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Introduction: What are heavy tailed distributions?

* Heavier tail than the exponential distribution
 Many outliers with very high values
* «Infinite» variance, or in general, not all their moments finite

g High variability =~ === Noah Effect

TLC applications
161
» File sizes on a web server, uptime and al
silence times in remote communications, Dl
CPU times, connection times. 9 ol _
» Interarrival time of Internet data packetsin 3 ol /09 quantie
Ethernet LANs and in WAN g | 0.5 quantile
> Interference power in loT communications ol =771 QUGS 2405
> Variable Bit Rate video streaming traffic ol /_,' o 1498.6805
0 - L : :
Other fields - " Paetologa

+* Financial Risk Engineering
¢ Outputs of machine learning algorithms (e.g. SGD for neural networks)
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Two important properties

(1) Expectation Paradox (2) Mass Count Disparity

P[X1 +.. .+ X, > :L‘]

lim =1 foralln>?2

E{X — le > k} ~k z—oo Plmax [Xq, ..., X,,] > 7] N

o

TLC real- 50%-80% of the bytes in FTP
world transfers are due to the largest
example 78] IRT IS5 {16

o _ [ fx(x)de i
. f(m 2 SC2 N SR | “A very tiny subset of > 80% of the smallest
- | Ix(9) da ] Ix@da observations contains the observations represent
vast bulk of the mass in a less than 20% of the
. | set of data” total mass
“The longer we have waited... : f
the longer we should expect to wait!” 5 1
| Exponential
i § 0s | Heavy Tail, alpha=1 —— ]
5 2
~ 1
&S Pareto ! = 06 |
N i =
' S
E i £ 04
, i
S exponential i = o2 |
(S 1
= i
| 0 - - 1
uniform i 0 0.2 04 06 08 1
i Fraction of Smallest Observations

3 Different Examples
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How to exploit heavy tailed models in TLC?

Reliable statistical methods for the purposes of network analysis, network

’AWVI‘ { management and design, performances evaluation and protocols optimization,

and therefore reduction of over-provisioning, without the purchase of
additional resources

Some Applications ™= Where? Packet Switched Networks
Eg CoreNetwark of a cellular network (fromLTEIP based)) g

Scheduling in Web servers (e.g. SRTP,

Load balancing in network of queues shortest-remaining-processing-time)

(e.g. SITA-E, Size Interval Task

Assignment with Equal Load)
Routing and Switching in Internet

» only a small number of tasks need to

be relocated due to the mass-count » hardware switching to create temporary circuits
difference (shortcuts) for lengthy packet sequences

» the expectation paradox means that » setup threshold=number of same-path packets
a task’s current lifespan is a good to watch before establishing a switched
indicator of its predicted future connection
lifetime. » majority of bytes may be routed by

implementing shortcuts for just a tiny portion of
all data flows
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Simulations with standard heavy tailed distributions

l

Some Issues

(03]
1. «Infinite» variance ‘ & apheso2

| | 075 alpha=4

«diverging»

alpha=1.8

Tm\® .
05 Fx(ﬁ?) _ (?) if x>z
1 otherwise

Example: The problem of using Pareto
distribution and standard analysis

025

» The sample variance is not able to give a direct
information, aligned with the teoretical variance (which
is known to be o)

E{X}=4/3 th_var{X}=2/9 est _var=0.222 (the accuracy increases with # of samples)
E{X} =2.25 th var{X}=oc est var=1.2E+4, 2.3E+6,... (itincreases with the # of samples!)
E{X}=oc  th var{X}=A est var=4.5E+10, 7.4E+23, ... (it increases with the # of samples!)

\ Not numerically verifiable
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Simulations with standard heavy tailed distributions

%

Some Issues

2. Slow Convergence &
High variability at Steady State

7 1%
1 glz) = T
| G C L l 0 1 2 3 4 5 6 7 8 9 10 1t 12
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Simulations with standard heavy tailed distributions

Some Issues
2. Slow Convergence & High variability at Steady State

number of samples=10
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Simulations with standard heavy tailed distributions
Some Issues

2. Slow Convergence & High variability at Steady State

Do you request t digits of accuracy of your -
M ‘An HI

) —t
sample mean estimator? < 10

M

Recalling the previous formula...
With respect to the true

value 1
A, — p| = na—le

1
[T S R T—— na~t < 1ljpt

2.0 106 )

) . 1—— ~, i
1.7 19.3 107 n- o = vl
1.5 109

1.3 1(113_5

1.2 1018

1.1 1”33

A practical example with t=3
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What can help us?
Euclidean Numbers!

Standard analysis:
uses the set of Real numbers

R (the field of real numbers):

* IR contains only finite values

« Sometimes the set R s
introduced, as the union of R and
the symbols +eo and -oo

e oo jsjustasymbol, not a number

(o e}

® 0o - oo, o0 + oo, — gre not allowed
oo

operations between elements of R

*Implemented in C++/Matlab as a
discrete set, using binary digits,
according to the IEEE floating point
format

An example of IEEE Float in Matlab
4.15E+7 <~ 4.1510’

Non-Standard Analysis:

uses the set of Euclidean numbers

E (the Field of Euclidean numbers)
* E includes R, hence it extends R

*[E contains finite, infinitesimal and
iperfinite numbers

*nelE is the prototypal infinitesimal
number

*aclE is the prototypal iperfinite values
(a=1/n and a= numerosity(N) )

* Euclidean numbers can be implemented
in C/C++/Matlab, using a floating point
like-approach: they have been -called
Bounded Algorithmic Numbers (BANs)

An example of BAN in Matlab
(3.5-2.3 1.2)A+3 & (3.5-2.3n+1.2n3)c3
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What can help us?
Benci-Di Nasso Alpha Theory!

In MATLAB
Standard analysis:
FROM THIS.. - - >
012 +inf
.. TOTHIS

Non-Standard Analysis
y oa 20 1000 o

4 Pt
Thanks to our
implementantion of a
Matlab object-oriented
toolbox, with the classes
Ban and BanArray

In the same computer, with the same memory!

a-3a = =2« aTH=1+r]

a-(a+2)=a?+2a

1

O<E=a"1<a°=1<a1=a<a+1
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New definition of heavy tailed distributions

New Definition: A distribution is considered heavy tailed if its variance (or in general
any of its moments) diverges towards +<o, or if it assumes a (precise) infinite value

A practical example?

LogNormal distribution

» Several applications in the 16l
telecommunications scenarios: a 14}
good statistical model for the 12}
amount of Internet traffic per %10- 2 quantile
time unit, interference power fg’ 8r  Kantile
PDF in device to device i A dmiile
communications, shadowing in | h = 52695
cellular networks... EL ) © =2.4572
-5 0 5 10 15
LogNormal, Q
... BUT

Initial Applications of Alpha Theory in Telecommunications Engineering 12/20



[ The difficulty about using the Log Normal distribution]

«There 1s evidenc  that, over their entire range, many of the distributions we study may
be well characterized jusing lognormal distributions|[19].|However, lognormal
distributions |[do not have infinite variancel and hence are not heavy-tailed| In our work,
we are not concerned with distributions over their entire range --- only their tails. As a
result we don't use goodness-of-fit tests to determine whether Pareto or lognormal
distributions are better at describing our data. However, it 1s important to verify that
our datasets exhibit the infinite variance characteristic of heavy tails. »

From “Explaining World Wide Web Traffic Self-Similarity”, M. E. Crovella and A. Bestavros, 1995 ,Technical Report TR-95-015

What would alleviate/solve the problem?

