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Introduction University of Vienna

Schur’s Theorem

In 1916 Issai Schur published a paper in which he proved:

Theorem (Schur - 1916)
Given any r ∈ N there is a S(r) ∈ N such that for all
c : {1, . . . , S(r)} → {1, . . . , r} one can find a, b ∈ {1, . . . , S(r)} satisfying

c(a) = c(b) = c(a + b).
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Introduction University of Vienna

Nomenclature

For each set S and r ∈ N, any function C : S → {1, . . . , r} is called
r-colouring of S; a colouring of S is an r -colouring for some r ∈ N.

In
the same setting, we also say that S is coloured by c. Given any
colouring c of S, any a, b ∈ S satisfying c(a) = c(b) are called
c-monochromatic elements of S. For any N ∈ N, define
[N] := {1, . . . ,N} Hence, we can rewrite Schur’s Theorem as

Theorem (Schur - 1916)
Given any r ∈ N there is a S(r) ∈ N such that for all r -colouring c of
[S(r)] one can find c-monochromatic a, b, c ∈ [S(r)] such that a + b = c.
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Introduction University of Vienna

Schur’s Theorem

It is not difficult to see that the (finite) Schur’s Theorem is equivalent to

Theorem
For all r ∈ N and all r -colouring c of N one can find c-monochromatic
x , y , z ∈ N such that x + y = z.
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van der Waerden’s Theorem

Theorem (van der Waerden – 1927)
Fixed r ∈ N and a r-colouring c of N. Then for all k ∈ N one can find
a, b ∈ N such that a, a + b, a + 2b, · · · , a +(k − 1)b are c-monochromatic.
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Brauer’s Theorem

Theorem (A. Brauer – 1928)
Fixed r ∈ N and a r-colouring c of N. Then for all k ∈ N one can find
a, b ∈ N such that a, b, a + b, a + 2b, · · · , a + (k − 1)b are
c-monochromatic.

Clearly, we have that Brauer’s Theorem implies both van der Waerden’s
Theorem and Schur’s Theorem.
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Rado’s Theorem

Let A be a m × n matrix with rational entries. Let A1, . . . ,Am ∈ Zn be the
columns of A. We say that A satisfies the columns condition if there is a
partition I0, . . . , Ir of [m] such that

1
∑

i∈I0 Ai = 0; and
2

∑
i∈It Ai ∈ spanQ{Ci : i ∈ I0 ∪ · · · ∪ Ir−1} for t ∈ [r ].

Theorem (R. Rado - 1933)
TFAE:

1 Given any colouring c of N, there are c-monochromatic
a1, . . . , an ∈ N such that A(a1, . . . , an)

T = 0; and
2 A satisfies the columns condition.
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Rado’s Theorem

Theorem (R. Rado - 1933)
TFAE:

1 Given any colouring c of N, there are c-monochromatic
a1, . . . , an ∈ N such that A(a1, . . . , an)

T = 0; and

2 A satisfies the columns condition.

Corollary
Let c1, . . . , cn ∈ Z×. The following are equivalent:

1 Given any colouring c of N, there are c-monochromatic a1, . . . , an
such that c1a1 + · · ·+ cnan = 0; and

2 there is a non-empty I ⊆ [n] such that
∑

i∈I ci = 0.
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Inhomogeneous Rado’s Theorem

Theorem (R. Rado – 1933)
Let A be a m × n matrix with rational entries and b ∈ Qm. TFAE:

1 Given any colouring c of N, there are c-monochromatic
a1, . . . , an ∈ N such that A(a1, . . . , an)

T = b; and
2 either

there is an a ∈ N such that A(a, a, . . . , a)T = b; or
there is an a ∈ Z such that A(a, . . . , a)T = b and A satisfies the
columns condition.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 9



Introduction University of Vienna

Inhomogeneous Rado’s Theorem

Theorem (R. Rado – 1933)
Let A be a m × n matrix with rational entries and b ∈ Qm. TFAE:

1 Given any colouring c of N, there are c-monochromatic
a1, . . . , an ∈ N such that A(a1, . . . , an)

T = b; and

2 either
there is an a ∈ N such that A(a, a, . . . , a)T = b; or
there is an a ∈ Z such that A(a, . . . , a)T = b and A satisfies the
columns condition.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 9



