
Initial Applications of Alpha Theory
in Telecommunications Engineering 

Marco Cococcioni, Francesco Fiorini and Michele Pagano

Dipartimento di Ingegneria dell’Informazione
Via Caruso 16 – 56122 Pisa

Università di Pisa
                                    

Workshop on

Logical methods in Ramsey Theory and related topics

10-11 July 2023 - Department of Mathematics, Pisa, ITALY



Contents

1. Introduction: Heavy tailed distributions
i. Their applications in Telecommunications (TLC) scenarios

ii. Two important properties: Expectation Paradox & Mass Count Disparity

iii. How to exploit heavy tailed models 

2. Issues in simulating heavy tailed distributions 

i. When computing the sample variance

ii. Slow Convergence & High Variability at Steady State

3. Euclidean Numbers and the concept of iperfinite numbers

4. Euclidean LogNormal with finite mean and iperfinite 
variance
i. Experimental results in Matlab

5. Queueing Theory

6. Conclusions

Initial Applications of Alpha Theory in Telecommunications Engineering 2/20



Introduction: What are heavy tailed distributions?

• Heavier tail than the exponential distribution

• Many outliers with very high values 

• «Infinite» variance, or in general, not all their moments finite

High variability Noah Effect 

TLC applications

➢ File sizes on a web server, uptime and 
silence times in remote communications, 
CPU times, connection times.

➢ Interarrival time of Internet data packets in 
Ethernet LANs and in WAN

➢ Interference power in IoT communications
➢ Variable Bit Rate video streaming traffic

Other fields

❖ Financial Risk Engineering
❖ Outputs of machine learning algorithms (e.g. SGD for neural networks)
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Two important properties

𝐸 𝑋 − 𝑘 𝑋 >  𝑘  ∼ 𝑘

“The longer we have waited… 
the longer we should expect to wait!”

3 Different Examples

𝐸
𝑋

−
𝑘

𝑋
 >

 𝑘

(1) Expectation Paradox (2) Mass Count Disparity

“A very tiny subset of 
observations contains the
vast bulk of the mass in a 
set of data”

➢ 80% of the smallest 
observations represent 
less than 20% of the 
total mass

TLC real-
world 
example

50%-80% of the bytes in FTP 
transfers are due to the largest 
2% of all transfers
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How to exploit heavy tailed models in TLC?

➢ only a small number of tasks need to 
be relocated due to the mass-count 
difference

➢ the expectation paradox means that 
a task’s current lifespan is a good 
indicator of its predicted future 
lifetime.

Reliable statistical methods for the purposes of network analysis, network 
management and design, performances evaluation and protocols optimization, 
and therefore reduction of over-provisioning, without the purchase of 
additional resources

Some Applications

Load balancing in network of queues 
(e.g. SITA-E, Size Interval Task 
Assignment with Equal Load)

Scheduling in Web servers (e.g. SRTP, 
shortest-remaining-processing-time)

Routing and Switching in Internet 

➢ hardware switching to create temporary circuits 
(shortcuts) for lengthy packet sequences

➢ setup threshold=number of same-path packets 
to watch before establishing a switched 
connection

➢ majority of bytes may be routed by 
implementing shortcuts for just a tiny portion of 
all data flows

5/20

Where?   Packet Switched Networks

E.g. CoreNetwork of a cellular network (from LTE IP based!)
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Simulations with standard heavy tailed distributions

Some Issues

1. «Infinite» variance 

E{X} = 4/3     th_var{X} = 2/9 est_var = 0.222                  (the accuracy increases with # of samples)
E{X} = 2.25   th_var{X} = ∞ est_var = 1.2E+4,   2.3E+6, ...    (it increases with the # of samples!)
E{X} = ∞       th_var{X} = ∄    est_var = 4.5E+10, 7.4E+23, ...  (it increases with the # of samples!)