The possibility to generate pseudo-random numbers, obeing a Log Normal
distribution, but having a finite mean and an infinite variance

THIS CANNOT BE ACHIEVED USING STANDARD ANALYSIS AND REAL NUMBERS!
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Euclidean LogNormal distribution

07 E |
(A0 - E[X) X~ In N o)

—_— I,l +0 Z 0005 )
X =c¢ , LE N(O,l) s |
0003 -
0oz -
(il -
.0

var{X} = (e“z - 1) g2uto’

0.2
+_ 1L
E{X}=e""2 P— o] _
Thanks to the two parameters, it is possible !
to obtain and _ Ao)
. e g fiXing_ .II:l.ll L']I1 II:'J ﬂ,lii II:-] 0o 0a L 20 a0 40 -':['J
o=u +02 ?Z_l_% VAH{X} _ 62;;,-{-202 - E2p+a2 _
2 i/ —elTT = = -
u:—a? L{X} © €mn 1 _ E—(12+2{.Y2 o E—ﬂf-}-ﬂg/: Erx“’:' _ 1

» We filled the gap: LogNormal and heavy tailness are consistent with each other

Thanks to our Matlab toolbox implementation, we have been able to generate
pseudo-random samples following an Euclidean LogNormal distribution, with
finite mean and well-defined infinite variance
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Euclidean Gaussian distribution

(-0.5 -0.204753n +2.4027 1n"{2} +1.76278n {3 )a"{2}
(-0.5 -0.196902n +0.513552n"{2} +1.33282n" {3« {2}
(-0.5 -0.638722n -0.7073287"{2} -1.107 140"~ {3 a" {2}
(-0.5 +0.168241n -1.15482n"{2} -0.404674n "~ {3})a"{2}
(-0.5 -1.868231 +0.33322n"{2} +0.209238n "~ {3} a" {2}
(-0.5 -1.59852n +1.47004n "~ {2} -1.50524n"{3Pa" {2}
(-0.5 -0.515042n -1.69168n"{2} +0.643354n~{3Na"{2}
(-0.5 +0.222991n -1.65619n"{2} -1.25562n"{3})a {2}
(-0.5 -2.318591 -1.782361 {2} -0.391342n" {3 a" {2}
(-0.5 +0.895515n -0.461908n"{2} +1.33434n"{3Na"{2}
(-0.5 -0.494549n -0.610375n"{2} +2.3183n"~{3DNa"{2}
(-0.5 +1.38613n -1.452n~{2} -1.35357n* {3« {2}

(-0.5 +0.196699n -0.619071"{2} +0.750757n" {3 a" {2}
(-0.5 -1.2165n +0.0805883n"{2} +1.30813n" {3} )a"{2}
(-0.5 +0.607305n -2.0783n"{2} -1.02289n~ {3 a" {2}
(-0.5 -257167n -1.58652n"{2} +0.292704n~ {3 {2}
(-0.5 -0.505779n -2.10522n"~{2} -0.453094n " {3 a" {2}
(-0.5 +0.102648n -0.731497n" {2} +2.763n"{3})a"{2}
(-0.5 -1.22966n +0.770481n"{2} +0.293396n" {3« {2}
(-0.5 -1.9979n +2.14819~ {2} +1.27009n~ {3 a" {2}

(-0.5 +1.01019n +1.50467n"{2} -0.684386n"~{3})a{2}
(-0.5 +0.895845n -0.306128n"{2} +1.51678n" {3 a"{2}
(-0.5 -0.655424n -1.09089n" {2} -0.844247n~ {3} )a" {2}
(-0.5 -0.0809119n +0.116024n"{2} -0.681505n"~{3Na"{2}
(-0.5 +0.518093n +0.34763n" {2} +0.166315n" {3 a {2}
(-0.5-1.106111n +0.543505n" {2} +1.37694n {3} )a"{2}
(-0.5 -0.03366091 -0.563575n"{2} -0.055141 7"~ {3} )a~{2}
(-0.5 +1.52928n -0.548954n"{2} -0.775672n" {3} a" {2}
(-0.5 +0.794615n +1.203460" {2} -1.77628n~ {3 a {2}
(-0.5 +0.355161n +1.02907n" {2} +0.733149n* {3 Na {2}
(-0.5 -0.509023n -1.70048n"{2} -1.93089n~ {3 a"{2}
(-0.5 -0.203379n +0.529956N" {2} -0.249475n"{3Pa"~{2}
(-0.5 -1.51332n -0.0046497 1" {2} -0.431933n~ {3 a"{2}
(-0.5 -0.667532n -0.725943n"{2} +1.025n* {3 a {2}
(-0.5 -2.49426n -0.339739"{2} +0.591365n*{3)a"{2}
(-0.5 +0.431631n +0.0148419n" {2} +0.574158n " {3 a"{2}

<

Underlying Euclidean
Gaussian distribution

An example of 36 pseudo-random
samples generated in Matlab

[ X X J How ?

1. By defining the two parameters p and
o like Bans

true MU of EG = Ban([-0.5 0 0 0 ], 2)
true SIGMA of EG = Ban([1 0 0 0 ], 1)

~

~

2. By exploting the well-known Gaussian
Displacement method

bArr = randn(10”"N(n ), 1, 'like', BanArray);
g = bArr*true SIGMA of EG + true MU of EG;

Initial Applications of Alpha Theory in Telecommunications Engineering 15/20



Euclidean LogNormal distribution

... And to numerically check the coherence between the sample values

of mean and variance with the correspective theoretical values

p=—050"+951681 gl

o=0xa

2
a . X _
E{X}=¢'"7 =¢ 0507 +9.54681+0507 _ ,9.54681

: 2 2 O N9 2 2 0O NaO2e
VAR{X} — p2pt20° _ 2pto” c(H—lJ.[lJ.ihn Jat ({I.J.[],J.s()

E{X} (Sample Mean)

VAR{X} (Sample Variance)

103 (A,‘(0.0260943+9.55455712)az ({(1.10438+19.10911,2)az_({(o.0521886+19.109'11,2)02
L 1(0.94948340.03809347+19.1203n%)a*
104] (-0.0126293 +0.01904677+9.560137n%)a el : ") o b
€ ¢(-0.0252587 40.03809347+19.1203n°)a
- o (_,(l.00631-0.00702191)-{-19.()91)2)02_
10| ¢(-0.00351095+9.54501n)« 2 .
: 0(0.00315714 -0.00702197+19.099%)a?
106] (954617 0(0.995845+19.09237%)a” _,19.0923
107] ¢9-54666 P(l.00065-[—19.0933172)02_6,19.0933

(Threshold: 2.5 1073)

Fitting Phase

O est_mean = mean(x);

est_var = var(x);
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Section: Engineering Distribution Having a Numerically Verifiable Infinite Variance
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ranging from teletraffic modelling to financial engineering. In practice, the most interesting heavy
tailed distributions are those having a finite mean and a diverging variance. The LogNormal
distribution is sometimes discarded from modelling heavy tailed phenomena because it has a finite
variance, even when it seems the most appropriate one to fit the data. In this work we provide for
the first time a LogNormal distribution having a finite mean and a variance which converges to a
well-defined infinite value. This is possible thanks to the use of Non-Standard Analysis. In particular,
we have been able to obtain a Non-Standard LogNormal distribution, for which it is possible to
numerically and experimentally verify whether the expected mean and variance of a set of generated
pseudu-randum numbers agree with the theoretical ones. Moreover, such a check would be much
more cumbersome (and sometimes even impossible) when considering heavy tailed distributions in
the traditional framework of standard analysis.
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«[...] The theorem and current results provided in this manuscript look very promising
and | am very impressed by it. [...] » < opinion of one of the reviewers (boldface added by us)
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Another possible application in TLC

> Queueing Theory

M/@/ﬂ' i Kendall’s Notation

_Efng A

UK K

A — K::>A_, What if

n ] ] 2
Wait Service 5 00
gll'elr:'llg node / E{TS }

This could happen..
With an heavy tailed Service distribution!
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Alpha Theory and Pareto distribution

Standard Pareto (infinite support)

fu(x)
3.0

0o a=l . R 25
E(X) = { o o5, “Wild Behaviour’: o
- ac (Ll onl).' diverging .
Var(X) = { (_1)2% Y variance 1.0
0.5
retained in the . . 3 :
Difficult/meaningless Euclidean o  rocl
Euclidean extension framework ew aegrees or freeaom

Truncated Pareto (finite support)

* More suitable for real dataset, with an upper
limit

* More degrees of freedom in the mean and
the variance

0 ) ' 0 .’

