
Numerical Non-standard Calculus: Applications
and Software Implementation

Lorenzo Fiaschi
July 10, 2023

Department of Information Engineering
University of Pisa
lorenzo.fiaschi@ing.unipi.it

The vision

The goal of this research

• Make NSA numerical and use it in Engineering applications
• The steps:

1. Propose a numerical encoding for non-standard numbers
2. Implement a software library to execute non-standard
computations

3. Identify and tackle real-world Engineering applications
4. Design a hardware accelerator for non-standard
computations (co-processor)

• Five applications:
× Linear Programming
× Game Theory
✓ Quadratic Programming
× Evolutionary Optimization
✓ Reinforcement Learning

1

Non-standard model

Alpha Theory

Axiom (Existence)
Every sequence φ(n) has a unique α-limit denoted by
limn↑α φ(n).

Axiom (Alpha Number)
The α-limit of the identity sequence i(n) = n is a number
denoted by α, that is limn↑α n = α ̸∈ N.

Axiom (Field Axiom)
The set of all α-limits of real sequences

∗R =

{
lim
n↑α

φ(n)
∣∣∣φ : N → R

}
is a field, called the hyperreal field, where:

• limn↑α φ(n) + limn↑α ψ(n) = limn↑α(φ(n) + ψ(n))
• limn↑α φ(n) · limn↑α ψ(n) = limn↑α(φ(n) · ψ(n)) 2

From theory to computations: the
bounded algorithmic numbers and
the BANs library

Algorithmic numbers

Definition (monosemium)
ξ ∈ ∗R is called monosemium if ∃r ∈ R and p ∈ Q such that

ξ = rαp.

Definition (Algorithmic number)
A number ξ ∈ ∗R is called algorithmic if it can be represented
as a finite sum of monosemia, namely

ξ =
ℓ∑

k=1
rkαsk ; rk ∈ R, sk ∈ Q; sk > sk+1.

Proposition (AN normal form)
Any AN can be represented in the following “normal form”:

ξ = αpP
(
η

1
m

)
,

where p ∈ Q, m ∈ N, and P(x) is a polynomial with real
coefficients such that P(0) ̸= 0. 3

Algorithmic numbers

ANs still require infinite memory

• Not closed w.r.t. division (η := α−1)

1
α+ 1 = η − η2 + η3 − . . . =

∞∑
i=1

(−1)i−1ηi

• Requires exact arithmetic for representing rational powers

α
1
6 · α2 = α

2
6 = α

1
3

4

Bounded algorithmic numbers

Definition (Truncation function)
Given a polynomial P(x) = p0xz0 + . . .+ pmxzm , zi−1 < zi,
i = 1, . . . , m, the truncation function tr with truncation
parameter n is defined as follows:

trn [P (x)] =

P(x) n ≥ m
p0xz0 + . . .+ pnxzn n < m

Definition (Bounded algorithmic number)
A BAN is any AN who admits the following normal form:

ξ = αpP(η),

where p ∈ Z and P(0) ̸= 0.

5

BANs library

abs t rac t type AbstractAlgNum < : Number end

const SIZE = 3 ;

Ban dec la ra t ion
mutable s t r u c t Ban < : AbstractAlgNum

Members
p : : I n t
coef : : Ar ray { T , 1 } where T < : Real

Constructor
Ban (p : : In t , coef : : Ar ray { T , 1 } , check : : Bool) where T < : Real = new(p , copy (coef))
Ban (p : : In t , coef : : Ar ray { T , 1 }) where T < : Real =

(_ cons t r a i n t s _ sa t i s f a c t i on (p , coef) && new(p , copy (coef)))
Ban (a : : Ban) = new(a . p , copy (a . coef))
Ban (x : : Bool) = one (Ban)
Ban (x : : T) where T < : Real = i f e l s e (i s i n f (x) , Ban (0 , ones (SIZE) . * x) , one (Ban)* x)

end

α constant
const α = Ban (1 , [one (In t64) ; zeros (Int64 , SIZE − 1)] , f a l s e) ;
η constant
const η = Ban (− 1 , [one (In t64) ; zeros (Int64 , SIZE − 1)] , f a l s e) ;

6

Lexicographic multi-objective
optimization

Domain of application

Definition (lexicographic multi-objective program)
Let V and F be a vectorial space and a number field,
respectively. Let also f1, . . . , fn be a finite sequence of scalar
functions such that fi : V → F, i = 1, . . . , n. Then, a
lexicographic multi-objective optimization problem consists of
the following programs in cascade:

min f1(x)

s.t. x ∈ Ω

min fi(x)

s.t. x ∈ Ω,

fj(x) = fj j = 1, . . . , i− 1

where Ω ⊆ V is the problem domain and fj is the optimal value
of the j-th program, j = 1, . . . , n− 1.

