Numerical Non-standard Calculus: Applications
and Software Implementation

Lorenzo Fiaschi
July 10, 2023
Department of Information Engineering

University of Pisa
lorenzo.fiaschi@ing.unipi.it

The vision

The goal of this research

- Make NSA numerical and use it in Engineering applications

- The steps:

1. Propose a numerical encoding for non-standard numbers

2. Implement a software library to execute non-standard
computations
Identify and tackle real-world Engineering applications
Design a hardware accelerator for non-standard
computations (co-processor)
- Five applications:

x Linear Programming

x Game Theory

v Quadratic Programming

x Evolutionary Optimization

V" Reinforcement Learning

F w

Non-standard model

Alpha Theory

Axiom (Existence) . o
Every sequence ¢(n) has a unique a-limit denoted by

Axiom (Alpha Number) . .
The a-limit of the identity sequence i(n) = n is a number

denoted by o, that is limppa N = o € N.

Axiom (Field Axiom)
The set of all a-limits of real sequences

R = {Iim Lp(n)‘go: N — R}
ntoa
Is a field, called the hyperreal field, where:

* limnta o(n) + limpga (n) = limnga((n) + ¥(n))
* limp1a o(n) - limpra () = limaga(o(n) - 4(n))

From theory to computations: the
bounded algorithmic numbers and
the BANSs library

Algorithmic numbers

Definition (monosemium)
¢ € "R is called monosemium if dr € R and p € Q such that

£=raP.
Definition (Algorithmic number)
A number &£ € *R is called algorithmic if it can be represented

as a finite sum of monosemia, namely
¢

£ = Zl’kash; ry € R, sp € Q; Sk > Spyq.
k=1

Proposition (AN normal form) .
Any AN can be represented in the following “normal form”:

£=aPP(n7),

where p € Q, m € N, and P(x) is a polynomial with real
coefficients such that P(0) # 0. 3

Algorithmic numbers

ANs still require infinite memory

- Not closed w.rt. division (n :=a~")

1 2, 3 . i1
— —p— — =N
por Rl Al AR ,E:W()

- Requires exact arithmetic for representing rational powers

-azza

o=

ol
Q

W=

(0%

Bounded algorithmic numbers

Definition (Truncation function)
Given a polynomial P(x) = pox® + ...+ pmX*", Zi_1 < Z;,

I=1,..., m,the truncation funct/on tv with truncation
parameter n is defined as follows:

e PO = 4 n=m

PoX® 4 ...+ ppx" n<m

Definition (Bounded algorithmic number)
A BAN is any AN who admits the following normal form:

£ = aPP(n),

where p € Z and P(0) # 0.

BANs library

abstract type AbstractAlgNum <: Number end .

const SIZE = 3; I
Ban declaration
mutable struct Ban <: AbstractAlgNum

Members

p::int
coef::Array{T,1} where T<:Real

Constructor
Ban(p::Int,coef::Array{T,1}, check::Bool) where T <: Real = new(p,copy(coef))
Ban(p::Int,coef::Array{T,1}) where T <: Real =
(_constraints_satisfaction (p,coef) &% new(p,copy(coef)))
Ban(a::Ban) = new(a.p,copy(a.coef))
Ban(x::Bool) = one(Ban)
Ban(x::T) where T<:Real = ifelse(isinf(x), Ban(0, ones(SIZE).xx), one(Ban)%x)
end

a constant
const a = Ban(1, [one(Int64); zeros(Int64, SIZE-1)], false);
n constant
const n = Ban(-1, [one(Int64); zeros(Int64, SIZE-1)], false);

Lexicographic multi-objective
optimization

Domain of application

Definition (lexicographic multi-objective program)
Let V and F be a vectorial space and a number field,

respectively. Let also fi, ..., fn be a finite sequence of scalar
functions such that f;: V—TF,i=1,...,n. Then, a
lexicographic multi-objective optimization problem consists of
the following programs in cascade:

min fi(X
min fi(x) fitx)
s.t. x e,
st. xeQ o _
fikd=f j=1...,i=1

where Q C V is the problem domain andﬁ Is the optimal value
of the j-th program, j =1, ..., n —1.

Theorem o .
Consider an n-objective LMOP, where fi: Q — R, i=1,...,n,

Q CR™ m e N, and the priority is induced by the natural
order. Then, 3F: Q — *R such that the following is an
equivalent scalar program:

min F(x)
st. xeQ
In particular
F(X) = Bifi(X) + ... + Bafn(X),
Bie*RT Vi=1,...,n,
and

Bt

~0 Vi=1,...,n—1
Bi

Standard approaches to LMOP

Preemptive
min fij(x
min f1(X) it
s.t. x€Q,
st. xef - .
]j—(x):]j— j=1,...,i=1

- Direct application of the definition
- Inefficient
- Different optimizers could be needed

- Equivalent to the original problem

Standard approaches to LMOP

Scalarization

min Wifi(X) + ... + wnfn(X)

st. xef
W, eRT,i=1...,n
w; .
c V’Vﬁ <1li=1...,n-=1

- Efficient optimization
- Reuse of existing algorithms

- Lack of guarantee to be equivalent to the original problem

10

Application to lexicographic
quadratic programming

Reviewing quadratic programming

Definition (Quadratic program) .
A quadratic program is an optimization problem having the

following form:

1
min 1XTQX 1 cx max — —x'Qx+b'A
2 X, A 2
s.t. Ax=b, st. AIA—Qx+s=c,
x>0 X,s >0

where Q € R"", Q = 0, and c € R" constitute the objective
function, A € RM*" js the constraint matrix, n > m, b € R is
the constant term vector, and x € R" s the unknown.