Meaningful for a future Euclidean extension

0.5
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=) 1.

=) 2.

=) 3.

= 4.

Conclusions

We have analysed some peculiar properties of heavy tailed
distributions and possible approaches to exploit them in
telecommunication scenarios

We have highlighted and proved in Matlab some issues in simulations
with standard heavy tailed distributions

We have implemented in Matlab a mini object-oriented toolbox (Ban
& BanArray classes) that supports Euclidean numbers and their
operations, to reduce simulations troubles with ht distributions

We have proposed (and simulated in Matlab) a new Euclidean ht
LogNormal distribution and numerically checked the correctcness of
the sample mean and variance with respect to their theoretical values

Future Works

Application of Euclidean heavy tailed models to TLC Queues Scheduling
algorithms, Load balancing, Routing decisions, etc.
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Grazie per l'attenzione!

Francesco Fiorini

francefiorinil4@gmail.com
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Another possible application in TLC

> Queueing Theory M/G/1

Table 5.1 Measures of Effectiveness for the M /G /1 Queue

L — 1+C% p? _ AZE[S?] PP+ Nog
! 2 1-p 2(1 - p) 2(1-p)
W 1+C% P ~ AE[S?] PP /A+ Ao
! 2 p-A 2(1-p) 2(1-p)
2 2 2 2
W:1+CB- p +_1_ _ AE[S%] +£ zpfk+kaﬁ+l
2 p—A p 2(l-p) n 2(1-p) p
1 C‘E 2 )‘FESE 2 )\2 2
2 1-p 2(1-p) 2(1 - p)

Euclidean Numbers for accurate simulation of heavy tailed probability density function 23



The product of two LogNormals... is still
LogNormal

Z € N(0,1)

G € N(UTot: 0-72’0t)

Uror = Mg T+ M2 O-Tz"ot = 0'12 + 0'22 + 2 fOV(Z1;Zz)

L

p 01 03

... And 1is this true even for BANs?

InigatARelicationbat £8P adRFIEE B tIRIPoRBE RSFUP Rsi B BoH BRIty density function 24



Example 1: product of 2 BANs LogNormals

O Same means
O StdDev with the same real finite part and
different first order infinitesimal part
L Completely anticorrelated: p=-1

o =a+b+0n*, oy=a+cn+0n*

07 = a’+2abn+b°n*, o5 = a*+2acn+c*n?,

pr = p2 = 1+1n

o1 = 1073 4+0.80, o0 = 1073 +0.29

o109 = a’+ abn+acn + ben?;

=P By ordering the two samples in opposite ways

Ofor = a? + 2abn + b1 + a® + 2acn + A — 2(a? + abn + acy + ben?) = (b — )y

@ NumerosityOfSample

ComputedMean

ComputedVariance

10°
E{Y} =
= 7.3890 + 14.7781n + 16.1081n?

7.38915 +14.87731 +16.62947”

2.12328
1077 + 0.00259586m
+20.6137n*

Var{Y} =

7.38905 +14.83531 +16.24247°

1.0798810~®
7.0673610°n
+19.4986n>

=0+ 0n + 19.6553n* 10°

7.38002 +14.74177 +16.066377

1.62759  107*
6.4263410°n
+19.70087?

InigaLAgelnatiombet &MBPadhAEs YinkIRAPORTOY RSt RsifdEB BYeHaMlity density function 25




Example 1: product of 2 BANs LogNormals

© 00 N oo ok Wk

e e e e
s W N = O

% Number of elements of the two samples of random generated numbers
NumerosityOfSample = leb;

% Means of the two samples
mul = Ban([1 1], 0);

mu2 = Ban([1 1], 0);

% Standard Deviations of the two samples
sigl = Ban([le-3 0.8], 0);

sig2 = Ban([le-3 0.2], 0);

% Correlation coefficient of the two samples
rho = -1;

% Generation of the Gaussian sample with the chosen mean and standard
deviation
X1 = BanArray (randn (NumerosityOfSample,3)) = sigl + mul;

% Generation of a Log Normal sample based on the Gaussian one
Z1l = exp(X1);

% Confront theoretical and computed means
TheoreticalSampleMeanZl = exp(mul + siglxsigl/2)
ComputedSampleMeanZl = mean (Z1)

% Confront theoritcal and computed variances

TheoreticalSampleVarianceZl = exp(mul*2 + siglxsigl*x2) - exp(mul*x2 +
sigl*sigl)

ComputedSampleVarianceZl = var (Z1)

InigaLAgelnatiombet &MBPadhAEs YinkIRAPORTOY RSt RsifdEB BYeHaMlity density function
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Example 1: product of 2 BANs LogNormals

% Sorting the first sample by ascending order
SortedZl = sort (Zl, "ascend");

% Generation of the Gaussian sample with the chosen mean and standard
deviation
X2 = BanArray (randn (NumerosityOfSample, 3)) *x sig2 + mu2;

% Generation of a Log Normal sample based on the Gaussian one
Z2 = exp(X2);

£ Confront theoretical and computed means
TheoreticalSampleMeanzZ2 = exp (mu2 + sig2xsig2/2)
ComputedSampleMeanZ2 = mean (Z2)

% Confront theoritcal and computed variances

TheoreticalSampleVarianceZ2 = exp(mu2x2 + sig2xsig2x2) - exp(muZ*2 + ...
sig2xsig2)

ComputedSampleVarianceZ2 = var (Z2)

% Sorting the second sample by descending order
SortedZ2 = sort (Z2, "descend");

o

Computing the product of the two samples

Z = SortedZlxSortedZ2;

¢ Computing theoretical mean and variance of the product of the underlying
% Gaussians

VarGauss = sigl*sigl + sig2xsig2 + siglxsig2xrhox2;

MeanGauss = mul + mu2;

% Confront theoretical and computed means

TheoreticalSampleMeanZ = exp(MeanGauss + VarGauss/2Z2)

ComputedsSampleMeanZ = mean(Z)

& Confront theoretical and computed wvariances

TheoreticalSampleVarianceZ = exp (MeanGauss*2 + VarGaussx2) - ...
exp (MeanGauss+*2 + VarGauss)

ComputedSampleVarianceZ = war (Z)

InigaLAgelnatiombet &MBPadhAEs YinkIRAPORTOY RSt RsifdEB BYeHaMlity density function
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Example 2: sum of 2 BANs Gaussians

[ Same infinite means!