∞

Not numerically verifiable

«diverging»

Example: The problem of using Pareto 
distribution and standard analysis

➢ The sample variance is not able to give a direct 

information, aligned with the teoretical variance (which 

is known to be ∞)
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Simulations with standard heavy tailed distributions

Some Issues

2. Slow Convergence & 
 High  variability at Steady State

CLT GCLT
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Simulations with standard heavy tailed distributions

Some Issues

2.  Slow Convergence & High  variability at Steady State
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Simulations with standard heavy tailed distributions

Some Issues

2.  Slow Convergence & High  variability at Steady State

Do you request t digits of accuracy of your 
sample mean estimator?

With respect to the true 

value µ

Recalling the previous formula…

A practical example with t=3
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What can help us?
Euclidean Numbers!

Standard analysis:
uses the set of Real numbers

ℝ (the field of real numbers):

• ℝ contains only finite values
• Sometimes the set ഥℝ is

introduced, as the union of ℝ and
the symbols +∞ and -∞ 

• ∞ is just a symbol, not a number

•  ∞ - ∞, ∞ + ∞,
∞
∞ are not allowed

operations between elements of ഥℝ

• Implemented in C++/Matlab as a 
discrete set, using binary digits, 
according to the IEEE floating point 
format 

    An example of IEEE Float in Matlab

             4.15E+7     4.15107

Non-Standard Analysis:
uses the set of Euclidean numbers

𝔼 (the Field of Euclidean numbers)

• 𝔼 includes ℝ, hence it extends ℝ

• 𝔼 contains finite, infinitesimal and
iperfinite numbers

• η𝔼 is the prototypal infinitesimal
number

• 𝛼𝔼 is the prototypal iperfinite values
(𝛼= 1/η and 𝛼= numerosity(ℕ) )

• Euclidean numbers can be implemented 
in C/C++/Matlab, using a floating point 
like-approach: they have been called 
Bounded Algorithmic Numbers (BANs)

        An example of BAN in Matlab

  (3.5 -2.3 1.2)A+3    (3.5 -2.3η +1.2η2)α3
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What can help us?
Benci-Di Nasso Alpha Theory!

Standard analysis:

In MATLAB

0 max1  2      …
+inf

FROM THIS…

… TO THIS

0 max

η

α1   2

0 2η

2α 100α α2

Thanks to our 
implementantion of a 
Matlab object-oriented 
toolbox, with the classes 
Ban and BanArray

In the same computer, with the same memory! 

Non-Standard Analysis

𝛼-3𝛼 = −2𝛼 
𝛼+1

𝛼
= 1 + η

𝛼 ∙ 𝛼 + 2 = 𝛼2 + 2𝛼

0 <
1

𝛼
= 𝛼−1 < 𝛼0 = 1 < 𝛼1 = 𝛼 < 𝛼 + 1
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New definition of heavy tailed distributions

New Definition: A distribution is considered heavy tailed if its variance (or in general 
any of its moments) diverges towards +∞, or if it assumes a (precise) infinite value

A practical example?

LogNormal distribution

➢ Several applications in the 
telecommunications scenarios: a 
good statistical model for the 
amount of Internet traffic per 
time unit, interference power 
PDF in device to device 
communications, shadowing in 
cellular networks…

… BUT
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[ The difficulty about using the Log Normal distribution]

What would alleviate/solve the problem?

The possibility to generate pseudo-random numbers, obeing a Log Normal 
distribution, but having a finite mean and an infinite variance

     THIS CANNOT BE ACHIEVED USING STANDARD ANALYSIS AND REAL NUMBERS!

