

UNIVERSITAT DE BARCELONA

Projective Absoluteness from Strong Cardinals

Cesare Straffelini

Universitat de Barcelona

Pisa, 26th October 2023

Generic Absoluteness

<ロト<

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 3/28

Generic Absoluteness is a property of models of Set Theory. The ultimate form of Generic Absoluteness would be something like:

for every forcing notion \mathbb{P} , V is elementarily equivalent to $V^{\mathbb{P}}$.

Generic Absoluteness is a property of models of Set Theory. The ultimate form of Generic Absoluteness would be something like:

for every forcing notion \mathbb{P} , V is elementarily equivalent to $V^{\mathbb{P}}$.

This is clearly impossible, since for example we can force both CH and \neg CH. We have three ways to weaken the statement.

Considering some model *M*, such as *H_κ* or *L*(ℝ), instead of *V*, and the elementary equivalence of *M* and *M*^ℙ.

- Considering some model *M*, such as *H_κ* or *L*(ℝ), instead of *V*, and the elementary equivalence of *M* and *M*^ℙ.
- Restricting the forcing notions to belong to some class Γ, for example the class of ccc, proper, stationary-preserving...

- Considering some model *M*, such as *H_κ* or *L*(ℝ), instead of *V*, and the elementary equivalence of *M* and *M*^ℙ.
- Restricting the forcing notions to belong to some class Γ, for example the class of ccc, proper, stationary-preserving...
- Lowering the complexity of the elementary equivalence: instead of the whole equivalence, only for some formulæ.

4 ロ ト 4 部 ト 4 王 ト 4 王 - 9 4 で 4/28

- Considering some model *M*, such as *H_κ* or *L*(ℝ), instead of *V*, and the elementary equivalence of *M* and *M*^ℙ.
- Restricting the forcing notions to belong to some class Γ, for example the class of ccc, proper, stationary-preserving...
- Lowering the complexity of the elementary equivalence: instead of the whole equivalence, only for some formulæ.

Obviously we can combine these weakenings.

Today, we are interested in generic absoluteness for the model V and for all forcing notions, but with **projective sentences**.

Today, we are interested in generic absoluteness for the model V and for all forcing notions, but with **projective sentences**.

A formula is Σ_0^1 if it is a first-order formula in the language of Peano Arithmetic. A formula is Π_n^1 if its negation is Σ_n^1 . A formula is Σ_{n+1}^1 if it is $(\exists x \in \mathbb{R}) \ \psi$, with ψ a Π_n^1 -formula.

Today, we are interested in generic absoluteness for the model V and for all forcing notions, but with **projective sentences**.

A formula is Σ_0^1 if it is a first-order formula in the language of Peano Arithmetic. A formula is Π_n^1 if its negation is Σ_n^1 . A formula is Σ_{n+1}^1 if it is $(\exists x \in \mathbb{R}) \ \psi$, with ψ a Π_n^1 -formula.

 Σ_n^1 -sentences (lightface) have no real parameters. A sentence is Σ_n^1 (boldface) if it is Σ_n^1 with real parameters.

We will denote by $A(\Phi)$ the statement:

for every forcing notion \mathbb{P} , V is Φ -elementarily equivalent to $V^{\mathbb{P}}$.

We will denote by $A(\Phi)$ the statement:

for every forcing notion \mathbb{P} , V is Φ -elementarily equivalent to $V^{\mathbb{P}}$.

Shoenfield's Absoluteness theorem tells us that $A(\Sigma_2^1)$ holds.

We will denote by $A(\Phi)$ the statement:

for every forcing notion \mathbb{P} , V is Φ -elementarily equivalent to $V^{\mathbb{P}}$.

Shoenfield's Absoluteness theorem tells us that $A(\Sigma_2^1)$ holds.

 $A(\Sigma_3^1)$ is not provable in ZFC: the sentence «there exists a non-constructible real» is Σ_3^1 , fails in *L*, and holds in L[c] (Cohen).

<ロト<

We are interested in the consistency strength of

PA := for all
$$n < \omega$$
, A(Σ_n^1) holds.

We are interested in the consistency strength of

PA := for all
$$n < \omega$$
, A(Σ_n^1) holds.