O StdDev with the same infinite part and

different n coefficients

L Completely anticorrelated: p=-1

o1 = aa + b+ 0n,

o] = a*a’+2aba+b?,

2

oo = aa + ¢+ On;

2

ﬁ

05 = a*a’+2aca+c?,

p1 = p2 = (100 + 100n)
o1 = (1 +80n)a, o9 = (1 + 20n)a

Same previous method

2 | 2 _ 2 2 _ 2
Ofor = 01 + 05 + 20009p = 07 + 05 — 20102 = (b — c)

0109 = a*o’+aba+aca+be;

¥

NumerosityOfSample

ComputedMean

ComputedVariance

llTot=
= (200 + 2007 + 01°)«x

10°

(200.053 +201.8997 -2.182937°)

(0.00447257
+1.32653n
+3798.93n2)a?

2 _
OTot =

10?

(200.013 +200.4061 +0.0353657%)a

(0.000229636
+0.8219947,
+3672.712)

= 3600 4 0n + 0n*

10°

(200.009 +200.2337 +0.21847677)x

(5.72684
107° — 0.42596n
+3572.24n%)a?
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Example 2: sum of 2 BANs Gaussians

W ok o=

oW o= ;L

e e e e
o e WK = O

16
17
15
19
20
21

o

& Number of elements of the two samples of random generated numbers
NumerosityOfSample = 1le3;

£ Means of the two samples
Ban([100 100],
Ban([100 100],

mul
muz

1)y
1)y
& Standard Deviations of the two samples
sigl Ban([1l 80], 1);
sig2 Ban({[1l 201, 1);

L+

& Correlation coefficient of the two samples
rho = -1;

& Generation of the Gaussian sample with the chosen mean and standard ...
deviation
¥1 = BanlArray (randn (NumerosityOfSample, 3)) =+ sigl + mul;

& Sorting the first sample by ascending order

SortedXl = sort(Xl, "ascend");

& Generation of the Gaussian sample with the chosen mean and standard ...
deviation

¥2 = BanArray (randn (NumerosityOfSample, 3)) =+ sig2 + mu2;

& Sorting the second sample by descending order

SortedX2 = sort (X2, "descend");

& Computing the sum of the two samples (this time the Gaussians are
£ considered, so the sum is the one to loock at)

¥ = SortedXl + SortedXZ;

o

& Confront theoretical and computed means

TheoreticalSampleMeanX = mul + mu2

ComputedSampleMean¥ = mean (X)

% Confront theoretical and computed wariances
TheoreticalSampleVarianceX = siglxsigl + sig2+sig2 + siglxsigZsrho=x2

ComputedSampleVarianceX = wvar (X)
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Exp of a BAN

=1 & e Wk

function eb = exp(b) % exponentiation
c = b.coeff(l);
b = b - Ban(b.coeff(1l));
b_square = bxb;
b_cube = b_squarexb;
eb = (b + b_.square/2.0 + b_cube/6.0 + Ban(1.0)) * exp(c);

end

It extracts the finite part (c) and compute the exp by hand for it; for the remaining BAN
(that is infinitesimal: first coefficient, that is the finite part, is now 0), it uses the Mc-
Laurin expansion around x_0=0 (the formula below)

Taylor: £ = Fe) + £/ r—x0) + o x4 4+ LD G oGm0
Mc-Laurin: xo=0  f(x) = f(0) + f'(0) x+me) x% + ---+frf:]) ()" + o(x™)
x?  x3 x"
X — e — n
e-1+x+2+3!+ +n!+0(x}
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Simulations with standard heavy tailed distributions

Some Issues

2. Slow Convergence & High
variability at Steady State ? mm) Standard Case

Do you request t digits of accuracy of your S— A — 1

_ < 107"
sample mean estimator? 7

Recalling the CLT formula...

With respect to the true value

-1/2
. A~y =n"d
T [ RN PP
2.0 10 10° V
1.7 19.3 107 10° /2 ,
1.5 10° 106 n-2vl0
1.3 1013 10°
1.2 1018 10°
1.1 “]3.".- 106

A practical example with t=3 & Pareto distribution

p,. on the left, and standard case on the right

Initial Applications of Alpha Theory in Telecommunications Engineering
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Simulations with standard heavy tailed distributions
Some Issues

2. Slow Convergence & High variability at Steady State

Do you request t digits of accuracy of your

(sample mean estimator? ]

With respect to the true value % can ﬁ@‘ E)@ Q]@@GQ]D@

V1
In a queue system simulation: if you want that:

Measured Sesire
A— Q" utilisation esired
fficient utilisation
Waiting Service coefrici
area node

Sample Mean of the

service times v
Dy Therefore the «accuracy» is an <:I x must be close to its desired
SRR important factor mean value p, to have stability
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GCLT - a-stable Distributions

ObobwEHHan npenesibHas TeopemMa

rIyCTb cnyqaﬁHble BEJIMHUNHDI X,‘ HE3ABMNCNMbl, OOMNHAKOBO pacCnpegesieHbol 1N
YOOBNETBOPAKT YCNIOBNAM

P(X >x) ~ ax x © X — 00 a. >0
P(X<—x) ~ a_x° X —» 00 a_ >0

rae 0 < a <2 unm a; + a- > 0. Torga cywecTeytoT Takue
nocnegoBatensHoctn A, n B, > 0, 410 npn n — oo

at+ + a—

(ZX,——An) /By 1 S,(1,8,0)  rae B = St 9=
i=1

npm o = 2 A, = na B, =+\cnlnn
= [wnc/ (27 () sin(am /2))]Y @
= mnc/2

= [rnc /(2T () sin(ar /2))]H <

npm o € (1,2) A, = na

3

npum a =1 A, = Bcnlnn

npu « € (0,1) A,=0

W o W
=1

3

rae a=EX unuc=a, +a_
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a-stable Distributions
« stable distributions 98

==

M

A random variable X is said to have a stable distribution (indicated as X ~ S, (0, B, ,u) ) if there are
parameters 0 < a < 2,0 > 0,—1 < 3 < 1, and i € R such that its characteristic function has
the following form

B (AX) exp{—o®\|* [1 —iB tan(ZEsgn(N))] +ipA} a#1
e —
exp{—0|A| [1 4+ iB2sgn(X) log [A]] + ipA} a=1

»* (v is the index of stability, related to the weight of the tails of the distribution function
w Gaussian distribution if « = 2: X ~ Sy(o, 3, i) is equivalentto X ~ N (u,202)
w Cauchy distribution if &« = 1;if X ~ S1(0,0,u) =

1 o

7w 0%+ (x — p)

f(:E) = )
»+ (3 is the skewness parameter, related to the shape of the tails of the distribution function
w3 = () in the case of symmetric distribution
»* o is the dispersion parameter, related to the spread of the distribution around its location parameter
/4, similar to the variance of the Gaussian distribution
B+ (1 is the location parameter

mw meanifl < a < 2
m medianif 0 < a < 1

&
2

= ~
Z. &

1343
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a-stable Distributions

Important properties of a-stable distributions 100
i Let X ~ S, (0,3, 1) with0 < a < 2. Then
1 1.4
lim *P(X > z)i= 03 ﬁao‘
< T—00 2
. « 1= B a
lim 2°P(X < —g)=C; o
\ z—00 2
where
00 —1 1—a
Co = / r*sinods) = IC-a)esGarm) *71
0 2/m a =1
15 Let X ~ S, (o, B, 1) with0 < a < 2. Then
E|IXIP<oo for 0<p<a
E|XP=00 for p>a
5= A symmetric cv-stable distribution behaves approximately like a Gaussian around its origin
1= but for < 2 the a-stable distribution is heavy-tailed (more precisely power-law tailed)
=" The lower the characteristic exponent « the heavier the tails of the «-stable distribution
bé&w 5 (y-stable distributions are used to model phenomenons which are impulsive in nature
' 1343 ’ 35
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a-stable Distributions

