A limiting result for the Ramsey theory of functional equations

Paulo Henrique Arruda
Joint work with Lorenzo Luperi Baglini
Faculty of Mathematics, University of Vienna
$$
\text { July 6, } 2022
$$

Schur's Theorem

In 1916 Issai Schur published a paper in which he proved:
Theorem (Schur - 1916)
Given any $r \in \mathbb{N}$ there is a $S(r) \in \mathbb{N}$ such that for all
$c:\{1, \ldots, S(r)\} \rightarrow\{1, \ldots, r\}$ one can find $a, b \in\{1, \ldots, S(r)\}$ satisfying

$$
c(a)=c(b)=c(a+b) .
$$

Nomenclature

For each set S and $r \in \mathbb{N}$, any function $C: S \rightarrow\{1, \ldots, r\}$ is called r-colouring of S; a colouring of S is an r-colouring for some $r \in \mathbb{N}$.

Nomenclature

For each set S and $r \in \mathbb{N}$, any function $C: S \rightarrow\{1, \ldots, r\}$ is called r-colouring of S; a colouring of S is an r-colouring for some $r \in \mathbb{N}$. In the same setting, we also say that S is coloured by c.

Nomenclature

For each set S and $r \in \mathbb{N}$, any function $C: S \rightarrow\{1, \ldots, r\}$ is called r-colouring of S; a colouring of S is an r-colouring for some $r \in \mathbb{N}$. In the same setting, we also say that S is coloured by c. Given any colouring c of S, any $a, b \in S$ satisfying $c(a)=c(b)$ are called c-monochromatic elements of S.

Nomenclature

For each set S and $r \in \mathbb{N}$, any function $C: S \rightarrow\{1, \ldots, r\}$ is called r-colouring of S; a colouring of S is an r-colouring for some $r \in \mathbb{N}$. In the same setting, we also say that S is coloured by c. Given any colouring c of S, any $a, b \in S$ satisfying $c(a)=c(b)$ are called c-monochromatic elements of S. For any $N \in \mathbb{N}$, define $[N]:=\{1, \ldots, N\}$

Nomenclature

For each set S and $r \in \mathbb{N}$, any function $C: S \rightarrow\{1, \ldots, r\}$ is called r-colouring of S; a colouring of S is an r-colouring for some $r \in \mathbb{N}$. In the same setting, we also say that S is coloured by c. Given any colouring c of S, any $a, b \in S$ satisfying $c(a)=c(b)$ are called c-monochromatic elements of S. For any $N \in \mathbb{N}$, define $[N]:=\{1, \ldots, N\}$ Hence, we can rewrite Schur's Theorem as

Nomenclature

For each set S and $r \in \mathbb{N}$, any function $C: S \rightarrow\{1, \ldots, r\}$ is called r-colouring of S; a colouring of S is an r-colouring for some $r \in \mathbb{N}$. In the same setting, we also say that S is coloured by c. Given any colouring c of S, any $a, b \in S$ satisfying $c(a)=c(b)$ are called c-monochromatic elements of S. For any $N \in \mathbb{N}$, define $[N]:=\{1, \ldots, N\}$ Hence, we can rewrite Schur's Theorem as

Theorem (Schur - 1916)

Given any $r \in \mathbb{N}$ there is a $S(r) \in \mathbb{N}$ such that for all r-colouring c of $[S(r)]$ one can find c-monochromatic $a, b, c \in[S(r)]$ such that $a+b=c$.

It is not difficult to see that the (finite) Schur's Theorem is equivalent to

Schur's Theorem

It is not difficult to see that the (finite) Schur's Theorem is equivalent to
Theorem
For all $r \in \mathbb{N}$ and all r-colouring c of \mathbb{N} one can find c-monochromatic $x, y, z \in \mathbb{N}$ such that $x+y=z$.

van der Waerden's Theorem

Theorem (van der Waerden - 1927)
Fixed $r \in \mathbb{N}$ and a r-colouring c of \mathbb{N}. Then for all $k \in \mathbb{N}$ one can find $a, b \in \mathbb{N}$ such that $a, a+b, a+2 b, \cdots, a+(k-1) b$ are c-monochromatic.

Brauer's Theorem

Theorem (A. Brauer - 1928)
Fixed $r \in \mathbb{N}$ and a r-colouring c of \mathbb{N}. Then for all $k \in \mathbb{N}$ one can find $a, b \in \mathbb{N}$ such that $a, b, a+b, a+2 b, \cdots, a+(k-1) b$ are c-monochromatic.

Brauer's Theorem

Theorem (A. Brauer - 1928)
Fixed $r \in \mathbb{N}$ and a r-colouring c of \mathbb{N}. Then for all $k \in \mathbb{N}$ one can find $a, b \in \mathbb{N}$ such that $a, b, a+b, a+2 b, \cdots, a+(k-1) b$ are c-monochromatic.

Clearly, we have that Brauer's Theorem implies both van der Waerden's Theorem and Schur's Theorem.

Rado's Theorem

Let A be a $m \times n$ matrix with rational entries. Let $A_{1}, \ldots, A_{m} \in \mathbb{Z}^{n}$ be the columns of A. We say that A satisfies the columns condition if there is a partition I_{0}, \ldots, I_{r} of $[m]$ such that

Rado's Theorem

Let A be a $m \times n$ matrix with rational entries. Let $A_{1}, \ldots, A_{m} \in \mathbb{Z}^{n}$ be the columns of A. We say that A satisfies the columns condition if there is a partition I_{0}, \ldots, I_{r} of $[m]$ such that
$1 \sum_{i \in I_{0}} A_{i}=\mathbf{0}$; and

Rado's Theorem

Let A be a $m \times n$ matrix with rational entries. Let $A_{1}, \ldots, A_{m} \in \mathbb{Z}^{n}$ be the columns of A. We say that A satisfies the columns condition if there is a partition I_{0}, \ldots, I_{r} of $[m]$ such that
$1 \sum_{i \in I_{0}} A_{i}=\mathbf{0}$; and
$2 \sum_{i \in I_{t}} A_{i} \in \operatorname{span}_{\mathbb{Q}}\left\{C_{i}: i \in I_{0} \cup \cdots \cup I_{r-1}\right\}$ for $t \in[r]$.