Kai Hauser, The Consistency Strength of Projective Absoluteness: if ZFC + PA is consistent, then also ZFC + «there are ω -many strong cardinals» is consistent. And the other direction?

Strong Cardinals

<ロト<

A cardinal κ is λ -strong for some ordinal $\lambda \ge \kappa$ if there is $j: V \to M$ elementary embedding such that M is transitive, $V_{\lambda} \subseteq M$, the critical point of j is κ , and $j(\kappa) > \lambda$.

<ロト<</th>< 国ト<</th>< 国ト</th>< 国ト</th>< 国</th>< 9/28</th>

A cardinal κ is λ -strong for some ordinal $\lambda \ge \kappa$ if there is $j: V \to M$ elementary embedding such that M is transitive, $V_{\lambda} \subseteq M$, the critical point of j is κ , and $j(\kappa) > \lambda$.

A cardinal κ is **strong** if it is λ -strong for all $\lambda \ge \kappa$.

<ロト<</th>< 国ト<</th>< 国ト</th>< 国ト</th>< 国</th>< 9/28</th>

A cardinal κ is λ -strong for some ordinal $\lambda \ge \kappa$ if there is $j: V \to M$ elementary embedding such that M is transitive, $V_{\lambda} \subseteq M$, the critical point of j is κ , and $j(\kappa) > \lambda$.

A cardinal κ is **strong** if it is λ -strong for all $\lambda \ge \kappa$.

Any (κ -)strong cardinal κ is **measurable**: a characterization of measurable cardinals is «there is $j : V \to M$ with crit(j) = κ ».

A famous theorem by Kunen tells that 0^{\sharp} exists if and only if there is a nontrivial elementary embedding $j : L \rightarrow L$.

A famous theorem by Kunen tells that 0^{\sharp} exists if and only if there is a nontrivial elementary embedding $j : L \rightarrow L$.

We can generalize Kunen's theorem and find that, for any set x, x^{\sharp} exists if and only if there is a nontrivial elementary embedding $j: L(x) \rightarrow L(x)$. This could be a definition for $\ll x^{\sharp}$ exists».

A famous theorem by Kunen tells that 0^{\sharp} exists if and only if there is a nontrivial elementary embedding $j : L \rightarrow L$.

We can generalize Kunen's theorem and find that, for any set x, x^{\sharp} exists if and only if there is a nontrivial elementary embedding $j: L(x) \rightarrow L(x)$. This could be a definition for $\ll x^{\sharp}$ exists».

Lemma

If there is a strong cardinal, then, for every set x, x^{\sharp} exists.

Proof.

Let κ be strong, λ with $x \in V_{\lambda}$, and $j_1 : V \to M_1$ an elementary embedding with M_1 transitive, $V_{\lambda} \subseteq M_1$, $\operatorname{crit}(j_1) = \kappa$, $j_1(\kappa) > \lambda$.

Proof.

Let κ be strong, λ with $x \in V_{\lambda}$, and $j_1 : V \to M_1$ an elementary embedding with M_1 transitive, $V_{\lambda} \subseteq M_1$, $\operatorname{crit}(j_1) = \kappa$, $j_1(\kappa) > \lambda$. Since κ is measurable in V, and j_1 is elementary, $j_1(\kappa)$ is measurable in M_1 . Let $j_2 : M_1 \to M_2$ be with $\operatorname{crit}(j_2) = j_1(\kappa)$.

Proof.

Let κ be strong, λ with $x \in V_{\lambda}$, and $j_1 : V \to M_1$ an elementary embedding with M_1 transitive, $V_{\lambda} \subseteq M_1$, $\operatorname{crit}(j_1) = \kappa$, $j_1(\kappa) > \lambda$. Since κ is measurable in V, and j_1 is elementary, $j_1(\kappa)$ is measurable in M_1 . Let $j_2 : M_1 \to M_2$ be with $\operatorname{crit}(j_2) = j_1(\kappa)$. Since $x \in V_{\lambda}$, it holds $j_2(x) = x$. Then j_2 restricted to L(x) is a nontrivial elementary embedding from L(x) to $L(j_2(x)) = L(x)$.

Trees and Projections

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の 4 で 12/28

A tree on $X^{<\omega} \times Y^{<\omega}$ is a set of pairs $\langle s, t \rangle$ with $s \in X^{<\omega}$, $t \in Y^{<\omega}$ and $\ell(s) = \ell(t)$, closed under initial segments.