Introduction University of Vienna

Inhomogeneous Rado’s Theorem

Theorem (R. Rado – 1933)
Let A be a m × n matrix with rational entries and b ∈ Qm. TFAE:

1 Given any colouring c of N, there are c-monochromatic
a1, . . . , an ∈ N such that A(a1, . . . , an)

T = b; and
2 either

there is an a ∈ N such that A(a, a, . . . , a)T = b; or
there is an a ∈ Z such that A(a, . . . , a)T = b and A satisfies the
columns condition.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 9
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Partition Regularity of Equations

Given any n ∈ N, any infinite set R , functions f1, . . . , fm : Rn → R , and
r1, . . . , rm ∈ R

We say that the system of functional equations
f1(x1, . . . , xn) = r1

...
...

...
f1(x1, . . . , xn) = rm

is partition regular (abbr. as PR) over an infinite subset S ⊆ R if and
only if for all colouring c of R one can find c-monochromatic
s1, . . . , sm ∈ S satisfying fj(s1, . . . , sn) = rj for all j ∈ [m].

P. H. Arruda A limiting result for the Ramsey theory of functional equations 10



Main problem University of Vienna

Partition Regularity of Equations

Given any n ∈ N, any infinite set R , functions f1, . . . , fm : Rn → R , and
r1, . . . , rm ∈ R We say that the system of functional equations

f1(x1, . . . , xn) = r1
...

...
...

f1(x1, . . . , xn) = rm

is partition regular (abbr. as PR) over an infinite subset S ⊆ R if and
only if for all colouring c of R one can find c-monochromatic
s1, . . . , sm ∈ S satisfying fj(s1, . . . , sn) = rj for all j ∈ [m].

P. H. Arruda A limiting result for the Ramsey theory of functional equations 10



Main problem University of Vienna

Partition Regularity of Equations

Given any n ∈ N, any infinite set R , functions f1, . . . , fm : Rn → R , and
r1, . . . , rm ∈ R We say that the system of functional equations

f1(x1, . . . , xn) = r1
...

...
...

f1(x1, . . . , xn) = rm

is partition regular (abbr. as PR) over an infinite subset S ⊆ R if and
only if for all colouring c of R one can find c-monochromatic
s1, . . . , sm ∈ S satisfying fj(s1, . . . , sn) = rj for all j ∈ [m].

P. H. Arruda A limiting result for the Ramsey theory of functional equations 10



Main problem University of Vienna

Partition Regularity of Equations

Theorem (I. Schur – 1916)
The equation x + y − z = 0 is PR over N

Theorem (B. van der Waerden – 1922)
The system for any integer k ≥ 3 the system there is a b ∈ N such that
the system 

x2 − x1 = b
x3 − x2 = x2 − x1

...
...

...
xk − xk−1 = xk−1 − xk−2

is PR over N.
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Main problem University of Vienna

Partition Regularity of Equations

Theorem (R. Rado – 1933)
Given any m × n matrix A, the system A(x1, . . . , xn)

T = 0 is PR over N if
and only if A satisfies the columns condition.

Theorem (R. Rado – 1933)
Let A be a m × n matrix with rational entries and b ∈ Qm. Then the
inhomogeneous system A(x1, . . . , xn) = b is PR if and only if either

there is an a ∈ N such that A(a, a, . . . , a)T = b; or
there is an a ∈ Z such that A(a, . . . , a)T = b and A satisfies the
columns condition.
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Open Questions

Question
What properties on P1, . . . ,Pm ∈ Z[x1, . . . , xn] could ensure that the
system (called system of Diophantine equations)

P1(x1, . . . , xn) = 0
...

...
...

Pm(x1, . . . , xn) = 0

is PR over N?

The case of linear systems (both homogeneous and inhomogeneous) was
completely solved by Rado. But only scarce nonlinear cases are known to
be (or not) PR over N.
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Main problem University of Vienna

Hilbert’s 10th Problem

Theorem (M. Davis, Y. Matiyasevich, H. Putnam and J. Robinson)
There is no general algorithm that, for any given Diophantine equation,
can decide whether this equation has a solution where all the unknowns
take integer values.

