Numerical Non-standard Calculus: Applications and Software Implementation

Lorenzo Fiaschi
July 10, 2023
Department of Information Engineering
University of Pisa
lorenzo.fiaschi@ing.unipi.it

The vision

The goal of this research

- Make NSA numerical and use it in Engineering applications
- The steps:

1. Propose a numerical encoding for non-standard numbers
2. Implement a software library to execute non-standard computations
3. Identify and tackle real-world Engineering applications
4. Design a hardware accelerator for non-standard computations (co-processor)

- Five applications:
\times Linear Programming
\times Game Theory
\checkmark Quadratic Programming
\times Evolutionary Optimization
\checkmark Reinforcement Learning

Non-standard model

Alpha Theory

Axiom (Existence)
Every sequence $\varphi(n)$ has a unique α-limit denoted by $\lim _{n \uparrow \alpha} \varphi(n)$.

Axiom (Alpha Number)
The α-limit of the identity sequence $i(n)=n$ is a number
denoted by α, that is $\lim _{n \uparrow \alpha} n=\alpha \notin \mathbb{N}$.
Axiom (Field Axiom)
The set of all α-limits of real sequences

$$
* \mathbb{R}=\left\{\lim _{n \uparrow \alpha} \varphi(n) \mid \varphi: \mathbb{N} \rightarrow \mathbb{R}\right\}
$$

is a field, called the hyperreal field, where:

- $\lim _{n \uparrow \alpha} \varphi(n)+\lim _{n \uparrow \alpha} \psi(n)=\lim _{n \uparrow \alpha}(\varphi(n)+\psi(n))$
- $\lim _{n \uparrow \alpha} \varphi(n) \cdot \lim _{n \uparrow \alpha} \psi(n)=\lim _{n \uparrow \alpha}(\varphi(n) \cdot \psi(n))$

From theory to computations: the bounded algorithmic numbers and the BANs library

Algorithmic numbers

Definition (monosemium)
$\xi \in{ }^{*} \mathbb{R}$ is called monosemium if $\exists r \in \mathbb{R}$ and $p \in \mathbb{Q}$ such that

$$
\xi=r \alpha^{p} .
$$

Definition (Algorithmic number) A number $\xi \in{ }^{*} \mathbb{R}$ is called algorithmic if it can be represented as a finite sum of monosemia, namely

$$
\xi=\sum_{k=1}^{\ell} r_{k} \alpha^{s_{k}} ; \quad r_{k} \in \mathbb{R}, s_{k} \in \mathbb{Q} ; s_{k}>s_{k+1}
$$

Proposition (AN normal form)
Any AN can be represented in the following "normal form":

$$
\xi=\alpha^{p} P\left(\eta^{\frac{1}{m}}\right)
$$

where $p \in \mathbb{Q}, m \in \mathbb{N}$, and $P(x)$ is a polynomial with real coefficients such that $P(0) \neq 0$.

Algorithmic numbers

ANs still require infinite memory

- Not closed w.r.t. division $\left(\eta:=\alpha^{-1}\right)$

$$
\frac{1}{\alpha+1}=\eta-\eta^{2}+\eta^{3}-\ldots=\sum_{i=1}^{\infty}(-1)^{i-1} \eta^{i}
$$

- Requires exact arithmetic for representing rational powers

$$
\alpha^{\frac{1}{6}} \cdot \alpha^{2}=\alpha^{\frac{2}{6}}=\alpha^{\frac{1}{3}}
$$

Bounded algorithmic numbers

Definition (Truncation function)
Given a polynomial $P(x)=p_{0} x^{z_{0}}+\ldots+p_{m} x^{z m}, z_{i-1}<z_{i}$, $i=1, \ldots, m$, the truncation function $\mathfrak{t r}$ with truncation parameter n is defined as follows:

$$
\mathfrak{t r}_{n}[P(x)]= \begin{cases}P(x) & n \geq m \\ p_{0} x^{Z_{0}}+\ldots+p_{n} x^{Z_{n}} & n<m\end{cases}
$$

Definition (Bounded algorithmic number) A BAN is any AN who admits the following normal form:

$$
\xi=\alpha^{p} P(\eta)
$$

where $p \in \mathbb{Z}$ and $P(0) \neq 0$.