A tree on $X^{<\omega} \times Y^{<\omega}$ is a set of pairs $\langle s, t \rangle$ with $s \in X^{<\omega}$, $t \in Y^{<\omega}$ and $\ell(s) = \ell(t)$, closed under initial segments.

The set of **infinite branches** [T] of T is defined as

$$[T] := \{ \langle x, y \rangle \in X^{\omega} \times Y^{\omega} : \forall n < \omega, \ \langle x \upharpoonright n, y \upharpoonright n \rangle \in T \}.$$

A tree on $X^{<\omega} \times Y^{<\omega}$ is a set of pairs $\langle s, t \rangle$ with $s \in X^{<\omega}$, $t \in Y^{<\omega}$ and $\ell(s) = \ell(t)$, closed under initial segments.

The set of **infinite branches** [T] of T is defined as

$$[T] := \{ \langle x, y \rangle \in X^{\omega} \times Y^{\omega} : \forall n < \omega, \ \langle x \upharpoonright n, y \upharpoonright n \rangle \in T \}.$$

The **projection** p[T] of T is instead defined as

$$p[T] := \{ x \in X^{\omega} : \exists y \in Y^{\omega} : \langle x, y \rangle \in [T] \}.$$

Notice that $p[T] = \emptyset$ if and only if $[T] = \emptyset$. In particular, $p[T] = \emptyset$ is absolute under set forcing: $p[T] = \emptyset$ in the ground model if and only if $p[T]^{V[G]} = \emptyset$ for any (or for all) generic *G*. Indeed, $[T] = \emptyset$ is equivalent to: $\langle T, \supseteq \rangle$ is well-founded.

Lemma

If S and T are trees on $X^{<\omega} \times Y^{<\omega}$ with $p[S] \cap p[T] = \emptyset$, then in any forcing extension V[G] it holds $p[S]^{V[G]} \cap p[T]^{V[G]} = \emptyset$.

Let T be a tree on $\omega^{<\omega} \times \lambda^{<\omega}$. We define $T|_{\delta}$ as follows:

$$T|_{\delta} := \{ \langle s, u \rangle \in T : u \in \delta^{<\omega} \}$$

for all $\omega < \delta < \lambda$.

Let T be a tree on $\omega^{<\omega} \times \lambda^{<\omega}$. We define $T|_{\delta}$ as follows:

$$T|_{\delta} := \{ \langle s, u \rangle \in T : u \in \delta^{<\omega} \}$$

for all $\omega < \delta < \lambda$. If κ is strongly inaccessible, T is said to be κ -good if for all $\omega < \delta < \kappa$ with $\delta = \beth_{\delta}$ and every $\mathbb{P} \in V_{\delta}$,

$$\mathbb{P} \Vdash p[T] = p[T|_{\delta}].$$

Notice that the set of $\delta < \kappa$ with $\delta = \beth_{\delta}$ is a club in κ (since $\beth_{\delta} = |V_{\delta}|$). Every such δ is a strong limit: if $\mathbb{P} \in V_{\delta}$ then $|\mathbb{P}| < \delta$.

Lemma

If κ is strongly inaccessible, for all trees T on $\omega^{<\omega} \times \lambda^{<\omega}$ there is a κ -good tree T^* on $\omega^{<\omega} \times \kappa^{<\omega}$ such that $p[T] = p[T^*]$.

Lemma

If κ is strongly inaccessible, for all trees T on $\omega^{<\omega} \times \lambda^{<\omega}$ there is a κ -good tree T^* on $\omega^{<\omega} \times \kappa^{<\omega}$ such that $p[T] = p[T^*]$.

 $\operatorname{Coll}(\omega, \delta)$, with δ a cardinal, is the partial order consisting of all finite sequences of ordinals less than δ , ordered by extension. This is the **Lévy collapse**, that forces δ to be countable in the generic extension. The cardinality of the forcing notion $\operatorname{Coll}(\omega, \delta)$ is δ .

Theorem (Woodin)

Let $\kappa < \lambda$ be cardinals such that κ is λ -strong and $\lambda = \beth_{\lambda}$.