Question
Is there an general algorithm that, given a Diophantine equation, can
decide whether this equation is PR over N?
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Main problem University of Vienna

Open questions

From the PR of x + y = z over N, we can derive the PR of xy = z.
Indeed, given a coloring c of N, define the coloring χ(n) = c(2n).

Thus,
we know that both x + y = z and xy = z are PR over N. Nevertheless,
the following question is still open:

Question
Is the system {

x + y = z
x · y = w

partition regular over N?

Theorem (J. Moreira – 2018)
For all colouring c of N there are x , y ∈ N such that x , x + y , x · y are
c-monochromatic
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x · y = w

partition regular over N?

Theorem (J. Moreira – 2018)
For all colouring c of N there are x , y ∈ N such that x , x + y , x · y are
c-monochromatic

Theorem (M. Bowen – 2022)
Given any 2-colouring of N one can find c-monochromatic x , y , z,w such
that x + y = z and xy = w.
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Open questions

Theorem (J. Moreira – 2018)
For all colouring c of N there are x , y ∈ N such that x , x + y , x · y are
c-monochromatic

Theorem (M. Bowen – 2022)
Given any 2-colouring of N one can find c-monochromatic x , y , z,w such
that x + y = z and xy = w.

Theorem (M. Bowen and M. Sabok – 2022)
The system {

x + y = z
x · y = w

is PR over Q
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Open Questions

Question (Monochromatic Pythagorean Triples)
Is the equation x2 + y2 = z2 partition regular over N?

Theorem (M. Heule, O. Kullmann and V. W. Marek – 2016)
For every 2-colorings of N there are c-monochromatic a, b, c ∈ N such
that a2 + b2 = b2.
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Examples University of Vienna

Some positive results

(Multiplicative Rado) Given c1, . . . , cm ∈ Z×, the equation

m∏
i=1

xi = 1

is PR over N iff there is a non-empty I ⊆ [m] such that
∑

i∈I ci = 0;

(Lefmann) Given any k ∈ N,

c1x
1
k

1 + · · ·+ cmx
1
km = 0

is PR over N iff there is a non-empty I ⊆ [m] such that
∑

i∈I ci = 0;
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Examples University of Vienna

Some positive results

(V. Bergelson, H. Furstenberg, McCutcheon) given any P ∈ Z[x ] such
that P(0) = 0, the equation

x − y = P(z)

is partition regular over N;

(N. Hindman) the equation

n∑
i=1

xi =
m∏

i=1
yi

is PR over N;
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Examples University of Vienna

Some positive results

(L. Luperi Baglini) Let m, n ∈ N c1, . . . , cn ∈ Z \ {0} and
F ⊆ {1, . . . ,m}. If there is a non-empty I ⊆ {1, . . . ,m} such that∑

i∈I ci = 0, then the equation

n∑
i=1

cixi
∏
j∈F

yi = 0

is PR over N;

(J. Moreira – 2018) Let c1, . . . , cn ∈ Z \ {0} such that
c1 + · · ·+ cn = 0. Then the equation c1x2

1 + · · ·+ cnx2
n = y is PR

over N;
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Examples University of Vienna

Some positive results

(M. Di Nasso and L. Luperi Baglini – 2018)
If P ∈ Z[y1, . . . , yn] has no constant term and c1, . . . , cm ∈ Z× are such
that one can find an I ⊆ [m] satisfying

∑
i∈I ci = 0, then the equation

c1x1 + · · ·+ cmxm = P(y1, . . . , ym)

is PR over N;

if a1, . . . , an ∈ Z satisfies
∑n

i=1 ai = 1, then the equation

x =
n∏

i=1
yai

i

is PR over N;
If P ∈ Z[y ] has no constant term and c1, . . . , cm ∈ Z×, then

c1x1 + · · ·+ cmxm = P(y)

is PR over N iff there is a non-empty I ⊆ [m] such that
∑

i∈I ci = 0;
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Examples University of Vienna