=1 %

== Central Limit Theorem

Let X, Xo,... be asequence of IID RVs with finite mean a and variance o%. Then
Ar I — (4)
Z, = — X: — no N (0,02
= (5% - ne) S 407

5= Generalized Central Limit Theorem: the family of stable distributions contains all limiting distributions
of sums of 1ID random variables

7 2 ll/a (ZXz - na) (—‘Q L
n

=1

»+ [, is an a—stable distribution, with index of stability o
»+ (v is the critical order of convergence of the moments of X, i.e., Vg > a EX? = o0

Modelling traffic burstiness Michele Pagano — September, 2018
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Stable Distribution: def

Let X and X be independent realizations of a random variable X. Then X'is said to be stable if
for any constants @ > 0 and b > 0 the random variable aX; + b.X; has the same distribution as
cX + d for some constants ¢ > 0 and d. The distribution is said to be strictly stable if this holds
with = 0.U']

a-stable case

¢(t; o, B,c, ) = exp(itp — |et|” (1 — iBsgn(t)®))
where sgn(f) is just the sign of t and

{tan(%) a#1
= 2
—=loglt] a=1

The reason this gives a stable distribution is that the characteristic function for the sum of two
independent random variables equals the product of the two corresponding characteristic functions.
Adding two random variables from a stable distribution gives something with the same values of ar

and [, but possibly different values of i and ¢.

GCLT

A generalization due to Gnedenko and Kolmogorov states that the sum of a number of random variables with symmetric distributions having power-law
tails (Paretian tails), decreasing as [:z:|_°‘"1 where 0 < a < 2 (and therefore having infinite variance), will tend to a stable distribution f(z; &, 0, ¢, 0) as
the number of summands grows.["! If & > 2 then the sum converges to a stable distribution with stability parameter equal to 2, i.e. a Gaussian

@ distribution.!"®!
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Truncated Pareto

1 — (&
!‘:g" {;F: '1“'? ?J? ”‘I] .—(;
P

E)n—l ,

+ o p I k 1. k _)

ol FN RIS 1 - (%)n AT (%) ;.[ ‘ - (%) i
k;’ | — (f)u 2

o2 Var{X} = 1«;{(,\' e 15(.\'))2} - B{X?} - B{XP = 2 ) pixy

ST
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Another possible application in TLC

> Queueing Theory

M/G/1

Table 5.1 Measures of Effectiveness for the M /G /1 Queue

1+ C%

2

1+C%

1—p
Je)

2

1+ C%

= A

p

= A

0

-l—p

-+

1
H

_ AZE[S?]
- 2(1-p)

AE[S?]

2(1-p)
_ AE[S?]
- 2(1-p)
_ AZE[S?]
~2(1-p)

PR+ N},

-~ 2(1-p)

PP /A+ Ao

- 2(1-p)
+£ ngf,l-}-/\crzﬂ 1

T 21-p) p
_p2+)\2crf;
- 2(1-p)

+p + p
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Two important properties: (1) Expectation Paradox

“The longer we have
E{X —klX > k} ~k waited...
- T fx () da the longer we should
. f (r— k) IXE) gk K expect to wait!”
2 il' Ix(q) dq ;! Ix(q)dq
3 Different Examples

Y
~rrdr

- 1
E{X —k|X >k} = — = otk

Pareto k [ g o -
k.

=

-
22
AN
5 —
=2
| tial "
< exponentia frebar o
&3 E{X —k|X >k} =~ e 2 (:”)—A;:,s
[0—% dq Be B
k
uniform
2b i
o de 1(ap? - k?) 1
¥ Y ' Y ' y E{X-k|lX >k} =% —k=2o k= (k)
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Two important properties: (2) Mass Count Disparity

“A very tiny subset of
lim PLXy + .. + Xy > 2] =1 foralln>2 observations contains the
v00 Plmax [ Xy, ..., Xn| > 7] vast bulk of the mass in a set of
data”

l T T T T

Exponential
Heavy Tail, alpha=1 ——

» 60% of the mass is contained in
the top 1% of the observations,
which is completely out of
proportion to the fraction of
observations taken into account!

» 80% of the smallest observations
represent less than 20% of the
total mass

S S
(=) co
T
|

<
~
L

Fraction of Total Mass

0.2} TLC real-world example

50-80% of the bytes in FTP

0 02 04 06 08 1 transfers are due to the
Fraction of Smallest Observations largest 2% of all transfers
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BANSs operations

Sum (assuming p > q):

E+{ = a’P(y) +a” (QUp) )
= a? (P () + tea [Q (1) ”77]) .

Product:

eC = aP*Tte, [P() - Q)]

Division:
After having rewritten ¢ as:

¢ =af (qg + Z q;(r;") = g’ (1 —¢),
k=1

!
where ¢ = — Z q—k!]k the definition of the division becomes:
k=1 7o
. Pl
5 = aP 1, [ 1(}7) (1+e+e+...+ s”)]
qo

= aP—‘?(Pw) + tr, [Ep(;?) ] + ... + [e”PC}‘T) D

q0 do qo

Euclidean Numbers for accurate simulation of heavy tailed probability density function
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function avg =

end

function v =

Backup4

mean (bArr)
if size(bArr,2) > 1

error ('To Be Implemented!"');
end
sum =
for

bArr (1) .bArr;
2:size (bArr,1)
sum = sum + bArr (i) .bArr;

1 =

end
avg =
% mean

sum/length (bArr) ;

var (bArr)
if size(bArr,2) > 1
error ('To Be Implemented!"');

end

avg = mean (bArr) ;

slacks = bArr-avg;

squared slacks = slacks*slacks;
v = mean (squared slacks);

% var

function abs bArr = abs (bArrl)
if size(bArrl,2) > 1
error('To Be
Implemented!");
end
abs bArr = bArrl;
for 1 = 1:size(bArrl,1)
if |
bArrl(1).bArr.coeff(l) < 0 )
abs bArr(i).bArr =

Ban (-
bArrl (i) .bArr.coeff,bArrl(i).bArr.lexp);
end
end
end % abs
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Heavy tail definition

Considering its moment-generating function:
Mx (t) = E{e'™}
a distribution is said to be heavy tailed if, for all £ > 0,
Mx (t) = E{?} = .

More details on this definition of heavy tailedness can be found in Konstantinides [2018];
Bianchi et al. [2019].
An implication of this is that:

lim e Fx (z) = oc vt > 0.
I 00

Euclidean Numbers for accurate simulation of heavy tailed probability density function
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Heavy tail definition

Another possible definition of heavy tailed distributions that can be found in the liter-
ature, that actually refers to asymptotically power-law distributions, is the following:

Let X be a random variable with CDF Fx (z) and survival function F x(x). A heavy tailed

distribution is said to exist if:

Fx (z)~ L(z)x

where f(z) ~ a(x) means that lim, ,~ f(z)/a(x) = ¢ for some positive constant ¢ and with

L(z) a slowly varying function at infinity, i.e. for all positive x, lim, ,o L(72)/L(7) = 1.

The case
l<e<2

is of special interest and concerns heavy tailed distributions with finite mean but infinite

variance. If
e<1,

X has infinite mean.