<ロ > < 母 > < 豆 > < 豆 > < 豆 > < 豆 の < で 17/28

Theorem (Woodin)

Let $\kappa < \lambda$ be cardinals such that κ is λ -strong and $\lambda = \beth_{\lambda}$. Let $j : V \to M$ be an elementary embedding with M transitive, $V_{\lambda} \subseteq M$, $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$. Let $T \subseteq \omega^{<\omega} \times \kappa^{<\omega}$ be κ -good.

Theorem (Woodin)

Let $\kappa < \lambda$ be cardinals such that κ is λ -strong and $\lambda = \beth_{\lambda}$. Let $j: V \to M$ be an elementary embedding with M transitive, $V_{\lambda} \subseteq M$, $\operatorname{crit}(j) = \kappa$, $j(\kappa) > \lambda$. Let $T \subseteq \omega^{<\omega} \times \kappa^{<\omega}$ be κ -good.

If $G \subseteq \text{Coll}(\omega, 2^{2^{\kappa}})$ is V-generic, then in V[G] there is a tree S such that for every $\mathbb{P} \in V_{\lambda}[G]$ and every V[G]-generic filter $H \subseteq \mathbb{P}$,

$$V[G][H] \models p[j(T)] \sqcup p[S] = \mathbb{R}.$$

Universally Baire Sets

<ロ ト < 母 ト < 王 ト < 王 ト ミ の < で 18/28

Universally Baire sets are a generalization of sets with the Baire property. They are very well-behaved: they are measurable, have the Baire property and (if 0^{\sharp} exists) the perfect set property.

Universally Baire sets are a generalization of sets with the Baire property. They are very well-behaved: they are measurable, have the Baire property and (if 0^{\sharp} exists) the perfect set property.

A set $A \subseteq \mathbb{R}$ is λ -universally Baire if for all compact Hausdorff spaces X with $|X| \leq \lambda$ and every continuous map $f : X \to \mathbb{R}$, the counterimage $f_{-1}A$ has the Baire property in X.

Universally Baire sets are a generalization of sets with the Baire property. They are very well-behaved: they are measurable, have the Baire property and (if 0^{\sharp} exists) the perfect set property.

A set $A \subseteq \mathbb{R}$ is λ -universally Baire if for all compact Hausdorff spaces X with $|X| \leq \lambda$ and every continuous map $f : X \to \mathbb{R}$, the counterimage $f_{-1}A$ has the Baire property in X.

A set is **universally Baire** if it is λ -uB for all cardinals λ .

<□ ▶ < @ ▶ < E ▶ < E ▶ ○ 20/28

Theorem (Feng-Magidor-Woodin) A set $A \subseteq \mathbb{R}$ is λ -universally Baire if and only if there are trees S and T on $\omega^{<\omega} \times \omega^{<\omega}$ such that A = p[S] and

$$\mathbb{P} \Vdash p[S] \sqcup p[T] = \mathbb{R}$$

for every forcing notion \mathbb{P} with $|\mathbb{P}| \leq \lambda$.

Recall that a set $A \subseteq \mathbb{R}$ is said to be Σ_2^1 if it's defined by a Σ_2^1 -formula, or equivalently if it's the continuous image of the complementary of an analytic subset of \mathbb{R} (projective hierarchy).

Recall that a set $A \subseteq \mathbb{R}$ is said to be Σ_2^1 if it's defined by a Σ_2^1 -formula, or equivalently if it's the continuous image of the complementary of an analytic subset of \mathbb{R} (projective hierarchy).

Theorem (Feng-Magidor-Woodin)

The following are equivalent:

- **1** for every set x, x^{\ddagger} exists;
- **2** every Σ_2^1 -subset of \mathbb{R} is universally Baire.

UB Sets and Absoluteness

Every analytic (Σ_1^1) subset of \mathbb{R} is universally Baire (provably, in ZFC). The absoluteness A (Σ_2^1) is also provable in ZFC.

Every analytic (Σ_1^1) subset of \mathbb{R} is universally Baire (provably, in ZFC). The absoluteness A (Σ_2^1) is also provable in ZFC.

Is there some link between these two notions?

Every analytic $(\pmb{\Sigma}_1^1)$ subset of $\mathbb R$ is universally Baire (provably, in ZFC). The absoluteness A($\pmb{\Sigma}_2^1)$ is also provable in ZFC.

Is there some link between these two notions?