Some positive results

(S. Chow, S. Lindqvist, S. Prendiville) For every n ∈ N there is a
s(n) ≥ 3 such that

c1xn
1 + · · ·+ cs(n)xn

s(n) = 0

is PR over N if and only if there is a non-empty I ⊆ [m] satisfying∑
i∈I ci = 0. Moreover, s(2) = 5 and s(3) = 8.
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Examples University of Vienna

Some positive results

(S. Farhangi and R. Magner – 2022) Let a, b, c ∈ Z× and m, n ∈ N.

if a + b = 0, then ax + by = cwmzn is PR over N;
if a

c ,
b
c or a+b

c is an n-th power in Q, then ax + by = cwzn is PR over
Z×;
if a

c ,
b
c or a+b

c is an n-th power in Q≥0, then ax + by = cwzn is PR
over N;
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Examples University of Vienna

Some negative results

(Csikvári, Gyarmati and Sárkőzy) The equation x + y = z2 is not PR
over N;

(M. Di Nasso and M. Riggio)if k 6∈ {m, n} then the equation
xm + yn = zk is not PR over N;
(S. Farhangi and R. Magner – 2022) if a + b 6= 0 then
ax + by = cwmzn is not PR over Z×
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Ultrafilters and PR of equations University of Vienna

Ultrafilters on a set

An ultrafilter on a set S is any collection U of subsets of S satisfying
1 S ∈ U and ∅ 6∈ U ;

2 if A,B ∈ U , then A ∩ B ∈ U ;
3 if A ⊆ B ⊆ S and A ∈ U , then B ∈ U ; and
4 if A ⊆ S, either A ∈ U or S \ A ∈ U .

Property (4) above is equivalent to if A ∪ B ∈ U , then either A ∈ U or
B ∈ U .
Given any s ∈ S,

Us = {A ⊆ S : s ∈ A}

is an ultrafilter on S, called principal. Any non-principal ultrafilter is
called free.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 26



Ultrafilters and PR of equations University of Vienna

Ultrafilters on a set

An ultrafilter on a set S is any collection U of subsets of S satisfying
1 S ∈ U and ∅ 6∈ U ;
2 if A,B ∈ U , then A ∩ B ∈ U ;

3 if A ⊆ B ⊆ S and A ∈ U , then B ∈ U ; and
4 if A ⊆ S, either A ∈ U or S \ A ∈ U .

Property (4) above is equivalent to if A ∪ B ∈ U , then either A ∈ U or
B ∈ U .
Given any s ∈ S,

Us = {A ⊆ S : s ∈ A}

is an ultrafilter on S, called principal. Any non-principal ultrafilter is
called free.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 26



Ultrafilters and PR of equations University of Vienna

Ultrafilters on a set

An ultrafilter on a set S is any collection U of subsets of S satisfying
1 S ∈ U and ∅ 6∈ U ;
2 if A,B ∈ U , then A ∩ B ∈ U ;
3 if A ⊆ B ⊆ S and A ∈ U , then B ∈ U ; and

4 if A ⊆ S, either A ∈ U or S \ A ∈ U .
Property (4) above is equivalent to if A ∪ B ∈ U , then either A ∈ U or
B ∈ U .
Given any s ∈ S,

Us = {A ⊆ S : s ∈ A}

is an ultrafilter on S, called principal. Any non-principal ultrafilter is
called free.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 26



Ultrafilters and PR of equations University of Vienna

Ultrafilters on a set

An ultrafilter on a set S is any collection U of subsets of S satisfying
1 S ∈ U and ∅ 6∈ U ;
2 if A,B ∈ U , then A ∩ B ∈ U ;
3 if A ⊆ B ⊆ S and A ∈ U , then B ∈ U ; and
4 if A ⊆ S, either A ∈ U or S \ A ∈ U .

Property (4) above is equivalent to if A ∪ B ∈ U , then either A ∈ U or
B ∈ U .
Given any s ∈ S,

Us = {A ⊆ S : s ∈ A}

is an ultrafilter on S, called principal. Any non-principal ultrafilter is
called free.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 26



Ultrafilters and PR of equations University of Vienna

Ultrafilters on a set

An ultrafilter on a set S is any collection U of subsets of S satisfying
1 S ∈ U and ∅ 6∈ U ;
2 if A,B ∈ U , then A ∩ B ∈ U ;
3 if A ⊆ B ⊆ S and A ∈ U , then B ∈ U ; and
4 if A ⊆ S, either A ∈ U or S \ A ∈ U .