In the NS case: Q € *R"*" and c € *R"

n

Reviewing quadratic programming

Solving algorithm: Interior Point Method

First order conditions

-Q AT 1] [x c
A 0 0| |[A] =]|b
S 0 X| |s 0
Iterative scheme
-Q AT | [Ax — 7
A 0 0| |AX| = =
s 0 X||aAs ol — XS1

In the NS case: (full) NS Interior Point Method

12

NS-IPM at work

X2

A

C1

2

Y
>
=

NS-IPM at wor

iter | peR x € R? f(x) € 'R
0 0.53 [1.46 1.46 1.46} —4.38 — 3.641) — 6.087
1 0.21 [1.32 1.32 0.74] —3.37 — 10.27n) — 5.081”
2 0.02 130 130 0.40 —3.01— 11.83n — bbb
3 | 1.60e-4 130 130 0.40 —3.00 — 11.84n) — 4.4t
4 | 1.60e-6 | [130 130 0.40| | —3.00 — 11.84n — &.4b?
5 | 161e-8 | [1.30 1.30 o.4oJ —3.00 — 11.841) — &.4br)?
6 0.06n 1.38 1.38 o.zs} —3.00 — 12.13n — 3.927)
7 | 22183 | 141 141 047 —3.00 — 12.175 — 3.661
8 | 2.46e-57 | |1.42 1.42 017 —3.00 — 12.175) — 3.647
9 | 2.48e-7p | |1.42 1.42 047 —3.00 — 12.175 — 3.647?
10 | 1.62e-9n | [1.42 1.42 0.17| | —3.00 — 12.171 — 3.647?
11 | 0.141n2 1.54 1.29 0.17| | —3.00 — 12.17n — 3.82n>
12 | 0.01° 1.65 1.19 0.17 —3.00 — 12.17n — 3.897°
13 | 1.63e-47? | [1.67 117 0.17 —3.00 — 12.17n — 3.897%
14 | 1.78e-6n% | [1.67 1.17 0.7 —3.00 — 12177 — 3.897°
15 | 1.59e-87% | [1.67 1.17 0.17 —3.00 — 12.17n — 3.897?

Table 1: NS-IPM iterations to solve a 3-objective program.

Application to reinforcement
learning

Reviewing reinforcement learning

Agent ||

state reward action
St Rt At

) Ri+1 (
s, | Environment }7

Figure 1: Schema of an RL problem: the agent takes action in the
environment considering the current state; the environment reacts
by changing its state and giving a reward as feedback.

Y

15

Multi-objective reinforcement learning

state Ry Ry o0 o Ry, acxon
t

Environment

Figure 2: Schema of a Multi-Objective RL problem: after each action
is taken, the environment returns an n-tuple of rewards.

- Very few approaches - Tabular approaches

- Single-policy vs - Only scalarization allows
Multiple-policy for deep

The Lunar Lander environment

8-dimensional state space 4-dimensional action space
- horiz/vert coordinates - right engine
- horiz/vert acceleration - left engine
- rotation angle - main engine
- angular velocity - do nothing

- legs touching the ground

The Lunar Lander environment

5-dimensional reward

1.

Distance from the pad

2. Module of the velocity
3. Body rotation angle

4,
5

. Fuel consumption

Contact with the ground

Standard approach

- Weighted scalarization

- Optimality 200 points avg

reward in last 100 episodes

- Trial&Error weights tuning

Latent priority structure
1. Controlled flight: 1-3
2. Correct landing: 4
3. Efficient trajectory: 5

r=fly+lan-n+ eff - n?

- Complex policy gradient

- Rarely agent learns how to
land

- Never reported the
number of correct landings "

Non-standard DQN

Implementation of the first NS DNN
- Integration of the BANSs library with the Julia library Flux

- Custom rules for NS gradient calculation (ChainRules)
- Three types of NS-DQNs (fully connected)

- Naive

- Gradient-Clipping

- Hybrid

Figure 3: DQN for lunar lander e

Results for lunar lander

50

25

" o
s

-25

-50

-75

-100

o 100 200 300 400 500
«©

Figure 4: Average reward over 100 episodes obtained by a GC-NS-DQL
agent during successful training on the Lunar Lander environment.,

Results for lunar lander

‘ Agent ‘ Param ‘ Avg Training Episodes ‘ Landings (%) ‘ StdDev ‘ Pad Landings (%) ‘ StdDev ‘
Standard 1 5323 75.0 | 26.057 68.8 | 26.894
GC-NS-DQL ©1 598.8 79.7 | 13.787 73.8 | 12.689
GC-NS-DQL 2 659.3 87.5 5.146 83.7 6.532
GC-H-NS-DQL 0 616.7 84.0 | 17.365 78.0 | 18.342
GC-H-NS-DQL ©2 664.2 77.8 | 12.304 70.8 | 14.622

Table 2: Agents performance comparison on Lunar Lander
environment (in green the best performing agent, in red the worse

one).
Algorithm | Param. | Avg. time per step (ms) | Exp. overall time (h)
Standard 01 3.73 0.55
GC-NS-DQL 2 19.58 3.59
GC-H-NS-DQL 1 14.47 2.48

Table 3: Average time, expressed in milliseconds, required for each

training step of the agents. .

A short resume

A short resume

- Introduced NSA reference framework

- Proposed the BAN encoding for NS numbers
- Implemented the BAN Julia library

- Discussed two engineering applications

- Numerical validation of the study

22

	The vision
	Non-standard model
	From theory to computations: the bounded algorithmic numbers and the BANs library
	Lexicographic multi-objective optimization
	Application to lexicographic quadratic programming
	Application to reinforcement learning
	A short resume