Rado's Theorem

Let A be a $m \times n$ matrix with rational entries. Let $A_{1}, \ldots, A_{m} \in \mathbb{Z}^{n}$ be the columns of A. We say that A satisfies the columns condition if there is a partition I_{0}, \ldots, I_{r} of $[\mathrm{m}]$ such that
$1 \sum_{i \in I_{0}} A_{i}=\mathbf{0}$; and
$2 \sum_{i \in I_{t}} A_{i} \in \operatorname{span}_{\mathbb{Q}}\left\{C_{i}: i \in I_{0} \cup \cdots \cup I_{r-1}\right\}$ for $t \in[r]$.
Theorem (R. Rado - 1933)

TFAE:

1 Given any colouring c of \mathbb{N}, there are c-monochromatic $a_{1}, \ldots, a_{n} \in \mathbb{N}$ such that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=\mathbf{0}$; and

Rado's Theorem

Let A be a $m \times n$ matrix with rational entries. Let $A_{1}, \ldots, A_{m} \in \mathbb{Z}^{n}$ be the columns of A. We say that A satisfies the columns condition if there is a partition I_{0}, \ldots, I_{r} of $[\mathrm{m}]$ such that
$1 \sum_{i \in I_{0}} A_{i}=\mathbf{0}$; and
$2 \sum_{i \in I_{t}} A_{i} \in \operatorname{span}_{\mathbb{Q}}\left\{C_{i}: i \in I_{0} \cup \cdots \cup I_{r-1}\right\}$ for $t \in[r]$.

Theorem (R. Rado - 1933)

TFAE:

1 Given any colouring c of \mathbb{N}, there are c-monochromatic $a_{1}, \ldots, a_{n} \in \mathbb{N}$ such that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=\mathbf{0}$; and
2 A satisfies the columns condition.

Rado's Theorem

Theorem (R. Rado - 1933)

TFAE:
1 Given any colouring c of \mathbb{N}, there are c-monochromatic $a_{1}, \ldots, a_{n} \in \mathbb{N}$ such that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=\mathbf{0}$; and

Rado's Theorem

Theorem (R. Rado - 1933)
TFAE:
1 Given any colouring c of \mathbb{N}, there are c-monochromatic $a_{1}, \ldots, a_{n} \in \mathbb{N}$ such that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=\mathbf{0}$; and
$2 A$ satisfies the columns condition.

Rado's Theorem

Theorem (R. Rado - 1933)

TFAE:
1 Given any colouring c of \mathbb{N}, there are c-monochromatic $a_{1}, \ldots, a_{n} \in \mathbb{N}$ such that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=\mathbf{0}$; and
$2 A$ satisfies the columns condition.

Corollary

Let $c_{1}, \ldots, c_{n} \in \mathbb{Z}^{\times}$. The following are equivalent:
1 Given any colouring c of \mathbb{N}, there are c-monochromatic a_{1}, \ldots, a_{n} such that $c_{1} a_{1}+\cdots+c_{n} a_{n}=0$; and
2 there is a non-empty $I \subseteq[n]$ such that $\sum_{i \in I} c_{i}=0$.

Inhomogeneous Rado's Theorem

Theorem (R. Rado - 1933)
Let A be a $m \times n$ matrix with rational entries and $\boldsymbol{b} \in \mathbb{Q}^{m}$. TFAE:

Inhomogeneous Rado's Theorem

Theorem (R. Rado - 1933)
Let A be a $m \times n$ matrix with rational entries and $\boldsymbol{b} \in \mathbb{Q}^{m}$. TFAE:
1 Given any colouring c of \mathbb{N}, there are c-monochromatic $a_{1}, \ldots, a_{n} \in \mathbb{N}$ such that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=\boldsymbol{b}$; and

Inhomogeneous Rado's Theorem

Theorem (R. Rado - 1933)
Let A be a $m \times n$ matrix with rational entries and $\boldsymbol{b} \in \mathbb{Q}^{m}$. TFAE:
1 Given any colouring c of \mathbb{N}, there are c-monochromatic $a_{1}, \ldots, a_{n} \in \mathbb{N}$ such that $A\left(a_{1}, \ldots, a_{n}\right)^{T}=\boldsymbol{b}$; and
2 either

- there is an $a \in \mathbb{N}$ such that $A(a, a, \ldots, a)^{T}=\boldsymbol{b}$; or
- there is an $a \in \mathbb{Z}$ such that $A(a, \ldots, a)^{T}=\boldsymbol{b}$ and A satisfies the columns condition.

Partition Regularity of Equations

Given any $n \in \mathbb{N}$, any infinite set R, functions $f_{1}, \ldots, f_{m}: R^{n} \rightarrow R$, and $r_{1}, \ldots, r_{m} \in R$

Partition Regularity of Equations

Given any $n \in \mathbb{N}$, any infinite set R, functions $f_{1}, \ldots, f_{m}: R^{n} \rightarrow R$, and $r_{1}, \ldots, r_{m} \in R$ We say that the system of functional equations

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{1} \\
\vdots & \vdots & \vdots \\
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{m}
\end{array}\right.
$$

Partition Regularity of Equations

Given any $n \in \mathbb{N}$, any infinite set R, functions $f_{1}, \ldots, f_{m}: R^{n} \rightarrow R$, and $r_{1}, \ldots, r_{m} \in R$ We say that the system of functional equations

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{1} \\
\vdots & \vdots & \vdots \\
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{m}
\end{array}\right.
$$

is partition regular (abbr. as $\mathbf{P R}$) over an infinite subset $S \subseteq R$ if and only if for all colouring c of R one can find c-monochromatic $s_{1}, \ldots, s_{m} \in S$ satisfying $f_{j}\left(s_{1}, \ldots, s_{n}\right)=r_{j}$ for all $j \in[m]$.

Partition Regularity of Equations

Theorem (I. Schur - 1916)
The equation $x+y-z=0$ is $P R$ over \mathbb{N}

Partition Regularity of Equations

Theorem (I. Schur - 1916)
The equation $x+y-z=0$ is $P R$ over \mathbb{N}

Theorem (B. van der Waerden - 1922)
The system for any integer $k \geq 3$ the system there is a $b \in \mathbb{N}$ such that the system

$$
\left\{\begin{array}{ccc}
x_{2}-x_{1} & = & b \\
x_{3}-x_{2} & = & x_{2}-x_{1} \\
\vdots & \vdots & \vdots \\
x_{k}-x_{k-1} & = & x_{k-1}-x_{k-2}
\end{array}\right.
$$

is $P R$ over \mathbb{N}.

Partition Regularity of Equations

Theorem (R. Rado - 1933)
Given any $m \times n$ matrix A, the system $A\left(x_{1}, \ldots, x_{n}\right)^{T}=\mathbf{0}$ is $P R$ over \mathbb{N} if and only if A satisfies the columns condition.

Partition Regularity of Equations

Theorem (R. Rado - 1933)
Given any $m \times n$ matrix A, the system $A\left(x_{1}, \ldots, x_{n}\right)^{T}=\mathbf{0}$ is $P R$ over \mathbb{N} if and only if A satisfies the columns condition.

Theorem (R. Rado - 1933)
Let A be a $m \times n$ matrix with rational entries and $\boldsymbol{b} \in \mathbb{Q}^{m}$. Then the inhomogeneous system $A\left(x_{1}, \ldots, x_{n}\right)=\boldsymbol{b}$ is $P R$ if and only if either

Partition Regularity of Equations

Theorem (R. Rado - 1933)
Given any $m \times n$ matrix A, the system $A\left(x_{1}, \ldots, x_{n}\right)^{T}=\mathbf{0}$ is $P R$ over \mathbb{N} if and only if A satisfies the columns condition.