From “Explaining World Wide Web Traffic Self-Similarity”, M. E. Crovella and A. Bestavros, 1995 ,Technical Report TR-95-015

«

»
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Euclidean LogNormal distribution

𝑋 = ⅇ𝜇+𝜎𝑍

𝐸 𝑋 = ⅇ𝜇+
𝜎2

2

var 𝑋 = ⅇ𝜎2
− 1  ⅇ2𝜇+𝜎2

,    Z ∈ 𝑁(0,1)

Thanks to the two parameters, it is possible 
to obtain finite mean and hyperfinite 
variance: e.g. fixing:

𝜎=α

µ=−
α2

2

Thanks to our Matlab toolbox implementation, we have been able to generate 
pseudo-random samples following an Euclidean LogNormal distribution, with 

finite mean and well-defined infinite variance

➢ We filled the gap: LogNormal and heavy tailness are consistent with each other
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Euclidean Gaussian distribution

… How ?

1. By defining the two parameters µ and 
𝜎 like Bans

2. By exploting the well-known Gaussian 
Displacement method

An example of 36 pseudo-random 

samples generated in Matlab

Underlying Euclidean 
Gaussian distribution
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Euclidean LogNormal distribution

… And to numerically check the coherence between the sample values 
of mean and variance with the correspective theoretical values

𝜎 = 𝛼

(Threshold: 2.5 10−3)
Fitting Phase
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Reference

Journal Article

Section: Engineering 
Mathematics

https://doi.org/10.33

90/math11071758

«[...] The  theorem and current results provided in this manuscript look very promising 
and I am very impressed by it. [...] »  opinion of one of the reviewers (boldface added by us)
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Another possible application in TLC

𝐸 𝑇𝑊 =
λ 𝐸{𝑇𝑠

2}

2 (1 − ρ)

What if

𝐸{𝑇𝑠
2} →∞    

➢Queueing Theory

Kendall’s Notation

ρ =
𝐸{𝑛𝑠}

𝑛𝑠
=

λ

µ

This could happen…
With an heavy tailed Service distribution! 
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Alpha Theory and Pareto distribution
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"Wild Behaviour": 
only diverging 
variance

Standard Pareto (infinite support)

few degrees of freedom

Truncated Pareto (finite support)

Difficult/meaningless 
Euclidean extension

• More suitable for real dataset, with an upper 
limit

• More degrees of freedom in the mean and 
the variance

Meaningful for a future Euclidean extension

retained in the 
Euclidean 
framework



Conclusions

1. We have analysed some peculiar properties of heavy tailed 
distributions and possible approaches to exploit them in 
telecommunication scenarios

2. We have highlighted and proved in Matlab some issues in simulations 
with standard heavy tailed distributions

3. We have implemented in Matlab a mini object-oriented toolbox (Ban 
& BanArray classes) that supports Euclidean numbers and their 
operations, to reduce simulations troubles with ht distributions

4. We have proposed (and simulated in Matlab) a new Euclidean ht 
LogNormal distribution and numerically checked the correctcness of 
the sample mean and variance with respect to their theoretical values

Future Works

Application of Euclidean heavy tailed models to TLC Queues Scheduling 
algorithms, Load balancing, Routing decisions, etc.
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Another possible application in TLC
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➢Queueing Theory



The product of two LogNormals… is still  
LogNormal

𝑌 = ⅇµ1+𝜎1𝑍 . ⅇµ2+𝜎2𝑍 = ⅇ𝐺

𝑋1 𝑋2

𝐺 ∈ 𝑁(µ𝑇𝑜𝑡, 𝜎𝑇𝑜𝑡
2 )

µ𝑇𝑜𝑡 = µ1 + µ2 𝜎𝑇𝑜𝑡
2  = 𝜎1

2 + 𝜎2
2 + 2 𝑐𝑜𝑣 𝑍1, 𝑍2

𝑍1 𝑍2

𝜌 𝜎1 𝜎2

𝑍 ∈ 𝑁(0,1)

Euclidean Numbers for accurate simulation of heavy tailed probability density function

… And is this true even for BANs?
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Example 1: product of 2 BANs LogNormals