Property (4) above is equivalent to if A ∪ B ∈ U , then either A ∈ U or
B ∈ U .

Given any s ∈ S,
Us = {A ⊆ S : s ∈ A}

is an ultrafilter on S, called principal. Any non-principal ultrafilter is
called free.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 26



Ultrafilters and PR of equations University of Vienna

Ultrafilters on a set

An ultrafilter on a set S is any collection U of subsets of S satisfying
1 S ∈ U and ∅ 6∈ U ;
2 if A,B ∈ U , then A ∩ B ∈ U ;
3 if A ⊆ B ⊆ S and A ∈ U , then B ∈ U ; and
4 if A ⊆ S, either A ∈ U or S \ A ∈ U .

Property (4) above is equivalent to if A ∪ B ∈ U , then either A ∈ U or
B ∈ U .
Given any s ∈ S,

Us = {A ⊆ S : s ∈ A}

is an ultrafilter on S, called principal. Any non-principal ultrafilter is
called free.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 26



Ultrafilters and PR of equations University of Vienna

The Čech-Stone compactification

The set of all ultrafilters of S is βS. For each A ⊆ S, let

A = {U ∈ βS : A ∈ U}.

Then {A : A ⊆ S} is a base of open-and-closed subsets for a topology of
βS.

Furnished with this topology, βS is completely characterised as the
compact (= Hausdorff+compact) space that contains S as a dense subset
(identifying every s ∈ S with Us) and given any compact K and any
f : S → K there is an unique continuous f : βS → K such that f |S = f
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Ultrafilters and PR of equations University of Vienna

Ultrafilters on a semigroup

If S has an associative operation ∗, then one can extend this operation to
βS as follows:

A ∈ U ∗ V ⇐⇒ {s ∈ S : s−1A ∈ V} ∈ U ,

where s−1A = {t ∈ S : st ∈ A}.

This operation is associative and for all
s ∈ S and U ∈ βS, the maps

βS 3 V 7→ s ∗ V and βS 3 V 7→ V ∗ U

are continuous

Theorem (Ellis)
Under the above conditions, βS \ S contains an idempotent element with
respect to ∗; i.e. there is an U ∈ βS \ S such that U ∗ U = U .

P. H. Arruda A limiting result for the Ramsey theory of functional equations 28
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Ultrafilters and PR of equations University of Vienna

Galvin-Glazer argument

A ∈ U ∗ V ⇐⇒ {s ∈ S : s−1A ∈ V} ∈ U ,

Theorem (Ellis)
βS \ S contains an idempotent element with respect to ∗; i.e. there is an
U ∈ βS \ S such that U ∗ U = U .

Let U ∈ βS \ S be idempotent. Then A ∈ U ⇐⇒ A ∈ U ∗ U . As such

B = A ∩ {s ∈ S : s−1A ∈ U} ∈ U .

Thus B 6= ∅ and given any s ∈ B, s−1A ∩ A 6= ∅. Picking t ∈ s−1A ∩ A we
have that st ∈ A.
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Ultrafilters and PR of equations University of Vienna

Galvin-Glazer argument

Hence any idempotent U in βS satisfies the following: any A ∈ βS
contains elements s and t such that st ∈ A.

Let c be a r -colouring of S. Since c−1[{1}] ∪ · · · ∪ c−1[{r}] = S, there is
a i ∈ [r ] such that A = c−1[{i}] ∈ U . By the above property, A contains
elements s and t such that st ∈ A.
Hence, given a colouring c of S, there are s, t ∈ S such that s, t, st are
c-monochromatic.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 30
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Ultrafilters and PR of equations University of Vienna

PR via ultrafilters

Theorem
Given any n ∈ N, any infinite set R, functions f1, . . . , fm : Rn → R, and
r1, . . . , rm ∈ R system of functional equations

f1(x1, . . . , xn) = r1
...