Theorem (R. Rado - 1933)

Let A be a $m \times n$ matrix with rational entries and $\boldsymbol{b} \in \mathbb{Q}^{m}$. Then the inhomogeneous system $A\left(x_{1}, \ldots, x_{n}\right)=\boldsymbol{b}$ is $P R$ if and only if either

- there is an $a \in \mathbb{N}$ such that $A(a, a, \ldots, a)^{T}=\boldsymbol{b}$; or
- there is an $a \in \mathbb{Z}$ such that $A(a, \ldots, a)^{T}=\boldsymbol{b}$ and A satisfies the columns condition.

Open Questions

Question

What properties on $P_{1}, \ldots, P_{m} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ could ensure that the system (called system of Diophantine equations)

$$
\left\{\begin{array}{ccc}
P_{1}\left(x_{1}, \ldots, x_{n}\right) & = & 0 \\
\vdots & \vdots & \vdots \\
P_{m}\left(x_{1}, \ldots, x_{n}\right) & = & 0
\end{array}\right.
$$

is PR over \mathbb{N} ?

Open Questions

Question

What properties on $P_{1}, \ldots, P_{m} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ could ensure that the system (called system of Diophantine equations)

$$
\left\{\begin{array}{ccc}
P_{1}\left(x_{1}, \ldots, x_{n}\right) & = & 0 \\
\vdots & \vdots & \vdots \\
P_{m}\left(x_{1}, \ldots, x_{n}\right) & = & 0
\end{array}\right.
$$

is $P R$ over \mathbb{N} ?
The case of linear systems (both homogeneous and inhomogeneous) was completely solved by Rado. But only scarce nonlinear cases are known to be (or not) PR over \mathbb{N}.

Hilbert's 10th Problem

Theorem (M. Davis, Y. Matiyasevich, H. Putnam and J. Robinson)
There is no general algorithm that, for any given Diophantine equation, can decide whether this equation has a solution where all the unknowns take integer values.

Hilbert's 10th Problem

Theorem (M. Davis, Y. Matiyasevich, H. Putnam and J. Robinson)
There is no general algorithm that, for any given Diophantine equation, can decide whether this equation has a solution where all the unknowns take integer values.

Question

Is there an general algorithm that, given a Diophantine equation, can decide whether this equation is $P R$ over \mathbb{N} ?

From the PR of $x+y=z$ over \mathbb{N}, we can derive the PR of $x y=z$. Indeed, given a coloring c of \mathbb{N}, define the coloring $\chi(n)=c\left(2^{n}\right)$.

Open questions

From the PR of $x+y=z$ over \mathbb{N}, we can derive the PR of $x y=z$. Indeed, given a coloring c of \mathbb{N}, define the coloring $\chi(n)=c\left(2^{n}\right)$. Thus, we know that both $x+y=z$ and $x y=z$ are PR over \mathbb{N}.

Open questions

From the PR of $x+y=z$ over \mathbb{N}, we can derive the PR of $x y=z$. Indeed, given a coloring c of \mathbb{N}, define the coloring $\chi(n)=c\left(2^{n}\right)$. Thus, we know that both $x+y=z$ and $x y=z$ are PR over \mathbb{N}. Nevertheless, the following question is still open:

Question

Is the system

$$
\left\{\begin{array}{c}
x+y=z \\
x \cdot y=w
\end{array}\right.
$$

partition regular over \mathbb{N} ?

Open questions

From the PR of $x+y=z$ over \mathbb{N}, we can derive the PR of $x y=z$. Indeed, given a coloring c of \mathbb{N}, define the coloring $\chi(n)=c\left(2^{n}\right)$. Thus, we know that both $x+y=z$ and $x y=z$ are PR over \mathbb{N}. Nevertheless, the following question is still open:

Question

Is the system

$$
\left\{\begin{aligned}
x+y & =z \\
x \cdot y & =w
\end{aligned}\right.
$$

partition regular over \mathbb{N} ?

Theorem (J. Moreira - 2018)
For all colouring c of \mathbb{N} there are $x, y \in \mathbb{N}$ such that $x, x+y, x \cdot y$ are c-monochromatic

Open questions

Question

Is the system

$$
\left\{\begin{array}{c}
x+y=z \\
x \cdot y=w
\end{array}\right.
$$

partition regular over \mathbb{N} ?

Theorem (J. Moreira - 2018)

For all colouring c of \mathbb{N} there are $x, y \in \mathbb{N}$ such that $x, x+y, x \cdot y$ are c-monochromatic

Theorem (M. Bowen - 2022)
Given any 2 -colouring of \mathbb{N} one can find c-monochromatic x, y, z, w such that $x+y=z$ and $x y=w$.

Open questions

Theorem (J. Moreira - 2018)
For all colouring c of \mathbb{N} there are $x, y \in \mathbb{N}$ such that $x, x+y, x \cdot y$ are c-monochromatic

Theorem (M. Bowen - 2022)
Given any 2-colouring of \mathbb{N} one can find c-monochromatic x, y, z, w such that $x+y=z$ and $x y=w$.

Theorem (M. Bowen and M. Sabok - 2022)
The system

$$
\left\{\begin{array}{c}
x+y=z \\
x \cdot y=w
\end{array}\right.
$$

is $P R$ over \mathbb{Q}

Open Questions

Question (Monochromatic Pythagorean Triples)
Is the equation $x^{2}+y^{2}=z^{2}$ partition regular over \mathbb{N} ?

Open Questions

Question (Monochromatic Pythagorean Triples) Is the equation $x^{2}+y^{2}=z^{2}$ partition regular over \mathbb{N} ?

Theorem (M. Heule, O. Kullmann and V. W. Marek - 2016)
For every 2-colorings of \mathbb{N} there are c-monochromatic $a, b, c \in \mathbb{N}$ such that $a^{2}+b^{2}=b^{2}$.