❑ Same means
❑ StdDev with the same real finite part and 

different first order infinitesimal part
❑ Completely anticorrelated: 𝜌=-1

𝜎𝑇𝑜𝑡
2

𝐸 𝑌 =

𝑉𝑎𝑟 𝑌 =

Euclidean Numbers for accurate simulation of heavy tailed probability density function

By ordering the two samples in opposite ways
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Example 1: product of 2 BANs LogNormals
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Example 1: product of 2 BANs LogNormals
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Example 2: sum of 2 BANs Gaussians

Euclidean Numbers for accurate simulation of heavy tailed probability density function

❑ Same infinite means!
❑ StdDev with the same infinite part and 

different η coefficients
❑ Completely anticorrelated: 𝜌=-1 Same previous method

µ𝑇𝑜𝑡=

𝜎𝑇𝑜𝑡
2 =

𝜎𝑇𝑜𝑡
2
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Example 2: sum of 2 BANs Gaussians
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Exp of a BAN

Euclidean Numbers for accurate simulation of heavy tailed probability density function
30

Taylor:

Mc-Laurin: 𝑥0= 0

It extracts the finite part (c) and compute the exp by hand for it; for the remaining BAN 
(that is infinitesimal: first coefficient, that is the finite part, is now 0), it uses the Mc-
Laurin expansion around x_0=0 (the formula below)



Simulations with standard heavy tailed distributions
Some Issues

2.  Slow Convergence & High 
variability at Steady State ?

Do you request t digits of accuracy of your 
sample mean estimator?

With respect to the true value 

µ

Recalling the CLT formula…

A practical example with t=3 & Pareto distribution 
on the left, and standard case on the right

Standard Case

n

106

106

106

106

106

106
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Simulations with standard heavy tailed distributions
Some Issues

2.  Slow Convergence & High variability at Steady State

Do you request t digits of accuracy of your 
sample mean estimator?

With respect to the true value 

µ

In a queue system simulation: if you want that: 

Measured 
utilisation 
coefficient

Desired 
utilisation

Sample Mean of the 
service times

ҧ𝑥 must be close to its desired 

mean value μ, to have stability
Therefore the «accuracy» is an 

important factor
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GCLT - 𝛼-stable Distributions 
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𝛼-stable Distributions
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𝛼-stable Distributions
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𝛼-stable Distributions
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Stable Distribution: def

Euclidean Numbers for accurate simulation of heavy tailed probability density function
37

α-stable case

GCLT



Truncated Pareto
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α≠1

α≠2



Another possible application in TLC

Euclidean Numbers for accurate simulation of heavy tailed probability density function

➢Queueing Theory
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Two important properties: (1) Expectation Paradox

Euclidean Numbers for accurate simulation of heavy tailed probability density function                                   43

𝐸 𝑋 − 𝑘 𝑋 >  𝑘  ∼ 𝑘
“The longer we have 
waited… 
the longer we should 
expect to wait!”

3 Different Examples

𝐸
𝑋

−
𝑘

𝑋
 >

 𝑘



Two important properties: (2) Mass Count Disparity

Euclidean Numbers for accurate simulation of heavy tailed probability density function                                   44

“A very tiny subset of 
observations contains the
vast bulk of the mass in a set of 
data”

➢ 60% of the mass is contained in 
the top 1% of the observations, 
which is completely out of 
proportion to the fraction of 
observations taken into account!

➢ 80% of the smallest observations 
represent less than 20% of the 
total mass

TLC real-world example

50-80% of the bytes in FTP 
transfers are due to the 
largest 2% of all transfers