...
...

f1(x1, . . . , xn) = rm

is PR over an infinite set S ⊆ R if and only if there is an U ∈ βS such that
for all A ∈ U one can find a1, . . . , an ∈ A satisfying fj(a1, . . . , an) = sj for
all j ∈ [m]. We call such an ultrafilter a witness of the PR of the system.
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Ultrafilters and PR of equations University of Vienna

Non-constant solutions

A constant solution for 
f1(x1, . . . , xn) = r1

...
...

...
f1(x1, . . . , xn) = rm

is any s ∈ S such that fj(s, . . . , s) = rj for all j ∈ [m].

A system that has a
constant solution is PR for trivial reasons. We call this trivial PR.

Theorem ( N. Hindman and I. Leader)
The equation c1x1 + · · · cnxn = 0 is PR over N iff it is non-trivially PR.

Actually, every equation whose PR is known shown so far is non-trivially
PR

P. H. Arruda A limiting result for the Ramsey theory of functional equations 32
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Ultrafilters and PR of equations University of Vienna

Main Result

Theorem (Main Result)
Let S be an infinite set, let n ∈ N and let f1, . . . , fm : Sn+1 → S. Let
σ (x1, . . . , xn, xn+1) = 0 be the system of functional equations

f1(x1, . . . , xn, xn+1) = s1;
...

fm(x1, . . . , xn, xn+1) = sm.

Suppose that there exists k ∈ N such that for all s ∈ S the number of
solutions in the variables x1, . . . , xn of σ (x1, . . . , xn, s) = 0 is at most k.
Then the system σ (x1, . . . , xn, xn+1) = 0 is partition regular on S if and
only if it is trivially PR.
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PR of equations in two variables

Theorem
Let P1, . . . ,Pm ∈ Z [x , y ] be polynomials having degree ≥ 1 and

σ (x , y) =


P1 (x , y) ,

...
Pm (x , y) .

The following facts are equivalent:
1 The system σ(x , y) = 0 has a constant solution;
2 The system σ(x , y) = 0 is PR on N.

Proof: In each integral domain R an univariate polynomial P has at most
degP roots.
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PR of equations in two variables

Corollary
In the same notations and hypotheses of the previous Theorem, the
following are equivalent:

1 The system σ(x , y) = 0 is infinitely PR over N;
2 (x − y) divides P1 (x , y) , . . . ,Pm (x , y).

In particular, x − y is the only irreducible infinitely PR polynomial in two
variables.

Proof: Bézout’s Theorem.
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PR of S-unit equation

Theorem
Let Γ be a non-torsion multiplicative subgroup of C× of rank r. For all
a, b ∈ C× the equation ax + by = 1 has at most 216(r+1) solutions in Γ.

Corollary
Let Γ be a non-torsion multiplicative subgroup of C× of rank r. Given any
a, b, c ∈ C×, the equation ax + by + cz = 0 is PR over Γ if and only if it
has constant solutions, namely if and only if a + b + c = 0.

Proof: For all s ∈ Γ we have that
ax + by + cs = 0 ⇐⇒ a

−cs x + b
−cs y = 1.
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a, b, c ∈ C×, the equation ax + by + cz = 0 is PR over Γ if and only if it
has constant solutions, namely if and only if a + b + c = 0.

Proof: For all s ∈ Γ we have that
ax + by + cs = 0 ⇐⇒ a

−cs x + b
−cs y = 1.

As such we see that Rado’s Theorem fails in Γ.Moreover, Γ cannot contain
3-terms arithmetic progressions.
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Polyexponential equations

Fix m ∈ N, i ∈ [m] and αi = (αi1, . . . , αin) ∈ (Z×)n such that

gcd(α1, . . . ,αm) = gcd{αij : i ∈ [m] and j ∈ [n]}.

Theorem
Given polynomials P1, . . . ,Pm ∈ Q[x1, . . . , xn], the number of solution of
the equation

P1(x)αx
1 + · · ·+ Pm(x)αx

m = 0,

where x = (x1, . . . , xn) and αx
i = αx1

i1 · · ·α
xn
in , is finite and only depends on

the degree of the polynomials and the number of variables.