Some positive results

■ (Multiplicative Rado) Given $c_{1}, \ldots, c_{m} \in \mathbb{Z}^{\times}$, the equation

$$
\prod_{i=1}^{m} x_{i}=1
$$

is PR over \mathbb{N} iff there is a non-empty $I \subseteq[m]$ such that $\sum_{i \in I} c_{i}=0$;

Some positive results

■ (Multiplicative Rado) Given $c_{1}, \ldots, c_{m} \in \mathbb{Z}^{\times}$, the equation

$$
\prod_{i=1}^{m} x_{i}=1
$$

is PR over \mathbb{N} iff there is a non-empty $I \subseteq[m]$ such that $\sum_{i \in I} c_{i}=0$;
■ (Lefmann) Given any $k \in \mathbb{N}$,

$$
c_{1} x_{1}^{\frac{1}{k}}+\cdots+c_{m} x_{m}^{\frac{1}{k}}=0
$$

is PR over \mathbb{N} iff there is a non-empty $I \subseteq[m]$ such that $\sum_{i \in I} c_{i}=0$;

Some positive results

■ (V. Bergelson, H. Furstenberg, McCutcheon) given any $P \in \mathbb{Z}[x]$ such that $P(0)=0$, the equation

$$
x-y=P(z)
$$

is partition regular over \mathbb{N};

Some positive results

■ (V. Bergelson, H. Furstenberg, McCutcheon) given any $P \in \mathbb{Z}[x]$ such that $P(0)=0$, the equation

$$
x-y=P(z)
$$

is partition regular over \mathbb{N};
■ (N. Hindman) the equation

$$
\sum_{i=1}^{n} x_{i}=\prod_{i=1}^{m} y_{i}
$$

is PR over \mathbb{N};

Some positive results

■ (L. Luperi Baglini) Let $m, n \in \mathbb{N} c_{1}, \ldots, c_{n} \in \mathbb{Z} \backslash\{0\}$ and $F \subseteq\{1, \ldots, m\}$. If there is a non-empty $I \subseteq\{1, \ldots, m\}$ such that $\sum_{i \in I} c_{i}=0$, then the equation

$$
\sum_{i=1}^{n} c_{i} x_{i} \prod_{j \in F} y_{i}=0
$$

is PR over \mathbb{N};

Some positive results

■ (L. Luperi Baglini) Let $m, n \in \mathbb{N} c_{1}, \ldots, c_{n} \in \mathbb{Z} \backslash\{0\}$ and $F \subseteq\{1, \ldots, m\}$. If there is a non-empty $I \subseteq\{1, \ldots, m\}$ such that $\sum_{i \in I} c_{i}=0$, then the equation

$$
\sum_{i=1}^{n} c_{i} x_{i} \prod_{j \in F} y_{i}=0
$$

is PR over \mathbb{N};
■ (J. Moreira - 2018) Let $c_{1}, \ldots, c_{n} \in \mathbb{Z} \backslash\{0\}$ such that $c_{1}+\cdots+c_{n}=0$. Then the equation $c_{1} x_{1}^{2}+\cdots+c_{n} x_{n}^{2}=y$ is PR over \mathbb{N};

Some positive results

- (M. Di Nasso and L. Luperi Baglini - 2018)
- If $P \in \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$ has no constant term and $c_{1}, \ldots, c_{m} \in \mathbb{Z}^{\times}$are such that one can find an $I \subseteq[m]$ satisfying $\sum_{i \in I} c_{i}=0$, then the equation

$$
c_{1} x_{1}+\cdots+c_{m} x_{m}=P\left(y_{1}, \ldots, y_{m}\right)
$$

is PR over \mathbb{N};

Some positive results

- (M. Di Nasso and L. Luperi Baglini - 2018)
- If $P \in \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$ has no constant term and $c_{1}, \ldots, c_{m} \in \mathbb{Z}^{\times}$are such that one can find an $I \subseteq[m]$ satisfying $\sum_{i \in I} c_{i}=0$, then the equation

$$
c_{1} x_{1}+\cdots+c_{m} x_{m}=P\left(y_{1}, \ldots, y_{m}\right)
$$

is PR over \mathbb{N};

- if $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ satisfies $\sum_{i=1}^{n} a_{i}=1$, then the equation

$$
x=\prod_{i=1}^{n} y_{i}^{a_{i}}
$$

is PR over \mathbb{N};

Some positive results

- (M. Di Nasso and L. Luperi Baglini - 2018)
- If $P \in \mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$ has no constant term and $c_{1}, \ldots, c_{m} \in \mathbb{Z}^{\times}$are such that one can find an $I \subseteq[m]$ satisfying $\sum_{i \in I} c_{i}=0$, then the equation

$$
c_{1} x_{1}+\cdots+c_{m} x_{m}=P\left(y_{1}, \ldots, y_{m}\right)
$$

is PR over \mathbb{N};

- if $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ satisfies $\sum_{i=1}^{n} a_{i}=1$, then the equation

$$
x=\prod_{i=1}^{n} y_{i}^{a_{i}}
$$

is PR over \mathbb{N};

- If $P \in \mathbb{Z}[y]$ has no constant term and $c_{1}, \ldots, c_{m} \in \mathbb{Z}^{\times}$, then

$$
c_{1} x_{1}+\cdots+c_{m} x_{m}=P(y)
$$

is PR over \mathbb{N} iff there is a non-empty $I \subseteq[m]$ such that $\sum_{i \in I} c_{i}=0$;

Some positive results

■ (S. Chow, S. Lindqvist, S. Prendiville) For every $n \in \mathbb{N}$ there is a $s(n) \geq 3$ such that

$$
c_{1} x_{1}^{n}+\cdots+c_{s(n)} x_{s(n)}^{n}=0
$$

is PR over \mathbb{N} if and only if there is a non-empty $I \subseteq[m]$ satisfying $\sum_{i \in I} c_{i}=0$. Moreover, $s(2)=5$ and $s(3)=8$.

Some positive results

■ (S. Farhangi and R. Magner - 2022) Let $a, b, c \in \mathbb{Z}^{\times}$and $m, n \in \mathbb{N}$.

Some positive results

■ (S. Farhangi and R. Magner - 2022) Let $a, b, c \in \mathbb{Z}^{\times}$and $m, n \in \mathbb{N}$.

- if $a+b=0$, then $a x+b y=c w^{m} z^{n}$ is PR over \mathbb{N};

Some positive results

■ (S. Farhangi and R. Magner - 2022) Let $a, b, c \in \mathbb{Z}^{\times}$and $m, n \in \mathbb{N}$.

- if $a+b=0$, then $a x+b y=c w^{m} z^{n}$ is PR over \mathbb{N};
- if $\frac{a}{c}, \frac{b}{c}$ or $\frac{a+b}{c}$ is an n-th power in \mathbb{Q}, then $a x+b y=c w z^{n}$ is PR over \mathbb{Z}^{\times};

Some positive results

■ (S. Farhangi and R. Magner - 2022) Let $a, b, c \in \mathbb{Z}^{\times}$and $m, n \in \mathbb{N}$.

- if $a+b=0$, then $a x+b y=c w^{m} z^{n}$ is PR over \mathbb{N};
- if $\frac{a}{c}, \frac{b}{c}$ or $\frac{a+b}{c}$ is an n-th power in \mathbb{Q}, then $a x+b y=c w z^{n}$ is PR over \mathbb{Z}^{\times};
- if $\frac{a}{c}, \frac{b}{c}$ or $\frac{a+b}{c}$ is an n-th power in $\mathbb{Q} \geq 0$, then $a x+b y=c w z^{n}$ is PR over \mathbb{N};

Some positive results

■ (S. Farhangi and R. Magner - 2022) Let $a, b, c \in \mathbb{Z}^{\times}$and $m, n \in \mathbb{N}$.