BANs operations
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Backup4

 function avg = mean(bArr)

if size(bArr,2) > 1

                error('To Be Implemented!');

            end

            sum = bArr(1).bArr;

            for i = 2:size(bArr,1)

                sum = sum + bArr(i).bArr;

            end

            avg = sum/length(bArr);

        end % mean

        

        function v = var(bArr)

if size(bArr,2) > 1

                error('To Be Implemented!');

            end

            avg = mean(bArr);

            slacks = bArr-avg;

            squared_slacks = slacks*slacks;

            v = mean(squared_slacks);

        end % var
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Backup6
Heavy tail definition
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Backup7
Heavy tail definition
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Heavy tail definition – HILL’S ESTIMATOR
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Heavy tail definition  - LOGNORMAL
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Heavy tail definition  - HAZARD RATE -LogNormal
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Backup7

Heavy tail definition  -  HAZARD RATE – LogNormal(green) & Pareto(red)
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Heavy tail definition  - HEAVY TAIL? PDF tails in order: Pareto, 
LogNormal and Exp
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Backup7
Heavy tail definition  - LOGNORMAL shadowing
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SITA-E  - Why Finite Mean needed
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SRPT
SRPT: Starvation of Large Jobs? No!

56Euclidean Numbers for accurate simulation of heavy tailed probability density function

Consider a job in the 99th percentile of the job size distribution (i.e. a very large job). It turns out 
that such a job has lower expected slowdown when the scheduling policy is SRPT-like than under a 
fair scheduling (Processor-Sharing) type of policy. To see this, recall from Section 2 that the sizes of 
requests arriving at a Web server have been shown to have a heavy-tailed distribution. Now 
consider a job j in the 99th percentile of the job size distribution. By the heavy-tailed property 
(see Section 2), more than half the total workload is contained in jobs of size greater than j. Thus 
job j is preempted by less than half the total workload, which in turn implies (see [8]) that j's 
expected response time is actually better under SRPT-like scheduling than under a Processor-
Sharing type of scheduling where job j would have to share the resource with the total workload. 
By contrast, in the case of an exponential distribution only 5% of the total workload is contained 
in jobs of size greater than j. Thus under an exponential workload, job j would be held up by over 
95% of the workload and would in fact have signicantly worse performance under an SRPT-like 
scheduling policy than under a processor-sharing-like scheduling policy. Thus for an exponential 
workload, SRPT-like scheduling is not a good idea



Backup

• Definition 1. Ordinary Set A set A is an ordinary set ⇐==⇒ A satisfies one 
of the following properties: 

i. A = N 

ii. A = P(B), where B is an ordinary set 

iii. A = ڂ𝑖∈𝐼 Bi , where I and all Bi are ordinary sets 

iv. A = f(B), where B is an ordinary set and f any function

• Definition: Ordered Field K. ∀ a,b,c ∈ K, if a ≤ b, then a+c ≤ b+c and if 0 ≤a, 
0 ≤b, then 0 ≤a.b

• Pareto distribution: 
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Backup3
• The 2.37 first-order infinitesimal as aBan3: γ−1(2.37 + 0η+ 0η2+ 0η3) =γ−1[2.37 0 0 

0] =(-1)[2.37 0 0 0] =“2.37Ban3infmal” Observe how an equivalent representation 
would be this one: γ0(0 + 2.37η+ 0η2+ 0η3) =γ0[0 2.37 0 0] =(0)[0 2.37 0] but the 
latter is not in normal Ban representation.

• The 4.38 first-order infinite as aBan3: γ1(4.38 + 0η+ 0η2+ 0η3) =γ1[4.38 0 0 0] 
=(1)[4.38 0 0 0] =“4.38Ban3INFTY

• Log Normal: 

• Self similar
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Backup5
Self similar

59
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Heavy tailed distributions in TLC scenarios

• Observed h-t behaviour in telecommunication systems, 
respect to quantities such as file sizes on a web server, 
uptime and silence times in remote communications, 
CPU times, peak rates, connection times.

• HT distributions can have “infinite” variance             
Noah Effect “high variability”

• Superimposing many ON/OFF source models, of which 
at least one with a HT distribution, with infinite 
variance for the length of the singles On and Off periods                 

self-similarity traces in the collective traffic: Noah 
effect as a physical cause of the Joseph Effect or self-
similarity.