Euclidean Numbers for accurate simulation of heavy tailed probability density function

48



Heavy tail definition — HILL'S ESTIMATOR

An alternative, more rigorous, analytical method to estimate the intensity of the Noah effect, i.e. the value
of the parameter € of a heavy tailed distribution (according to the definition presented in section 5), is to

use the Hill estimator. Let

Uy, Us, ..., Up

denote, for example, the observed data; let them then be written in
Uy 2Ug) 2 . 2 U

form, i.e. through the ordered statistics; the Hill estimator of € is given by:

| =

i=k -1
€L = ( (log Uiy — log U(k))) .
i=1

where the choice of
l1<k<n

indicates how many of the largest observations enter into the calculation of the formula. In practice, we
plot the estimator as a function of k, for a certain range of values. In the presence of tail behaviour in the
data, the plot will vary considerably for small values of k, since only a small fraction of the largest data is

so considered, but will become more stable as more points in the distribution are included.
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Heavy tail definition - LOGNORMAL

The skewness and kurtosis of X are

E (X") = exp (,ut i %G_Et2) 1. skew(X) = (e"2 + 2) e’ — 1

2. kurt(X) = e¥” +2e3" + 3¢2° — 3

E (') = oo for every ¢ > 0.

Proof

By definition, X = ¥ where Y has the normal distribution with mean 1, and standard deviation . Using the change of variables formula for expected value we

have
E (™) :E(ete”) :/_:exp(tey) \/21_11_0_8)(]_3 [—% (%)2]@: \/zl_m /_mexp[tey—%(y;”)zldy (5.12.11)

o0

If t > 0 the integrand in the last integral diverges to co as y — oo, so there is no hope that the integral converges.
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Heavy tail definition - HAZARD RATE -LogNormal

Suppose that X represents the life of some item, with the distribution function Fy (x).
The function defined by

fx@)  fx(@)

=50 = T= Fr@)

(6.36)

is called the hazard function or the failure rate, because hx (t) dt represents the prob-
ability that the life will end in the interval (¢, ¢ + dt], given that X has survived up to
age f;1.e., X > t. If X represents the service time of a customer, as in queueing theory,
hx(t) is called the completion rate function.

The hazard functions of the exponential, Weibull, Pareto, and log-normal distribu-
tions are given as follows:

A, t > 0, forexponential,
a—1
o I .
s (E) , t >0, for Weibull,
hy(t) = | %, t > B, for Pareto, (6.37)

-

-1 expli_(lﬂgf—;tr)z:l
=y } , t>0, forlog-normal,
du

(u—py)?
fog exp| 5

LT

Y
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Heavy tail definition - HAZARD RATE — LogNormal(green) & Pareto(red)

4
3
2
1
T r——1
f -
0 1 2 3 4 5 6 T 8
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Heavy tail

025

02

01

s
0;5\

definition - HEAVY TAIL? PDF tails in order: Pareto,
LogNormal and Exp

.y
34 35 36 37 3.8 39 4 41 42 43 44 45 46 47 438
f
-0.05 @\
01 \ e\ /
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Heavy tail definition - LOGNORMAL shadowing

Now let us discuss how the log-normal RV appears in the signal propagation in a radio
channel. Consider the signal power (or signal strength) at the receiver. It should be the
signal power sent from the transmitter divided by the attenuation or loss factor L (>1)
due to propagation loss. If the propagation is in free space, then L = 4w d?, where d is
the distance between the transmitter and the receiver. In practice, there are additional
components such as absorption of signals in trees, buildings, and other objects, and
these lossy components will vary. Thus, it is proper to treat L as a random variable.
Furthermore, if we divide the path between the transmitter and receiver into contiguous
and disjoint segments, then the overall loss L is the product of the loss within each

segment: . . s . .
g It is reasonable to assume that in most cases these RVs’ L; are statistically indepen-

n dent. Of course, the mean values of the L; may be commonly affected by such factors as

L= l_[ L; the temperature, precipitation, and so forth, but the variation of L; from its mean should

i=1 be unrelated to that of I.;; hence, I; and I.; are statistically independent for j £ i.
Taking the logarithm of (7.54), we have

Y = i Y;, (7.55)

i=1

where we set
Y=InLandY; =InL;, fori =1,2,...,n.

The transformed RVs Y1, Y2, ..., ¥, are statistically independent because L; are inde-
pendent. We do not require the assumption that they are statistically identical to
each other, because a generalized version of the CLT, as stated in Theorem 11.23 of
Section 11.3.4, does not require the identical distribution assumption. Assume that
the ¥; have finite mean u; and variance 0‘52. Then, from the CLT, we can show that

Y is asymptotically (i.e., as n — oo) normally distributed according to N(,u,y,o}%),
where puy =) "_, j; and a‘% =3, 0'1.2, as long as none of the a’f represent a signif-
icant portion of their sum a}%. Therefore, the overall attenuation factor is log-normally

distributed.
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SITA-E - Why Finite Mean needed

More precisely, let F(z) = Pr{X < z} denote the cumulative distribution function of task sizes
with finite mean M. Let k denote the smallest task size, p (possibly equal to infinity) denote the
largest task size, and h be the number of hosts. Then we determine “cutoff points” z;, i = 0...h where
k =xp <r) <T9 < ... <L T < TH =P, such t hat

Lmlkx.dF{x}=Lmﬂx_dF{I}= "'=/:h=px-dF|[_-r]|=£= fh‘?:r-dFl[.r]

o= 1 h—1 h' h'

and assign to the ith host all tasks ranging in size from z;_, to x;.

SITA-E as defined can be applied to any task size distribution with finite mean. In the remainder
of this case study we will always assume the task size disiribution is the Bounded Pareto distribution,
B(k,p, ).

Simulated mean slowdown

105 T T T Ll L] T T
Random : an incoming task is sent to host i with probability 1/h. This policy
equalizes the expected number of tasks at each host. Iy
Round-Robin : tasks are assigned to hosts in cyclical fashion with the ith

task being assigned to host ¢ mod k. This policy also equalizes the expected 10° E

number of tasks at each host, and typically has less variability in interarrival - ~ Random

times than Random. = -. Round-Robin
Size-Based : Each host serves tasks whose service demand falls in a designated a3 .

range. This policy attempts to keep small tasks from getting “stuck” behind 107 ¢ - Dynamic E

large tasks. P -- SITA-E

Dynamic : Each incoming task is assigned to the host with the smallest amount
of outstanding work, which is the sum of the sizes of the tasks in the host’s 2 o
queue plus the work remaining on that task currently being served. This 107 ¢ N
policy is optimal from the standpoint of an individual task, and from a

system standpoint attempts to achieve instantaneous load balance. 0. p
10" b .
DEFINITION 1.1. For any given policy, the slowdown, S, is de- E ‘o
ﬁnedasrespaﬂselimedividedbyjobsize,name!y,S:%.foe ;h“"—“o_——-—9.————6———-.48*--j_—9————G—..__o____e
slowdown for a job of size x, S(x), is thus given by 10° k Q@ J
E o
T'(x) R
S(x) = ——.
W)=
The expected slowdown for a job of size x, E[S(x)], is given by 107" L . . L L L .
r 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Eiso) = 2L alpha
x

Euclidean Numbers for accurate simulation of heavy tailed probability density function 55



SRPT
SRPT: Starvation of Large Jobs? No!