- if $a+b=0$, then $a x+b y=c w^{m} z^{n}$ is PR over \mathbb{N};
- if $\frac{a}{c}, \frac{b}{c}$ or $\frac{a+b}{c}$ is an n-th power in \mathbb{Q}, then $a x+b y=c w z^{n}$ is PR over \mathbb{Z}^{\times};
- if $\frac{a}{c}, \frac{b}{c}$ or $\frac{a+b}{c}$ is an n-th power in $\mathbb{Q} \geq 0$, then $a x+b y=c w z^{n}$ is PR over \mathbb{N};

Some negative results

■ (Csikvári, Gyarmati and Sárkőzy) The equation $x+y=z^{2}$ is not PR over \mathbb{N};

Some negative results

■ (Csikvári, Gyarmati and Sárkőzy) The equation $x+y=z^{2}$ is not PR over \mathbb{N};
■ (M. Di Nasso and M. Riggio)if $k \notin\{m, n\}$ then the equation $x^{m}+y^{n}=z^{k}$ is not PR over \mathbb{N};

Some negative results

■ (Csikvári, Gyarmati and Sárkőzy) The equation $x+y=z^{2}$ is not PR over \mathbb{N};
■ (M. Di Nasso and M. Riggio)if $k \notin\{m, n\}$ then the equation $x^{m}+y^{n}=z^{k}$ is not PR over \mathbb{N};

- (S. Farhangi and R. Magner - 2022) if $a+b \neq 0$ then $a x+b y=c w^{m} z^{n}$ is not PR over \mathbb{Z}^{\times}

Ultrafilters on a set

An ultrafilter on a set S is any collection \mathcal{U} of subsets of S satisfying
$1 S \in \mathcal{U}$ and $\emptyset \notin \mathcal{U}$;

Ultrafilters on a set

An ultrafilter on a set S is any collection \mathcal{U} of subsets of S satisfying
$1 S \in \mathcal{U}$ and $\emptyset \notin \mathcal{U}$;
2 if $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$;

Ultrafilters on a set

An ultrafilter on a set S is any collection \mathcal{U} of subsets of S satisfying
$1 S \in \mathcal{U}$ and $\emptyset \notin \mathcal{U}$;
2 if $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$;
3 if $A \subseteq B \subseteq S$ and $A \in \mathcal{U}$, then $B \in \mathcal{U}$; and

Ultrafilters on a set

An ultrafilter on a set S is any collection \mathcal{U} of subsets of S satisfying
$1 S \in \mathcal{U}$ and $\emptyset \notin \mathcal{U}$;
2 if $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$;
3 if $A \subseteq B \subseteq S$ and $A \in \mathcal{U}$, then $B \in \mathcal{U}$; and
4 if $A \subseteq S$, either $A \in \mathcal{U}$ or $S \backslash A \in \mathcal{U}$.

Ultrafilters on a set

An ultrafilter on a set S is any collection \mathcal{U} of subsets of S satisfying
$1 S \in \mathcal{U}$ and $\emptyset \notin \mathcal{U}$;
2 if $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$;
3 if $A \subseteq B \subseteq S$ and $A \in \mathcal{U}$, then $B \in \mathcal{U}$; and
4 if $A \subseteq S$, either $A \in \mathcal{U}$ or $S \backslash A \in \mathcal{U}$.
Property (4) above is equivalent to if $A \cup B \in \mathcal{U}$, then either $A \in \mathcal{U}$ or $B \in \mathcal{U}$.

Ultrafilters on a set

An ultrafilter on a set S is any collection \mathcal{U} of subsets of S satisfying
$1 S \in \mathcal{U}$ and $\emptyset \notin \mathcal{U}$;
2 if $A, B \in \mathcal{U}$, then $A \cap B \in \mathcal{U}$;
3 if $A \subseteq B \subseteq S$ and $A \in \mathcal{U}$, then $B \in \mathcal{U}$; and
4 if $A \subseteq S$, either $A \in \mathcal{U}$ or $S \backslash A \in \mathcal{U}$.
Property (4) above is equivalent to if $A \cup B \in \mathcal{U}$, then either $A \in \mathcal{U}$ or $B \in \mathcal{U}$.
Given any $s \in S$,

$$
\mathcal{U}_{s}=\{A \subseteq S: s \in A\}
$$

is an ultrafilter on S, called principal. Any non-principal ultrafilter is called free.

The set of all ultrafilters of S is βS. For each $A \subseteq S$, let

$$
\bar{A}=\{\mathcal{U} \in \beta S: A \in \mathcal{U}\} .
$$

Then $\{\bar{A}: A \subseteq S\}$ is a base of open-and-closed subsets for a topology of βS.

The set of all ultrafilters of S is βS. For each $A \subseteq S$, let

$$
\bar{A}=\{\mathcal{U} \in \beta S: A \in \mathcal{U}\} .
$$

Then $\{\bar{A}: A \subseteq S\}$ is a base of open-and-closed subsets for a topology of βS. Furnished with this topology, βS is completely characterised as the compact ($=$ Hausdorff+compact) space that contains S as a dense subset (identifying every $s \in S$ with \mathcal{U}_{s}) and given any compact K and any $f: S \rightarrow K$ there is an unique continuous $\bar{f}: \beta S \rightarrow K$ such that $\left.\bar{f}\right|_{S}=f$

Ultrafilters on a semigroup

If S has an associative operation $*$, then one can extend this operation to βS as follows:

$$
A \in \mathcal{U} * \mathcal{V} \Longleftrightarrow\left\{s \in S: s^{-1} A \in \mathcal{V}\right\} \in \mathcal{U}
$$

where $s^{-1} A=\{t \in S: s t \in A\}$.

Ultrafilters on a semigroup

If S has an associative operation $*$, then one can extend this operation to βS as follows:

$$
A \in \mathcal{U} * \mathcal{V} \Longleftrightarrow\left\{s \in S: s^{-1} A \in \mathcal{V}\right\} \in \mathcal{U}
$$

where $s^{-1} A=\{t \in S: s t \in A\}$. This operation is associative and for all $s \in S$ and $\mathcal{U} \in \beta S$, the maps

$$
\beta S \ni \mathcal{V} \mapsto s * \mathcal{V} \quad \text { and } \quad \beta S \ni \mathcal{V} \mapsto \mathcal{V} * \mathcal{U}
$$

are continuous

Theorem (Ellis)

Under the above conditions, $\beta S \backslash S$ contains an idempotent element with respect to $*$; i.e. there is an $\mathcal{U} \in \beta S \backslash S$ such that $\mathcal{U} * \mathcal{U}=\mathcal{U}$.

Galvin-Glazer argument

$$
A \in \mathcal{U} * \mathcal{V} \Longleftrightarrow\left\{s \in S: s^{-1} A \in \mathcal{V}\right\} \in \mathcal{U}
$$

Theorem (Ellis)

$\beta S \backslash S$ contains an idempotent element with respect to $*$; i.e. there is an $\mathcal{U} \in \beta S \backslash S$ such that $\mathcal{U} * \mathcal{U}=\mathcal{U}$.