• Measured traffic rates, in LAN environments             
scaling properties over a wide range of time scales

Euclidean Numbers for accurate simulation of heavy tailed probability density function                             

Answer: to model telecommunication traffic, among many other applications

44



Teletraffic field

• Statistically             traffic autocorrelation structure maintained for several 
time scales            Long-Range Dependence.

Stochastic self similarity is the 
«burstiness preservation sense»

61Euclidean Numbers for accurate simulation of heavy tailed probability density function                             



Euclidean distributions: 
a) The Euclidean Gaussian (1/2)

• Two working Matlab implementations that allow to generate pseudorandom 
numbers following Euclidean probability distributions, with “infinite” mean 
and variance ( i.e. two BANs). 

Gaussian

                                                                   

2
1

21
( )

2

x

Xf x e





 

− 
−  

 =PDF:

Euclidean Numbers for accurate simulation of heavy tailed probability density function

Two BANs
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Euclidean distributions: 
a) The Euclidean Gaussian (2/2)

Euclidean Numbers for accurate simulation of heavy tailed probability density function

Fitting Phase

With N=1e5 , le=1,  we obtain:

Experimental results

3.4 𝜸

𝟑. 𝟑𝟗𝟗𝟖 𝜸

0.01 𝜸𝟐

0.0100408 𝜸𝟐
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NA Log Normal

➢ A good statistical model to represent the amount of traffic per unit 
time. 

➢ In Internet discussion fora              comment length distributions very 
regular and described by the log-normal form with a very high precision

Matlab Simulation:
x_as_bArr = BanArray(true_sigma_as_ban.*randn(N,1), le); 
x_as_bArr = x_as_bArr + mu_as_ban;
x_as_bArr = true_theta_as_ban * exp(x_as_bArr);

But how to compute  ⅇ𝐵𝐴𝑁 ??

~ 𝛾100

ⅇ𝛾 = ?

VAN Class

64
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Non-Archimedean Analysis and Gamma Theory

• Axiom (of Archimedes). Let U be any totally ordered field. Then, ∀ x, 

y ∈ U, 0 < x <y, ∃ n ∈ N : y < nx.

• Gamma Theory, a non-standard model originally proposed by V. 

Benci in 1995

• Axiom 1. Exists an ordered field E ⊃ R whose numbers are called 

Euclidean numbers

• Axiom 2. Exists a function num, num : U → E which satisfies

➢ γ = num(N)

➢ num(A ∪ B) = num(A) + num(B) − num(A ∩ B)

➢ num(A × B) = num(A) · num(B)

• Axiom 3. Given a real function ϕ, ∃! ϕ* defined over E such that: 

▪  ϕ(x) = ϕ*(x)   ∀ x ∈ R 

▪  Id*(R)= Id(E),  where Id(A) is the identity function on A 

Euclidean Numbers for accurate simulation of heavy tailed probability density function
65



Gamma Theory and Algorithmic Numbers

▪ Any couple of real functions ϕ, ψ satisfies:

a)    (ϕ + ψ)* = ϕ* + ψ*

b)            (ϕ · ψ)* = ϕ* · ψ*

c)   (ϕ ◦ ψ)* = ϕ* ◦ ψ*

• R is “too rich” to be entirely managed by a finite machine… we 
must use Algorithmic Field

  >> m1 = single(-2∧127);       ans = 0
  >> m2 = single(2∧127);                >> (m1+m2)+m3 
  >> m3 = single(1);                                                                             ans = 1
  >> m1+(m2+m3) 

• The importance of fixed-length representations of numbers in symbolic 
computations

➢ Algorithmic Numbers (ANs), introduced by V. Benci and M. 
Cococcioni …  Definition:

𝜉 = σ𝑘=0
𝑙 𝑟𝑘𝛾𝑠𝑘  ; 𝑟𝑘∈ R,  𝑠𝑘∈ Q; 𝑠𝑘> 𝑠𝑘+1 . 