7

A result

Theorem
Consider an n-objective LMOP, where fi : Ω → R, i = 1, . . . ,n,
Ω ⊆ Rm, m ∈ N, and the priority is induced by the natural
order. Then, ∃F : Ω → ∗R such that the following is an
equivalent scalar program:

min F(x)

s.t. x ∈ Ω

In particular
F(x) = β1f1(x) + . . .+ βnfn(x),

βi ∈ ∗R+ ∀i = 1, . . . , n,

and
βi+1
βi

≈ 0 ∀i = 1, . . . , n− 1.
8

Standard approaches to LMOP

Preemptive

min f1(x)

s.t. x ∈ Ω

min fi(x)

s.t. x ∈ Ω,

fj(x) = fj j = 1, . . . , i− 1

• Direct application of the definition
• Inefficient
• Different optimizers could be needed
• Equivalent to the original problem

9

Standard approaches to LMOP

Scalarization

min w1f1(x) + . . .+ wnfn(x)

s.t. x ∈ Ω

• wi ∈ R+, i = 1, . . . , n
• wi+1

wi ≪ 1, i = 1, . . . , n− 1
• Efficient optimization
• Reuse of existing algorithms
• Lack of guarantee to be equivalent to the original problem

10

Application to lexicographic
quadratic programming

Reviewing quadratic programming

Definition (Quadratic program)
A quadratic program is an optimization problem having the
following form:

min 1
2x

TQx+ cTx

s.t. Ax = b,
x ≥ 0

max
x, λ

− 1
2x

TQx+ bTλ

s.t. ATλ− Qx+ s = c,
x, s ≥ 0

where Q ∈ Rn×n, Q ⪰ 0, and c ∈ Rn constitute the objective
function, A ∈ Rm×n is the constraint matrix, n > m, b ∈ Rm is
the constant term vector, and x ∈ Rn is the unknown.