P. H. Arruda A limiting result for the Ramsey theory of functional equations 38



Ultrafilters and PR of equations University of Vienna

Polyexponential equations

Let P1(x , y , z) = xy − z + 2, P2(x , y , z) = x − y + 2z + 2, and
P3(x , y , z) = xyz − z + 3. Then the polyexponential equation

P1(x , y , z)2x3y + P2(x , y , z)5x7y + P3(x , y , z)11x13y = 0

is not PR over Z.

Indeed, fixed any s ∈ Z, the equation

P1(x , y , s)2x3y + P2(x , y , s)5x7y + P3(x , y , s)11x13y = 0

has a finite number of solutions that depend only on the degree of the
polynomials and the number of variables. By the main theorem, this
equation is PR iff there is a s ∈ Z such that

6s(s2 − s + 2) + 35s(2s + 2) + 143s(s3 − s + 3) = 0.

which is impossible.
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Polyexponential equations

Theorem (General case)
Given polynomials P1, . . . ,Pm ∈ Q[x1, . . . , xn, y ] The equation

P1(x, y)αx
1 + · · ·+ Pm(x, y)αx

m = 0

is PR over Z iff it admits a constant solution.
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Preliminary results

Theorem
Let U ∈ βS and let f : S → S. Let f : βS → βS be the continuous
extension of f to βS. Then f (U) = U if and only if there exists A ∈ U
such that f (a) = a for all a ∈ A.

Lemma
Let U ∈ βS and let ϕ1 (x1, . . . , xn) , . . . , ϕk (x1, . . . , xn) be properties on S.
The following are equivalent:

1 Given any A ∈ U there exists a1, . . . , an ∈ A and j ∈ [k] such that
ϕj(a1, . . . , an) is satisfied; and

2 there exists a j ∈ [k] such that for all A ∈ U one can find
a1, . . . , an ∈ A satisfying ϕj(a1, . . . , an).

P. H. Arruda A limiting result for the Ramsey theory of functional equations 41



Proof of the main Theorem University of Vienna

Main Theorem

Theorem (Main Result)
Let S be an infinite set, let n ∈ N and let f1, . . . , fm : Sn+1 → S. Let
σ (x1, . . . , xn, xn+1) = 0 be the system of functional equations

f1(x1, . . . , xn, xn+1) = s1;
...

fm(x1, . . . , xn, xn+1) = sm.

Suppose that there exists k ∈ N such that for all s ∈ S the number of
solutions in the variables x1, . . . , xn of σ (x1, . . . , xn, s) = 0 is at most k.
Then the system σ (x1, . . . , xn, xn+1) = 0 is partition regular on S if and
only if it is trivially PR.
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Main Theorem

For all A ⊆ S, let

A′ = {s ∈ A : ∃s1, . . . , sn ∈ A st σ(s1, . . . , sn, s) = 0}.

By the hypothesis, there are

ψ1, . . . , ψk : S ′ → Sn

such that whenever s1, . . . , sn+1 is a solution to the system then ∃j ∈ [k]
st ψj(sn+1) = (s1, . . . , sn).
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Main Theorem

Let U ∈ βS be a witness of the PR of this system. Then for all A ∈ U we
have that A′ ∈ U . Thus, by the previous Lemma, TFAE

(P0) for all A ∈ U one can find a1, . . . , an, a ∈ A and j ∈ [k] such
that ψj(an+1) = (a1, . . . , an);

(P1) there is a j0 ∈ [k] such that for all A ∈ U one can find
a1, . . . , an, a ∈ A satisfying ψj(an+1) = (a1, . . . , an);

Fix such j0 and let

A′′ = {a ∈ A : ψj0(a) ∈ An}.

Then A′′ ∈ U . Let πi : Sn → S be the projection onto the i-th coordinate.
Then

A′′ ⊆ A′′′ := {a ∈ A : πi ◦ ψj0(a) ∈ A}
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Main Theorem

We conclude that for all i ∈ [n] πi ◦ ψi(U) = U .

Theorem
Let U ∈ βS and let f : S → S. Let f : βS → βS be the continuous
extension of f to βS. Then f (U) = U if and only if there exists A ∈ U
such that f (a) = a for all a ∈ A.

Then there is a B ∈ U such that πi ◦ ψj0 |B = id.Then B ∩ B ′ ∩ B ′′

contains a constant solution to the system.
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