Let $\mathcal{U} \in \beta S \backslash S$ be idempotent. Then $A \in \mathcal{U} \Longleftrightarrow A \in \mathcal{U} * \mathcal{U}$. As such

$$
B=A \cap\left\{s \in S: s^{-1} A \in \mathcal{U}\right\} \in \mathcal{U}
$$

Thus $B \neq \emptyset$ and given any $s \in B, s^{-1} A \cap A \neq \emptyset$. Picking $t \in s^{-1} A \cap A$ we have that st $\in A$.

Galvin-Glazer argument

Hence any idempotent \mathcal{U} in βS satisfies the following: any $A \in \beta S$ contains elements s and t such that st $\in A$.

Galvin-Glazer argument

Hence any idempotent \mathcal{U} in βS satisfies the following: any $A \in \beta S$ contains elements s and t such that st $\in A$.
Let c be a r-colouring of S.

Galvin-Glazer argument

Hence any idempotent \mathcal{U} in βS satisfies the following: any $A \in \beta S$ contains elements s and t such that st $\in A$. Let c be a r-colouring of S. Since $c^{-1}[\{1\}] \cup \cdots \cup c^{-1}[\{r\}]=S$, there is a $i \in[r]$ such that $A=c^{-1}[\{i\}] \in \mathcal{U}$.

Galvin-Glazer argument

Hence any idempotent \mathcal{U} in βS satisfies the following: any $A \in \beta S$ contains elements s and t such that st $\in A$. Let c be a r-colouring of S. Since $c^{-1}[\{1\}] \cup \cdots \cup c^{-1}[\{r\}]=S$, there is a $i \in[r]$ such that $A=c^{-1}[\{i\}] \in \mathcal{U}$. By the above property, A contains elements s and t such that $s t \in A$.

Galvin-Glazer argument

Hence any idempotent \mathcal{U} in βS satisfies the following: any $A \in \beta S$ contains elements s and t such that st $\in A$. Let c be a r-colouring of S. Since $c^{-1}[\{1\}] \cup \cdots \cup c^{-1}[\{r\}]=S$, there is a $i \in[r]$ such that $A=c^{-1}[\{i\}] \in \mathcal{U}$. By the above property, A contains elements s and t such that $s t \in A$.
Hence, given a colouring c of S, there are $s, t \in S$ such that s, t, st are c-monochromatic.

PR via ultrafilters

Theorem

Given any $n \in \mathbb{N}$, any infinite set R, functions $f_{1}, \ldots, f_{m}: R^{n} \rightarrow R$, and $r_{1}, \ldots, r_{m} \in R$ system of functional equations

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{1} \\
\vdots & \vdots & \vdots \\
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{m}
\end{array}\right.
$$

is $P R$ over an infinite set $S \subseteq R$ if and only if there is an $\mathcal{U} \in \beta S$ such that for all $A \in \mathcal{U}$ one can find $a_{1}, \ldots, a_{n} \in A$ satisfying $f_{j}\left(a_{1}, \ldots, a_{n}\right)=s_{j}$ for all $j \in[m]$. We call such an ultrafilter a witness of the PR of the system.

Non-constant solutions

A constant solution for

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{1} \\
\vdots & \vdots & \vdots \\
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{m}
\end{array}\right.
$$

is any $s \in S$ such that $f_{j}(s, \ldots, s)=r_{j}$ for all $j \in[m]$.

Non-constant solutions

A constant solution for

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{1} \\
\vdots & \vdots & \vdots \\
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{m}
\end{array}\right.
$$

is any $s \in S$ such that $f_{j}(s, \ldots, s)=r_{j}$ for all $j \in[m]$. A system that has a constant solution is PR for trivial reasons. We call this trivial $\mathbf{P R}$.

Non-constant solutions

A constant solution for

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{1} \\
\vdots & \vdots & \vdots \\
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{m}
\end{array}\right.
$$

is any $s \in S$ such that $f_{j}(s, \ldots, s)=r_{j}$ for all $j \in[m]$. A system that has a constant solution is PR for trivial reasons. We call this trivial PR.

Theorem (N. Hindman and I. Leader)
The equation $c_{1} x_{1}+\cdots c_{n} x_{n}=0$ is $P R$ over \mathbb{N} iff it is non-trivially $P R$.

Non-constant solutions

A constant solution for

$$
\left\{\begin{array}{ccc}
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{1} \\
\vdots & \vdots & \vdots \\
f_{1}\left(x_{1}, \ldots, x_{n}\right) & = & r_{m}
\end{array}\right.
$$

is any $s \in S$ such that $f_{j}(s, \ldots, s)=r_{j}$ for all $j \in[m]$. A system that has a constant solution is PR for trivial reasons. We call this trivial PR.

Theorem (N. Hindman and I. Leader)
The equation $c_{1} x_{1}+\cdots c_{n} x_{n}=0$ is $P R$ over \mathbb{N} iff it is non-trivially $P R$.
Actually, every equation whose PR is known shown so far is non-trivially PR

Main Result

Theorem (Main Result)

Let S be an infinite set, let $n \in \mathbb{N}$ and let $f_{1}, \ldots, f_{m}: S^{n+1} \rightarrow S$. Let $\sigma\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=0$ be the system of functional equations

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right) \\
\vdots \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)
\end{array}=s_{m} .\right.
$$

Suppose that there exists $k \in \mathbb{N}$ such that for all $s \in S$ the number of solutions in the variables x_{1}, \ldots, x_{n} of $\sigma\left(x_{1}, \ldots, x_{n}, s\right)=0$ is at most k. Then the system $\sigma\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=0$ is partition regular on S if and only if it is trivially $P R$.

PR of equations in two variables

Theorem

Let $P_{1}, \ldots, P_{m} \in \mathbb{Z}[x, y]$ be polynomials having degree ≥ 1 and

$$
\sigma(x, y)=\left\{\begin{array}{c}
P_{1}(x, y) \\
\vdots \\
P_{m}(x, y)
\end{array}\right.
$$

The following facts are equivalent:
1 The system $\sigma(x, y)=0$ has a constant solution;
2 The system $\sigma(x, y)=0$ is $P R$ on \mathbb{N}.
Proof: In each integral domain R an univariate polynomial P has at most $\operatorname{deg} P$ roots.

PR of equations in two variables

Corollary

In the same notations and hypotheses of the previous Theorem, the following are equivalent:
1 The system $\sigma(x, y)=0$ is infinitely $P R$ over \mathbb{N};
$2(x-y)$ divides $P_{1}(x, y), \ldots, P_{m}(x, y)$.
In particular, $x-y$ is the only irreducible infinitely $P R$ polynomial in two variables.