BANs library

```
abstract type AbstractAlgNum <: Number end
const SIZE = 3;
# Ban declaration
mutable struct Ban <: AbstractAlgNum
    # Members
    p::Int
    coef::Array{T,1} where T<:Real
    # Constructor
    Ban(p::Int,coef::Array{T,1}, check::Bool) where T <: Real = new(p,copy(coef))
    Ban(p::Int,coef::Array{T,1}) where T <: Real =
        (_constraints_satisfaction(p,coef) && new(p,copy(coef)))
    Ban(a::Ban) = new(a.p,copy(a.coef))
    Ban(x::Bool) = one(Ban)
    Ban(x::T) where T<:Real = ifelse(isinf(x), Ban(0, ones(SIZE).*x), one(Ban)*x)
end
# a constant
const \alpha = Ban(1, [one(Int64); zeros(Int64, SIZE-1)], false);
# \eta constant
const \eta = Ban(-1, [one(Int64); zeros(Int64, SIZE-1)], false);
```


Lexicographic multi-objective optimization

Domain of application

Definition (lexicographic multi-objective program) Let \mathbb{V} and \mathbb{F} be a vectorial space and a number field, respectively. Let also f_{1}, \ldots, f_{n} be a finite sequence of scalar functions such that $f_{i}: \mathbb{V} \rightarrow \mathbb{F}, i=1, \ldots, n$. Then, a lexicographic multi-objective optimization problem consists of the following programs in cascade:

$$
\begin{array}{lll}
\min & f_{1}(x) & \min \\
f_{i}(x) \\
\text { s.t. } & x \in \Omega & \text { s.t. } \\
& & x \in \Omega \\
& & f_{j}(x)=\bar{f}_{j} ; j=1, \ldots, i-1
\end{array}
$$

where $\Omega \subseteq \mathbb{V}$ is the problem domain and \bar{f}_{j} is the optimal value of the j-th program, $j=1, \ldots, n-1$.

A result

Theorem

Consider an n-objective LMOP, where $f_{i}: \Omega \rightarrow \mathbb{R}, i=1, \ldots, n$, $\Omega \subseteq \mathbb{R}^{m}, m \in \mathbb{N}$, and the priority is induced by the natural order. Then, $\exists F: \Omega \rightarrow{ }^{*} \mathbb{R}$ such that the following is an equivalent scalar program:

$$
\begin{array}{ll}
\min & F(x) \\
\text { s.t. } & x \in \Omega
\end{array}
$$

In particular

$$
\begin{aligned}
F(x) & =\beta_{1} f_{1}(x)+\ldots+\beta_{n} f_{n}(x) \\
\beta_{i} & \in{ }^{*} \mathbb{R}^{+} \quad \forall i=1, \ldots, n
\end{aligned}
$$

and

$$
\frac{\beta_{i+1}}{\beta_{i}} \approx 0 \quad \forall i=1, \ldots, n-1
$$

Standard approaches to LMOP

Preemptive

$$
\min f_{1}(x)
$$

$$
\min f_{i}(x)
$$

$$
\text { s.t. } \quad x \in \Omega \text {, }
$$

$$
f_{j}(x)=\bar{f}_{j} \quad j=1, \ldots, i-1
$$

- Direct application of the definition
- Inefficient
- Different optimizers could be needed
- Equivalent to the original problem

Standard approaches to LMOP

Scalarization

$$
\begin{array}{ll}
\min & w_{1} f_{1}(x)+\ldots+w_{n} f_{n}(x) \\
\text { s.t. } & x \in \Omega
\end{array}
$$

- $w_{i} \in \mathbb{R}^{+}, i=1, \ldots, n$
- $\frac{w_{i+1}}{w_{i}} \ll 1, i=1, \ldots, n-1$
- Efficient optimization
- Reuse of existing algorithms
- Lack of guarantee to be equivalent to the original problem

Application to lexicographic quadratic programming

Reviewing quadratic programming

Definition (Quadratic program)
A quadratic program is an optimization problem having the following form:

$$
\begin{aligned}
& \min \frac{1}{2} x^{\top} Q x+c^{\top} x \quad \max _{x, \lambda}-\frac{1}{2} x^{\top} Q x+b^{\top} \lambda \\
& \text { s.t. } A x=b \text {, } \\
& x \geq 0 \\
& \text { s.t. } A^{\top} \lambda-Q x+s=c \text {, } \\
& x, s \geq 0
\end{aligned}
$$

where $Q \in \mathbb{R}^{n \times n}, Q \succeq 0$, and $c \in \mathbb{R}^{n}$ constitute the objective function, $A \in \mathbb{R}^{m \times n}$ is the constraint matrix, $n>m, b \in \mathbb{R}^{m}$ is the constant term vector, and $x \in \mathbb{R}^{n}$ is the unknown.