Consider a job in the 99th percentile of the job size distribution (i.e. a very large job). It turns out
that such a job has lower expected slowdown when the scheduling policy is SRPT-like than under a
fair scheduling (Processor-Sharing) type of policy. To see this, recall from Section 2 that the sizes of
requests arriving at a Web server have been shown to have a heavy-tailed distribution. Now
consider a job j in the 99th percentile of the job size distribution. By the heavy-tailed property
(see Section 2), more than half the total workload is contained in jobs of size greater than j. Thus
job jis preempted by less than half the total workload, which in turn implies (see [8]) that j's
expected response time is actually better under SRPT-like scheduling than under a Processor-
Sharing type of scheduling where job j would have to share the resource with the total workload.
By contrast, in the case of an exponential distribution only 5% of the total workload is contained
in jobs of size greater than j. Thus under an exponential workload, job | would be held up by over
95% of the workload and would in fact have signicantly worse performance under an SRPT-like
scheduling policy than under a processor-sharing-like scheduling policy. Thus for an exponential
workload, SRPT-like scheduling is not a good idea
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* Definition 1. Ordinary Set A set A is an ordinary set &=== A satisfies one
of the following properties:

i. A=N

ii. A=P(B), where B is an ordinary set

iii. A=U,;g Bj, whereland all B are ordinary sets

iv. ~A=1f(B), where B is an ordinary set and f any function

&' Definition: Ordered Field K. V a,b,c € K, if a < b, then a+c < b+c and if 0 <3,
0 <b, then 0 <a.b

* Pareto distribution: E(X}—;;.—{x if a<1 FX{:J.-)—{E*?] if £ Tm

oLy - if &<y
o ifa>l

o ition, it’s easy to find the CDF (cumulative di

var(X) = E {[}‘( — ;1.)2} = ] (z— ,u)gfx (z) dz =

Irm

o ifae(l,2
. 2 u . ] I TN
({'k'fl.]) o ff ¥ = 2 FX (:f:) _ { a (T) f-j I~ I

0 ifr<z,

; x ifa<n - ‘
pin = E {X ]r Y et ast [unction, it follows that the probability den:
e ifasn
Tm” . Cn ifz>x
log fx(z) =log |« :11 =log (azp") — (@+1) log z fx(z)=4 =% ! o
I° 0 otherwise
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Backup3

The 2.37 first-order infinitesimal as aBan3: y-1(2.37 + On+ On2+ 0n3) =y-1[2.3700
0] =(-1)[2.37 0 0 0] =“2.37Ban3infmal” Observe how an equivalent representation
would be this one: yO(0 + 2.37n+ 0n2+ 0n3) =y0[0 2.37 0 0] =(0)[0 2.37 0] but the
latter is not in normal Ban representation.

The 4.38 first-order infinite as aBan3: y1(4.38 + On+ 0n2+ 0n3) =y1[4.38 0 0 O]
=(1)[4.38 0 0 0] =“4.38Ban3INFTY

Log Normal: ;)= Lrix<2)= LPrnx <inz) = i@(h”_’”’)

E dax dax a

a-(2)  -o(EERH) £(2) o (220) 2

1 (Inz — p)?
— ﬂxp — .
ro 2T 202

X=(Xy;1=0,1,2...),

Self similar
r(k) ~ k B ask = oo, H =1 (8/2) te series
~(m) Am) g, o
1 X (M-  k |Ha)
- < H < 1
0<p<l. 2 v original series X between non-overl:

t has the same autocorrelation functi

R
) 5 r(k) = E{(Xe) (Xern)}
.~‘_ [
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Backup5

Self similar

one defines the m-aggregate series
X - (x};“} k=123, ) ,

obtained by summing the original series X between non-overlapping blocks of length m.

Thus, if X is self similar, it has the same antocorrelation function

r(k) = E{(X!) (XHJ:)}

) for all values of m. This implies that the series is distributionally self

as the series X
similar: the distribution of the aggregate series is the same, except for changes in time scale,
as the original one.

As a consequence, a self-similar process exhibits the so-called long-range dependence, i.e.

it has an autocorrelation function of the form
k)~ k7 ask = o0,

where
0<p<l,

Thus it decays hyperbolically, slow by comparison with the exponential trend shown by
traditional traffic models,

An interesting feature of using self similar models for time series, is that the degree of LRD
(long range dependence) or self similarity, is expressed using a single parameter, which
expresses the decay rate of the antocorrelation function, Its name is Hurst's parameter,

defined as

H=1-(2)

Thus, for self similar processes,

1
-<H<l1
2

as H approaches the value 1, the degree of self similarity increases, since as f decreases
towards zero, the hyperbolic trend of the tails of the antocorrelation function tends to
increase in level and become slower, leading to a LRD effect on increasingly larger leg

times.
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Heavy tailed distributions in TLC scenarios

* Observed h-t behaviour in telecommunication systems,
respect to quantities such as file sizes on a web server, e el
uptime and silence times in remote communications, L
CPU times, peak rates, connection times. gﬁl gaman i

* HT distributions can have “infinite” variance was) T T s
Noah Effect =m=) “high variability” e

* Superimposing many ON/OFF source models, of which
at least one with a HT distribution, with infinite

- 3888

————— e
0 100 200 300 400 S00 600 700 800 900 1000

Time Unit = 1 Second
(@)

variance for the length of the singles On and Off periods @

Packets/Time Unkt
o8 35888

mam) self-similarity traces in the collective traffic: Noah ]W

effect as a physical cause of the Joseph Effect or self- A
similarity. Gttt

Measured traffic rates, in LAN environments ) ; lw
scaling properties over a wide range of time scales |

0 100 200 300 400 B00 600 700 800 ©00 1000

Tims Unit = 0.01 Second
(®)

Answer: to model telecommunication traffic, among many other applications
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Teletraffic field

i s &
—_—
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[C)]

e Statistically === traffic autocorrelation structure maintained for several
time scales m==) Long-Range Dependence.
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Euclidean distributions:
a) The Euclidean Gaussian (1/2)

* Two working Matlab implementations that allow to generate pseudorandom
numbers following Euclidean probability distributions, with “infinite” mean
and variance ( i.e. two BANS).

Gaussian

1 A
¥ = 1ea. PDF: fx(X)=0\/§e( |
Bd = 2;
setappdata(0, ’BAN DEGREE’, Bd);
true mean = 3.4
true_sigma = 0.1;
true_var = true_sigma * true_sigma;
le=1;

x = BanArray(true mean.*ones(N,1) + true_sigma.*randn(N,1),le);

Two BANs
——5\\“-> (true_mean 0 0 “.)Ah’ ., (true_sigma 0 0...)ﬂ“

/ /
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Euclidean distributions:
a) The Euclidean Gaussian (2/2)

est mean = mean(x); L — Fitting Phase

est_var = var(x);

Experimental results

With N=1e5, le=1, we obtain: x =

(3.46715 +0n +0n~{2})y~{l}
(3.27925 +0n +0n~{2})y~ {1}

True mean:

{34 @ E}Gl . 3'4y (3.47172 +0n +0n~{2})vyv"{1}
Estimated mean: (3.56302 +0n +0n~{2})y"~{1}
(3.3998 @ @)G1  * 3.3998 y (3.44889 +0n +0n"{2})y"{1}

(3.50347 +0my +0n~{2})vy {1}
(3.47269 +0m +0n~{2})v {1}
(3.36966 +0m +0n~{2})vy {1}
(3.42939 +0m +0n~{2})vy {1}

True variance: (3.32127 40n +0n”{2})y~{1}

(0.01 @ 0)G2  ° 0.01 y?
Estimated variance:
(0.0100408 © 8)G2 0.0100408 y>
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NA Log Normal

» A good statistical model to represent the amount of traffic per unit
time.