Euclidean Numbers for accurate simulation of heavy tailed probability density function 66



Algorithmic Numbers & BANs

• “Normal form”:    𝜉 = 𝛾𝑝𝑃 𝜂
1

𝑚

      where p ∈ Q, m ∈ N and P(x) is a polynomial with real coefficients such   
that    P(0) = 𝑟0 ≠ 0.

BANs: Bounded Algorithmic Numbers 

➢ Definition: 𝛾𝑝𝑃 𝜂  , where P(x) is a polynomial with real coefficients 
of degree n such that   P(0) ≠0    and    p ∈ Z.

• Operations between two BANs:

      Sum: (assuming p ≥ q)

      

      Product:

➢  We implemented the class of BANs ( Ban.m) and two-dimensional arrays 
of BANs ( BanArray.m) in Matlab
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Division: After having rewritten  𝜁 as

𝜁 = 𝛾𝑞 𝑞0 + ෍

𝑘=1

𝑛

𝑞𝑘 𝜂𝑘 = 𝑞0𝛾𝑞 1 − 𝜀

where                              ,  the division definition becomes:

➢ We implemented the class of BANs ( Ban.m) and two-dimensional 
arrays of BANs ( BanArray.m) in Matlab

𝜀 = − ෎

𝑘=1

𝑛

𝑞𝑘

𝑞0
𝜂𝑘

𝜉

𝜁
= 𝛾𝑝−𝑞𝔱𝔯𝑛

𝑃 𝜂

𝑞0
1 + 𝜀 + 𝜀2 + ⋯ + 𝜀𝑛

= 𝛾𝑝−𝑞
𝑃 𝜂

𝑞0
+ 𝔱𝔯𝑛 𝜀

𝑃 𝜂

𝑞0
+ ⋯ + 𝔱𝔯𝑛 𝜀𝑛

𝑃𝑛 𝜂

𝑞0
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Backup VAN 2
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Backup VAN 3
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•  TheBanclassB.1.1   How to set the degree of the BanUse the command 

setappdata(0, ’BANDEGREE’, 3) to set the degree to 3, as an example.

• B.1.2   How to set the format for displaying a Ban: Use the command 
setappdata(0, ’BANFORMAT’, 0); to display the Ban in ASCII format, like:   (1 2 3 
4)G-3 

• Use the command setappdata(0, ’BANFORMAT’, 2); to display the Ban in LATEX 
format, like: (1 + 2η+ 3η2+ 4η3)γ−3

• Use the command setappdata(0, ’BANFORMAT’, 1); to display the Ban in an 
INTERMEDIATE format, like: (1 +2η+3η{2}+4η{3})γ{-3}

• The constant 1 (i.e., the Euclidean number one) as aBan3: γ0(1 + 0η+ 0η2+ 
0η3) = γ0[1 0 0 0] =(0)[ 1 0 0 0] = [1 0 0 0] =“1Ban3” 

• The constant 0 (i.e., the Euclidean zero) as aBan3: γ0(1 + 0η+ 0η2+ 0η3) =γ0[0 
0 0 0] =(0)[ 0 0 0 0] = [0 0 0 0] =“0Ban3”

• The real value 7.6 as aBan3: γ0(7.6+0η+0η2+0η3) =γ0[7.6 0 0 0] =(0)[ 7.6 0 0 0] 
= [7.6 0 0 0] =“7.6Ban3” (the value 7.6 will be stored as a double precision 
floating point number)

• The constant π as aBan3: γ0(3.14 + 0η+ 0η2+ 0η3) =γ0[3.14 0 0 0] =(0)[3.14 0 0 
0] = [3.14 0 0 0] =“3.14Ban3”or even “PIBan3”(of  course  we  had  to  
approximateπusing  finite  a  finite  decimal  ap-proximation)
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