In the NS case: $Q \in{ }^{*} \mathbb{R}^{n \times n}$, and $c \in{ }^{*} \mathbb{R}^{n}$

Reviewing quadratic programming

Solving algorithm: Interior Point Method
First order conditions

$$
\left[\begin{array}{ccc}
-Q & A^{\top} & 1 \\
A & 0 & 0 \\
S & 0 & X
\end{array}\right]\left[\begin{array}{l}
X \\
\lambda \\
S
\end{array}\right]=\left[\begin{array}{l}
c \\
b \\
0
\end{array}\right]
$$

Iterative scheme

$$
\left[\begin{array}{ccc}
-Q & A^{T} & 1 \\
A & 0 & 0 \\
S & 0 & x
\end{array}\right]\left[\begin{array}{c}
\Delta x \\
\Delta \lambda \\
\Delta S
\end{array}\right]=\left[\begin{array}{c}
-r_{c} \\
-r_{b} \\
\sigma \mu 1-X S 1
\end{array}\right]
$$

In the NS case: (full) NS Interior Point Method

NS-IPM at work

NS-IPM at work

Table 1: NS-IPM iterations to solve a 3-objective program.

Application to reinforcement learning

Reviewing reinforcement learning

Figure 1: Schema of an RL problem: the agent takes action in the environment considering the current state; the environment reacts by changing its state and giving a reward as feedback.

Multi-objective reinforcement learning

Agent

Figure 2: Schema of a Multi-Objective RL problem: after each action is taken, the environment returns an n-tuple of rewards.

- Very few approaches
- Single-policy vs Multiple-policy
- Tabular approaches
- Only scalarization allows for deep

The Lunar Lander environment

8-dimensional state space

- horiz/vert coordinates
- horiz/vert acceleration
- rotation angle
- angular velocity
- legs touching the ground

4-dimensional action space

- right engine
- left engine
- main engine
- do nothing

The Lunar Lander environment

5-dimensional reward

1. Distance from the pad
2. Module of the velocity
3. Body rotation angle
4. Contact with the ground
5. Fuel consumption

Standard approach

- Weighted scalarization
- Optimality 200 points avg reward in last 100 episodes
- Trial\&Error weights tuning

Latent priority structure

1. Controlled flight: 1-3
2. Correct landing: 4
3. Efficient trajectory: 5

$$
r=f l y+l a n \cdot \eta+e f f \cdot \eta^{2}
$$

- Complex policy gradient
- Rarely agent learns how to land
- Never reported the number of correct landings

Non-standard DQN

Implementation of the first NS DNN

- Integration of the BANs library with the Julia library Flux
- Custom rules for NS gradient calculation (ChainRules)
- Three types of NS-DQNs (fully connected)
- Naive
- Gradient-Clipping
- Hybrid

Figure 3: DQN for lunar lander

Results for lunar lander

Figure 4: Average reward over 100 episodes obtained by a GC-NS-DQL agent during successful training on the Lunar Lander environment.

Results for lunar lander

Agent	Param	Avg Training Episodes	Landings (\%)	StdDev	Pad Landings (\%)	StdDev
Standard	\wp_{1}	532.3	75.0	26.057	68.8	26.894
Standard	\wp_{2}	788.5	66.9	19.121	56.8	24.195
GC-NS-DQL	\wp_{1}	598.8	79.7	13.787	73.8	12.689
GC-NS-DQL	\wp_{2}	659.3	87.5	5.146	83.7	6.532
GC-H-NS-DQL	\wp_{1}	616.7	84.0	17.365	78.0	18.342
GC-H-NS-DQL	\wp_{2}	664.2	77.8	12.304	70.8	14.622

Table 2: Agents performance comparison on Lunar Lander environment (in green the best performing agent, in red the worse one).

Algorithm	Param.	Avg. time per step (ms)	Exp. overall time (h)
Standard	\wp_{1}	3.73	0.55
GC-NS-DQL	\wp_{2}	19.58	3.59
GC-H-NS-DQL	\wp_{1}	14.47	2.48

Table 3: Average time, expressed in milliseconds, required for each training step of the agents.

A short resume

A short resume

- Introduced NSA reference framework
- Proposed the BAN encoding for NS numbers
- Implemented the BAN Julia library
- Discussed two engineering applications
- Numerical validation of the study