» In Internet discussion fora === comment length distributions very
regular and described by the log-normal form with a very high precision

Matlab Simulation:

X_as_bArr = BanArray(true_sigma_as_ban.*randn(N,1), le);
X_as_bArr =x_as_bArr + mu_as_ban;

X_as_bArr = true_theta_as_ban * exp(x_as_bArr);

But how to compute eB4N ??

eV =7

"\

VAN Class

100
~Y
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Non-Archimedean Analysis and Gamma Theory

 Axiom (of Archimedes). Let U be any totally ordered field. Then, V x,
vVEU,0<x<y,InEN:y<nx

e Gamma Theory, a non-standard model originally proposed by V.
Benci in 1995

e Axiom 1. Exists an ordered field E © R whose numbers are called
Euclidean numbers

e Axiom 2. Exists a function num, num : U - E which satisfies
»  y=num(N)
> num(A U B) = num(A) + num(B) - num(A n B)
> num(A x B) = num(A) - num(B)
e Axiom 3. Given a real function ¢, 3! ¢* defined over E such that:
" ¢o(x)=¢*(x) VXER
= |d*(R)=1d(E), where Id(A) is the identity function on A




Gamma Theory and Algorithmic Numbers

= Any couple of real functions «,  satisfies:

a) (@ +)* =@* + ¥
b) (@ -d)* =0* - P*
c) (@o)* =@* ¥

* Ris “too rich” to be entirely managed by a finite machine... we
must use Algorithmic Field

>>m1l = single(-2A127); ans=0
>>m2 =single(2A127); >> (m1+m2)+m3
>>m3 = single(1); ans=1

>> ml+(m2+m3)

 The importance of fixed-length representations of numbers in symbolic
computations

» Algorithmic Numbers (ANs), introduced by V. Benci and M.
Cococcioni ... Definition:

& = Zilfc=o 1Y’k ; TER, SkEQ; Sk>Sk41 -
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Algorithmic Numbers & BANs

1
“Normal form”: & =yPP (nﬁ)
where p € Q, m € N and P(x) is a polynomial with real coefficients such
that P(0) =1y #0.

BANSs: Bounded Algorithmic Numbers

Definition: yPP(n) , where P(x)is a polynomial with real coefficients
of degree n such that P(0) #0 and pE€Z.

Operations between two BANs:

Sum: (assuming p = q)

§+{=yPP(m) +yP(QmnP~1) =yP(P(n) + tr,, [Q(mnP~])
Product:

E¢ =yPH e, [P() - Q(n)]

We implemented the class of BANs ( Ban.m) and two-dimensional arrays
of BANs ( BanArray.m) in Matlab
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Backup BANs

Division: After having rewritten ¢ as
n
¢=v1 (qO + Z qk n") = qoy?(1—¢)
k=1

where € =— —n" , the division definition becomes:

P
e [ (m)
do

. <P(n) . [8 POD| , 4 [gn pn(n)D
o do do

(1+8+82+---+e")]

» We implemented the class of BANs ( Ban.m) and two-dimensional
arrays of BANs ( BanArray.m) in Matlab
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Backup VAN 1

The idea is to represent such transcendental infinite numbers as sum of monosemia,
similar to Equation (1) except that the exponents are taken not in QQ but in a vector space
over . To do that, one only requires the definition of a proper transcendental basis V. For

the case €273 it is enough to set V as

i e
V = {Bo, i} = {1. lm} @)

and to define V as the set of all the Euclidean numbers having the powers of v in the space
spanned by V. Indeed, it holds true

e p ‘ P 2+ Q
2713 — 03027 — e.i,ylog., e¥.__ 63’7‘27 log. e _

q 9~lne 2 2. .
- e.!,y Thy — 83’7' By — 63’7251

and more generally, for instance,

82—74—3 + 5,7 276 6362‘7 + 5’) i 83,7231 + 5,}30

27 — eln27 _ elu(2)'7 - ,"‘ln(2)3|

The case of In 7 is quite similar but not straightforward, since it requires to pass through

In~y. To numerically embed it, ones can use the basis

: Inln~ .
VZ{B‘IS ‘30}={ 1 7'1} ('3)
n-
obtaining the following identity
l]_]’y — ’7]05‘1 lnq" r— ’7%‘: — "‘I'B'l

Euclidean Numbers for accurate simulation of heavy tailed probability density function
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Backup VAN 2

Since In 7 is the opposite of In~, one evinces that

1 .
Inp=In-=1In~y 1= _Iny=—4%

!
Finally, an example which merges both the approaches is n7. The first step requires to
apply the Taylor approximation, even if by means of a transcendental function rather than

a polynomial one.

1
= e = e 2 1 plnn + S In?y

Then, one can leverage the Algorithmic field V induced by Equation (3) to rewrite In7 in

a polynomial-like form

1 Iy 1 i g
n""=1+nlnn+ 51)2 In2n=1—4%+5-1 4 5’72(3”3"‘)

Bl .
Alternative approaches may have been rewriting 77 as v » and use the transcendental basis

1
V ={Bo, B1} = {1- —}
A,
obtaining the exact representation 17 = 4~?; or resorting on V in Equation (2) and, after
M
some computations, rewriting 7”7 as e 1. Of course, the latter idea does not bring to a

polynomial-like representation.

Euclidean Numbers for accurate simulation of heavy tailed probability density function

70



Backup VAN 3

Definition 15. We say that the set of euclidean numbers

L A—— W

is a transcendent basis if 3o = 1, and

h<k=VreR, o «a’*
The real vector space V generated by such a basis will be called the order group.
An Euclidean number of the form
ra”, reR, veV

will be called V-monosemium. An Euclidean number of the form
¢
&= Z?‘ka"’“: Uk > Uk41
k=0

is called V-algorithmic number 2.

The V-algorithmic numbers generalize the notion of algorithmic numbers. It is
necessary to say that they are not very suitable for numeric computations since they
do not have a normal form defined by a polynomial such as (5). We introduced them
just for completeness since they might be used in some particular problem. In any
case they form a ring and they have an approximate inverse. It is possible to prove
that there exists an infinite-dimensional real vector pace Vg such that any Euclidean
number can be approximated by a transcendental AN with an order group V C Vz.

Example. Take

V={ﬁo,ﬁ1}={1,i}

log o
The number €?**3 + 5a? can be represented as follows:

~~ . ..

Euclidean Numbers for accurate simulation of heavy tailed probability density function

71



Backup?2

TheBanclassB.1.1 How to set the degree of the BanUse the command
setappdata(0, 'BANDEGREE’, 3) to set the degree to 3, as an example.

B.1.2 How to set the format for displaying a Ban: Use the command
setappdata(0, 'BANFORMAT’, 0); to display the Ban in ASCII format, like: (123
4)G-3

Use the command setappdata(0, 'BANFORMAT’, 2); to display the Ban in LATEX
format, like: (1 + 2n+ 3n2+ 4n3)y-3

Use the command setappdata(0, 'BANFORMAT’, 1); to display the Ban in an
INTERMEDIATE format, like: (1 +2n+3n{2}+4n{3})y{-3}

The constant 1 (i.e., the Euclidean number one) as aBan3: y0(1 + On+ On2+
On3)=vy0[1000]=(0)[1000]=[1000] =“1Ban3”

The constant O (i.e., the Euclidean zero) as aBan3: yO(1 + On+ On2+ 0n3) =y0[0
000]=(0)[0000]=[0000]="0Ban3”

The real value 7.6 as aBan3: y0(7.6+0n+0n2+0n3) =y0[7.6 0 0 0] =(0)[ 7.6 0 0 O]
=[7.6 00 0] =“7.6Ban3” (the value 7.6 will be stored as a double precision
floating point number)

The constant i as aBan3: y0(3.14 + On+ 0n2+ 0n3) =y0[3.14 0 0 0] =(0)[3.1400
0] =[3.14 00 0] =“3.14Ban3"or even “PIBan3”(of course we had to
approximaternusing finite a finite decimal ap-proximation)
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