {}^*\mathbb{R}$        |
|------|---------------------------------|-------------------------------|----------------------------------|
| 0    | 0.53                            | 1.46 1.46 1.46                | $-4.38 - 3.64\eta - 6.08\eta^2$  |
| 1    | 0.21                            | 1.32 1.32 0.74                | $-3.37 - 10.27\eta - 5.08\eta^2$ |
| 2    | 0.02                            | 1.30 1.30 0.40                | $-3.01 - 11.83\eta - 4.44\eta^2$ |
| 3    | 1.60 <i>e</i> -4                | 1.30 1.30 0.40                | $-3.00 - 11.84\eta - 4.44\eta^2$ |
| 4    | 1.60 <i>e</i> -6                | 1.30 1.30 0.40                | $-3.00 - 11.84\eta - 4.44\eta^2$ |
| 5    | 1.61e-8                         | 1.30 1.30 0.40                | $-3.00 - 11.84\eta - 4.44\eta^2$ |
| 6    | $0.06\eta$                      | 1.38 1.38 0.25                | $-3.00 - 12.13\eta - 3.92\eta^2$ |
| 7    | 2.21e-3η                        | 1.41 1.41 0.17                | $-3.00 - 12.17\eta - 3.66\eta^2$ |
| 8    | 2.46 <i>e</i> -5η               | 1.42 1.42 0.17                | $-3.00 - 12.17\eta - 3.64\eta^2$ |
| 9    | 2.48 <i>e</i> -7η               | 1.42 1.42 0.17                | $-3.00 - 12.17\eta - 3.64\eta^2$ |
| 10   | 1.62 <i>e</i> -9η               | 1.42 1.42 0.17                | $-3.00 - 12.17\eta - 3.64\eta^2$ |
| 11   | $0.14\eta^2$                    | 1.54 1.29 0.17                | $-3.00 - 12.17\eta - 3.82\eta^2$ |
| 12   | 0.01 $\eta^{2}$                 | 1.65 1.19 0.17                | $-3.00 - 12.17\eta - 3.89\eta^2$ |
| 13   | $1.63e-4\eta^2$                 | 1.67 1.17 0.17                | $-3.00 - 12.17\eta - 3.89\eta^2$ |
| 14   | 1.78 $e$ -6 $\eta^2$            | 1.67 1.17 0.17                | $-3.00 - 12.17\eta - 3.89\eta^2$ |
| 15   | $1.59e-8\eta^2$                 | 1.67 1.17 0.17                | $-3.00 - 12.17\eta - 3.89\eta^2$ |

Table 1: NS-IPM iterations to solve a 3-objective program.

# Application to reinforcement learning

# Reviewing reinforcement learning



**Figure 1:** Schema of an RL problem: the agent takes action in the environment considering the current state; the environment reacts by changing its state and giving a reward as feedback.

# Multi-objective reinforcement learning



**Figure 2:** Schema of a Multi-Objective RL problem: after each action is taken, the environment returns an *n*-tuple of rewards.

- Very few approaches
- Single-policy vs Multiple-policy

- Tabular approaches
- Only scalarization allows for deep

# The Lunar Lander environment



#### 8-dimensional state space

- horiz/vert coordinates
- horiz/vert acceleration
- rotation angle
- angular velocity
- $\cdot$  legs touching the ground

#### 4-dimensional action space

- $\cdot\,$  right engine
- left engine
- main engine
- $\cdot$  do nothing

# The Lunar Lander environment

# 5-dimensional reward

- 1. Distance from the pad
- 2. Module of the velocity
- 3. Body rotation angle
- 4. Contact with the ground
- 5. Fuel consumption

# Standard approach

- Weighted scalarization
- Optimality 200 points avg reward in last 100 episodes
- Trial&Error weights tuning

# Latent priority structure

- 1. Controlled flight: 1-3
- 2. Correct landing: 4
- 3. Efficient trajectory: 5

$$r = fly + lan \cdot \eta + eff \cdot \eta^2$$

- Complex policy gradient
- Rarely agent learns how to land
- Never reported the number of correct landings 15

# Non-standard DQN

#### Implementation of the first NS DNN

- Integration of the BANs library with the Julia library Flux
- Custom rules for NS gradient calculation (ChainRules)
- Three types of NS-DQNs (fully connected)
  - Naive
  - Gradient-Clipping
  - Hybrid



Figure 3: DQN for lunar lander

#### Results for lunar lander



**Figure 4:** Average reward over 100 episodes obtained by a GC-NS-DQL agent during successful training on the Lunar Lander environment.

| Agent       | Param       | Avg Training Episodes | Landings (%) | StdDev | Pad Landings (%) | StdDev |
|-------------|-------------|-----------------------|--------------|--------|------------------|--------|
| Standard    | §P1         | 532.3                 | 75.0         | 26.057 | 68.8             | 26.894 |
| Standard    | <i>\$</i> 2 | 788.5                 | 66.9         | 19.121 | 56.8             | 24.195 |
| GC-NS-DQL   | <i>℘</i> 1  | 598.8                 | 79.7         | 13.787 | 73.8             | 12.689 |
| GC-NS-DQL   | \$P2        | 659.3                 | 87.5         | 5.146  | 83.7             | 6.532  |
| GC-H-NS-DQL | <i>℘</i> 1  | 616.7                 | 84.0         | 17.365 | 78.0             | 18.342 |
| GC-H-NS-DQL | \$P2        | 664.2                 | 77.8         | 12.304 | 70.8             | 14.622 |

**Table 2:** Agents performance comparison on Lunar Landerenvironment (in green the best performing agent, in red the worseone).

| Algorithm   | Param.                   | Avg. time per step (ms) | Exp. overall time (h) |
|-------------|--------------------------|-------------------------|-----------------------|
| Standard    | <i>I</i>                 | 3.73                    | 0.55                  |
| GC-NS-DQL   | <i>\$</i> <sup>2</sup>   | 19.58                   | 3.59                  |
| GC-H-NS-DQL | <i>\$</i> <sup>2</sup> 1 | 14.47                   | 2.48                  |

**Table 3:** Average time, expressed in milliseconds, required for eachtraining step of the agents.

A short resume

- Introduced NSA reference framework
- Proposed the BAN encoding for NS numbers
- Implemented the BAN Julia library
- Discussed two engineering applications
- Numerical validation of the study