PR of equations in two variables

Corollary

In the same notations and hypotheses of the previous Theorem, the following are equivalent:
1 The system $\sigma(x, y)=0$ is infinitely $P R$ over \mathbb{N};
$2(x-y)$ divides $P_{1}(x, y), \ldots, P_{m}(x, y)$.
In particular, $x-y$ is the only irreducible infinitely $P R$ polynomial in two variables.

Proof: Bézout's Theorem.

PR of S-unit equation

Theorem

Let Γ be a non-torsion multiplicative subgroup of \mathbb{C}^{\times}of rank r. For all $a, b \in \mathbb{C}^{\times}$the equation $a x+b y=1$ has at most $2^{16(r+1)}$ solutions in Γ.

Corollary

Let Γ be a non-torsion multiplicative subgroup of \mathbb{C}^{\times}of rank r. Given any $a, b, c \in \mathbb{C}^{\times}$, the equation $a x+b y+c z=0$ is $P R$ over Γ if and only if it has constant solutions, namely if and only if $a+b+c=0$.

Proof: For all $s \in \Gamma$ we have that $a x+b y+c s=0 \Longleftrightarrow \frac{a}{-c s} x+\frac{b}{-c s} y=1$.

PR of S-unit equation

Corollary

Let Γ be a non-torsion multiplicative subgroup of \mathbb{C}^{\times}of rank r. Given any $a, b, c \in \mathbb{C}^{\times}$, the equation $a x+b y+c z=0$ is $P R$ over Γ if and only if it has constant solutions, namely if and only if $a+b+c=0$.

PR of S-unit equation

Corollary

Let Γ be a non-torsion multiplicative subgroup of \mathbb{C}^{\times}of rank r. Given any $a, b, c \in \mathbb{C}^{\times}$, the equation $a x+b y+c z=0$ is $P R$ over Γ if and only if it has constant solutions, namely if and only if $a+b+c=0$.

Proof: For all $s \in \Gamma$ we have that $a x+b y+c s=0 \Longleftrightarrow \frac{a}{-c s} x+\frac{b}{-c s} y=1$.

PR of S-unit equation

Corollary

Let Γ be a non-torsion multiplicative subgroup of \mathbb{C}^{\times}of rank r. Given any $a, b, c \in \mathbb{C}^{\times}$, the equation $a x+b y+c z=0$ is $P R$ over Γ if and only if it has constant solutions, namely if and only if $a+b+c=0$.

Proof: For all $s \in \Gamma$ we have that $a x+b y+c s=0 \Longleftrightarrow \frac{a}{-c s} x+\frac{b}{-c s} y=1$. As such we see that Rado's Theorem fails in Γ.

PR of S-unit equation

Corollary

Let Γ be a non-torsion multiplicative subgroup of \mathbb{C}^{\times}of rank r. Given any $a, b, c \in \mathbb{C}^{\times}$, the equation $a x+b y+c z=0$ is $P R$ over Γ if and only if it has constant solutions, namely if and only if $a+b+c=0$.

Proof: For all $s \in \Gamma$ we have that $a x+b y+c s=0 \Longleftrightarrow \frac{a}{-c s} x+\frac{b}{-c s} y=1$.
As such we see that Rado's Theorem fails in Г.Moreover, Г cannot contain 3-terms arithmetic progressions.

Polyexponential equations

Fix $m \in \mathbb{N}, i \in[m]$ and $\boldsymbol{\alpha}_{i}=\left(\alpha_{i 1}, \ldots, \alpha_{i n}\right) \in\left(\mathbb{Z}^{\times}\right)^{n}$ such that

$$
\operatorname{gcd}\left(\boldsymbol{\alpha}_{1}, \ldots, \boldsymbol{\alpha}_{m}\right)=\operatorname{gcd}\left\{\alpha_{i j}: i \in[m] \text { and } j \in[n]\right\} .
$$

Theorem

Given polynomials $P_{1}, \ldots, P_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$, the number of solution of the equation

$$
P_{1}(\boldsymbol{x}) \boldsymbol{\alpha}_{1}^{x}+\cdots+P_{m}(\boldsymbol{x}) \boldsymbol{\alpha}_{m}^{x}=0
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{\alpha}_{i}^{x}=\alpha_{i 1}^{x_{1}} \cdots \alpha_{i n}^{x_{n}}$, is finite and only depends on the degree of the polynomials and the number of variables.

Polyexponential equations

Let $P_{1}(x, y, z)=x y-z+2, P_{2}(x, y, z)=x-y+2 z+2$, and $P_{3}(x, y, z)=x y z-z+3$. Then the polyexponential equation

$$
P_{1}(x, y, z) 2^{x} 3^{y}+P_{2}(x, y, z) 5^{x} 7^{y}+P_{3}(x, y, z) 11^{x} 13^{y}=0
$$

is not PR over \mathbb{Z}.

Polyexponential equations

Let $P_{1}(x, y, z)=x y-z+2, P_{2}(x, y, z)=x-y+2 z+2$, and $P_{3}(x, y, z)=x y z-z+3$. Then the polyexponential equation

$$
P_{1}(x, y, z) 2^{x} 3^{y}+P_{2}(x, y, z) 5^{x} 7^{y}+P_{3}(x, y, z) 11^{x} 13^{y}=0
$$

is not $P R$ over \mathbb{Z}. Indeed, fixed any $s \in \mathbb{Z}$, the equation

$$
P_{1}(x, y, s) 2^{x} 3^{y}+P_{2}(x, y, s) 5^{x} 7^{y}+P_{3}(x, y, s) 11^{x} 13^{y}=0
$$

has a finite number of solutions that depend only on the degree of the polynomials and the number of variables. By the main theorem, this equation is PR iff there is a $s \in \mathbb{Z}$ such that

$$
6^{s}\left(s^{2}-s+2\right)+35^{s}(2 s+2)+143^{s}\left(s^{3}-s+3\right)=0 .
$$

which is impossible.

Polyexponential equations

Theorem (General case)

Given polynomials $P_{1}, \ldots, P_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y\right]$ The equation

$$
P_{1}(\boldsymbol{x}, y) \boldsymbol{\alpha}_{1}^{x}+\cdots+P_{m}(\boldsymbol{x}, y) \boldsymbol{\alpha}_{m}^{x}=0
$$

is PR over \mathbb{Z} iff it admits a constant solution.

Preliminary results

Theorem

Let $\mathcal{U} \in \beta S$ and let $f: S \rightarrow S$. Let $\bar{f}: \beta S \rightarrow \beta S$ be the continuous extension of f to βS. Then $\bar{f}(\mathcal{U})=\mathcal{U}$ if and only if there exists $A \in \mathcal{U}$ such that $f(a)=a$ for all $a \in A$.

Lemma

Let $\mathcal{U} \in \beta$ and let $\varphi_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, \varphi_{k}\left(x_{1}, \ldots, x_{n}\right)$ be properties on S. The following are equivalent:
1 Given any $A \in \mathcal{U}$ there exists $a_{1}, \ldots, a_{n} \in A$ and $j \in[k]$ such that $\varphi_{j}\left(a_{1}, \ldots, a_{n}\right)$ is satisfied; and
2 there exists a $j \in[k]$ such that for all $A \in \mathcal{U}$ one can find $a_{1}, \ldots, a_{n} \in A$ satisfying $\varphi_{j}\left(a_{1}, \ldots, a_{n}\right)$.