In the NS case: Q ∈ ∗Rn×n, and c ∈ ∗Rn

11

Reviewing quadratic programming

Solving algorithm: Interior Point Method

First order conditions−Q AT I
A 0 0
S 0 X


xλ
s

 =

cb
0


Iterative scheme−Q AT I

A 0 0
S 0 X


∆x∆λ

∆s

 =

 −rc
−rb

σµ1− XS1


In the NS case: (full) NS Interior Point Method

12

NS-IPM at work

x1

x2

O

c1
c2

13

NS-IPM at work

iter µ ∈ R x ∈ R3 f(x) ∈ ∗R
0 0.53

[
1.46 1.46 1.46

]
−4.38− 3.64η − 6.08η2

1 0.21
[
1.32 1.32 0.74

]
−3.37− 10.27η − 5.08η2

2 0.02
[
1.30 1.30 0.40

]
−3.01− 11.83η − 4.44η2

3 1.60e−4
[
1.30 1.30 0.40

]
−3.00− 11.84η − 4.44η2

4 1.60e−6
[
1.30 1.30 0.40

]
−3.00− 11.84η − 4.44η2

5 1.61e−8
[
1.30 1.30 0.40

]
−3.00− 11.84η − 4.44η2

6 0.06η
[
1.38 1.38 0.25

]
−3.00− 12.13η − 3.92η2

7 2.21e−3η
[
1.41 1.41 0.17

]
−3.00− 12.17η − 3.66η2

8 2.46e−5η
[
1.42 1.42 0.17

]
−3.00− 12.17η − 3.64η2

9 2.48e−7η
[
1.42 1.42 0.17

]
−3.00− 12.17η − 3.64η2

10 1.62e−9η
[
1.42 1.42 0.17

]
−3.00− 12.17η − 3.64η2

11 0.14η2
[
1.54 1.29 0.17

]
−3.00− 12.17η − 3.82η2

12 0.01η2
[
1.65 1.19 0.17

]
−3.00− 12.17η − 3.89η2

13 1.63e−4η2
[
1.67 1.17 0.17

]
−3.00− 12.17η − 3.89η2

14 1.78e−6η2
[
1.67 1.17 0.17

]
−3.00− 12.17η − 3.89η2

15 1.59e−8η2
[
1.67 1.17 0.17

]
−3.00− 12.17η − 3.89η2

Table 1: NS-IPM iterations to solve a 3-objective program. 14

Application to reinforcement
learning

Reviewing reinforcement learning

Figure 1: Schema of an RL problem: the agent takes action in the
environment considering the current state; the environment reacts
by changing its state and giving a reward as feedback.

15

Multi-objective reinforcement learning

Figure 2: Schema of a Multi-Objective RL problem: after each action
is taken, the environment returns an n-tuple of rewards.

• Very few approaches
• Single-policy vs
Multiple-policy

• Tabular approaches
• Only scalarization allows
for deep

16

The Lunar Lander environment

8-dimensional state space
• horiz/vert coordinates
• horiz/vert acceleration
• rotation angle
• angular velocity
• legs touching the ground

4-dimensional action space
• right engine
• left engine
• main engine
• do nothing

17

The Lunar Lander environment

5-dimensional reward
1. Distance from the pad
2. Module of the velocity
3. Body rotation angle
4. Contact with the ground
5. Fuel consumption

Latent priority structure
1. Controlled flight: 1-3
2. Correct landing: 4
3. Efficient trajectory: 5

r = fly+ lan · η + eff · η2

Standard approach

• Weighted scalarization
• Optimality 200 points avg
reward in last 100 episodes

• Trial&Error weights tuning

• Complex policy gradient
• Rarely agent learns how to
land

• Never reported the
number of correct landings

18

Non-standard DQN

Implementation of the first NS DNN
• Integration of the BANs library with the Julia library Flux
• Custom rules for NS gradient calculation (ChainRules)
• Three types of NS-DQNs (fully connected)

• Naive
• Gradient-Clipping
• Hybrid

s1

s2

s3

s8

...

h
(1)
1

h
(1)
2

h
(1)
3

h
(1)
4

h
(1)
5

h
(1)
128

...

h
(2)
1

h
(2)
2

h
(2)
3

h
(2)
4

h
(2)
5

h
(2)
128

...

y1

y2

y3

y4

Input
layer

Hidden
layer 1

Hidden
layer 2

Output
layer

Figure 3: DQN for lunar lander 19

Results for lunar lander

Figure 4: Average reward over 100 episodes obtained by a GC-NS-DQL
agent during successful training on the Lunar Lander environment.

20

Results for lunar lander

Agent Param Avg Training Episodes Landings (%) StdDev Pad Landings (%) StdDev
Standard ℘1 532.3 75.0 26.057 68.8 26.894
Standard ℘2 788.5 66.9 19.121 56.8 24.195
GC-NS-DQL ℘1 598.8 79.7 13.787 73.8 12.689
GC-NS-DQL ℘2 659.3 87.5 5.146 83.7 6.532
GC-H-NS-DQL ℘1 616.7 84.0 17.365 78.0 18.342
GC-H-NS-DQL ℘2 664.2 77.8 12.304 70.8 14.622

Table 2: Agents performance comparison on Lunar Lander
environment (in green the best performing agent, in red the worse
one).

Algorithm Param. Avg. time per step (ms) Exp. overall time (h)
Standard ℘1 3.73 0.55
GC-NS-DQL ℘2 19.58 3.59
GC-H-NS-DQL ℘1 14.47 2.48

Table 3: Average time, expressed in milliseconds, required for each
training step of the agents.

21

A short resume

A short resume

• Introduced NSA reference framework

• Proposed the BAN encoding for NS numbers

• Implemented the BAN Julia library

• Discussed two engineering applications

• Numerical validation of the study

22

	The vision
	Non-standard model
	From theory to computations: the bounded algorithmic numbers and the BANs library
	Lexicographic multi-objective optimization
	Application to lexicographic quadratic programming
	Application to reinforcement learning
	A short resume