Main Theorem

Theorem (Main Result)

Let S be an infinite set, let $n \in \mathbb{N}$ and let $f_{1}, \ldots, f_{m}: S^{n+1} \rightarrow S$. Let $\sigma\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=0$ be the system of functional equations

$$
\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)= \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)= \\
\\
\\
s_{m}
\end{array}\right.
$$

Suppose that there exists $k \in \mathbb{N}$ such that for all $s \in S$ the number of solutions in the variables x_{1}, \ldots, x_{n} of $\sigma\left(x_{1}, \ldots, x_{n}, s\right)=0$ is at most k. Then the system $\sigma\left(x_{1}, \ldots, x_{n}, x_{n+1}\right)=0$ is partition regular on S if and only if it is trivially $P R$.

Main Theorem

For all $A \subseteq S$, let

$$
A^{\prime}=\left\{s \in A: \exists s_{1}, \ldots, s_{n} \in A \text { st } \sigma\left(s_{1}, \ldots, s_{n}, s\right)=0\right\} .
$$

By the hypothesis, there are

$$
\psi_{1}, \ldots, \psi_{k}: S^{\prime} \rightarrow S^{n}
$$

such that whenever s_{1}, \ldots, s_{n+1} is a solution to the system then $\exists j \in[k]$ st $\psi_{j}\left(s_{n+1}\right)=\left(s_{1}, \ldots, s_{n}\right)$.

Main Theorem

Let $\mathcal{U} \in \beta S$ be a witness of the PR of this system. Then for all $A \in \mathcal{U}$ we have that $A^{\prime} \in \mathcal{U}$. Thus, by the previous Lemma, TFAE

Main Theorem

Let $\mathcal{U} \in \beta S$ be a witness of the PR of this system. Then for all $A \in \mathcal{U}$ we have that $A^{\prime} \in \mathcal{U}$. Thus, by the previous Lemma, TFAE
$\left(\mathrm{P}_{0}\right)$ for all $A \in \mathcal{U}$ one can find $a_{1}, \ldots, a_{n}, a \in A$ and $j \in[k]$ such that $\psi_{j}\left(a_{n+1}\right)=\left(a_{1}, \ldots, a_{n}\right)$;

Main Theorem

Let $\mathcal{U} \in \beta S$ be a witness of the PR of this system. Then for all $A \in \mathcal{U}$ we have that $A^{\prime} \in \mathcal{U}$. Thus, by the previous Lemma, TFAE
$\left(\mathbf{P}_{0}\right)$ for all $A \in \mathcal{U}$ one can find $a_{1}, \ldots, a_{n}, a \in A$ and $j \in[k]$ such that $\psi_{j}\left(a_{n+1}\right)=\left(a_{1}, \ldots, a_{n}\right)$;
$\left(\mathbf{P}_{1}\right)$ there is a $j_{0} \in[k]$ such that for all $A \in \mathcal{U}$ one can find $a_{1}, \ldots, a_{n}, a \in A$ satisfying $\psi_{j}\left(a_{n+1}\right)=\left(a_{1}, \ldots, a_{n}\right) ;$

Main Theorem

Let $\mathcal{U} \in \beta S$ be a witness of the PR of this system. Then for all $A \in \mathcal{U}$ we have that $A^{\prime} \in \mathcal{U}$. Thus, by the previous Lemma, TFAE
$\left(\mathbf{P}_{0}\right)$ for all $A \in \mathcal{U}$ one can find $a_{1}, \ldots, a_{n}, a \in A$ and $j \in[k]$ such that $\psi_{j}\left(a_{n+1}\right)=\left(a_{1}, \ldots, a_{n}\right)$;
$\left(\mathbf{P}_{1}\right)$ there is a $j_{0} \in[k]$ such that for all $A \in \mathcal{U}$ one can find $a_{1}, \ldots, a_{n}, a \in A$ satisfying $\psi_{j}\left(a_{n+1}\right)=\left(a_{1}, \ldots, a_{n}\right) ;$
Fix such j_{0} and let

$$
A^{\prime \prime}=\left\{a \in A: \psi_{j_{0}}(a) \in A^{n}\right\} .
$$

Then $A^{\prime \prime} \in \mathcal{U}$. Let $\pi_{i}: S^{n} \rightarrow S$ be the projection onto the i-th coordinate. Then

$$
A^{\prime \prime} \subseteq A^{\prime \prime \prime}:=\left\{a \in A: \pi_{i} \circ \psi_{j_{0}}(a) \in A\right\}
$$

We conclude that for all $i \in[n] \pi_{i} \circ \psi_{i}(\mathcal{U})=\mathcal{U}$.

Main Theorem

We conclude that for all $i \in[n] \pi_{i} \circ \psi_{i}(\mathcal{U})=\mathcal{U}$.
Theorem
Let $\mathcal{U} \in \beta S$ and let $f: S \rightarrow S$. Let $\bar{f}: \beta S \rightarrow \beta S$ be the continuous extension of f to βS. Then $\bar{f}(\mathcal{U})=\mathcal{U}$ if and only if there exists $A \in \mathcal{U}$ such that $f(a)=a$ for all $a \in A$.

Main Theorem

We conclude that for all $i \in[n] \pi_{i} \circ \psi_{i}(\mathcal{U})=\mathcal{U}$.
Theorem
Let $\mathcal{U} \in \beta S$ and let $f: S \rightarrow S$. Let $\bar{f}: \beta S \rightarrow \beta S$ be the continuous extension of f to βS. Then $\bar{f}(\mathcal{U})=\mathcal{U}$ if and only if there exists $A \in \mathcal{U}$ such that $f(a)=a$ for all $a \in A$.

Then there is a $B \in \mathcal{U}$ such that $\left.\pi_{i} \circ \psi_{j_{0}}\right|_{B}=\mathrm{id}$.

Main Theorem

We conclude that for all $i \in[n] \pi_{i} \circ \psi_{i}(\mathcal{U})=\mathcal{U}$.
Theorem
Let $\mathcal{U} \in \beta S$ and let $f: S \rightarrow S$. Let $\bar{f}: \beta S \rightarrow \beta S$ be the continuous extension of f to βS. Then $\bar{f}(\mathcal{U})=\mathcal{U}$ if and only if there exists $A \in \mathcal{U}$ such that $f(a)=a$ for all $a \in A$.

Then there is a $B \in \mathcal{U}$ such that $\left.\pi_{i} \circ \psi_{j_{0}}\right|_{B}=$ id. Then $B \cap B^{\prime} \cap B^{\prime \prime}$ contains a constant solution to the system.

Thank you.

Thank you.

paulo.arruda@univie.ac.at