Theorem

If every Σ_{n+1}^1 subset of \mathbb{R} is universally Baire, $A(\Sigma_{n+2}^1)$ holds.

Let φ be a Σ^1_{n+2} -sentence. This means that

$$\varphi \equiv \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \psi(x, y, a)$$

where $\psi(x, y, z)$ is a Σ_n^1 -formula and $a \in \mathbb{R}$ is a parameter.

Let φ be a Σ_{n+2}^1 -sentence. This means that

 $\varphi \equiv \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \psi(x, y, a)$

where $\psi(x, y, z)$ is a Σ_n^1 -formula and $a \in \mathbb{R}$ is a parameter. Now, the set $A := \{x \in \mathbb{R} : \forall y \in \mathbb{R} \ \psi(x, y, a)\}$ is Π_{n+1}^1 .

Let φ be a Σ^1_{n+2} -sentence. This means that

 $\varphi \equiv \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \psi(x, y, a)$

where $\psi(x, y, z)$ is a Σ_n^1 -formula and $a \in \mathbb{R}$ is a parameter. Now, the set $A := \{x \in \mathbb{R} : \forall y \in \mathbb{R} \ \psi(x, y, a)\}$ is Π_{n+1}^1 . Fix a partial order \mathbb{P} . By hypothesis, there are trees S and T on $\omega^{<\omega} \times \omega^{<\omega}$ such that A = p[S] and $\mathbb{P} \Vdash p[S] \sqcup p[T] = \mathbb{R}$.

Let φ be a Σ^1_{n+2} -sentence. This means that

 $\varphi \equiv \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ \psi(x, y, a)$

where $\psi(x, y, z)$ is a Σ_n^1 -formula and $a \in \mathbb{R}$ is a parameter. Now, the set $A := \{x \in \mathbb{R} : \forall y \in \mathbb{R} \ \psi(x, y, a)\}$ is Π_{n+1}^1 . Fix a partial order \mathbb{P} . By hypothesis, there are trees S and T on $\omega^{<\omega} \times \omega^{<\omega}$ such that A = p[S] and $\mathbb{P} \Vdash p[S] \sqcup p[T] = \mathbb{R}$. Hence, φ is equivalent to $p[S] \neq \emptyset$, that is absolute.

Let *M* be a model of a fragment of ZFC, let $\mathbb{P} \in M$, $H \subseteq \mathbb{P}$ be *M*-generic. Assume that every Σ_n^1 -set is uB in *M* and let $b \in \mathbb{R}^{M[H]}$ be a real. Then every Σ_n^1 -set is uB in M[b].

Let *M* be a model of a fragment of ZFC, let $\mathbb{P} \in M$, $H \subseteq \mathbb{P}$ be *M*-generic. Assume that every Σ_n^1 -set is uB in *M* and let $b \in \mathbb{R}^{M[H]}$ be a real. Then every Σ_n^1 -set is uB in M[b].

Theorem (Woodin)

Let $2 \leq n < \omega$ and let κ be a strong cardinal. Assume every Σ_n^1 -set is universally Baire. Then, after forcing with $Coll(\omega, 2^{2^{\kappa}})$, in the forcing extension every Σ_{n+1}^1 -set is universally Baire.

If κ is a strong cardinal, then, in $V^{\text{Coll}(\omega,2^{2^{\kappa}})}$, $A(\Sigma_4^1)$ holds.

If κ is a strong cardinal, then, in $V^{\text{Coll}(\omega,2^{2^{\kappa}})}$, $A(\Sigma_4^1)$ holds.

Proof.

Since κ is strong, x^{\sharp} exists for all sets x, hence every Σ_2^1 -set in V is universally Baire.

If κ is a strong cardinal, then, in $V^{\mathsf{Coll}(\omega,2^{2^{\kappa}})}$, $\mathsf{A}(\mathbf{\Sigma}_{4}^{1})$ holds.

Proof.

Since κ is strong, x^{\sharp} exists for all sets x, hence every Σ_2^1 -set in V is universally Baire. Moreover, if $G \subseteq \text{Coll}(\omega, 2^{2^{\kappa}})$ is V-generic, every Σ_3^1 -set in V[G] is universally Baire.

If κ is a strong cardinal, then, in $V^{\mathsf{Coll}(\omega,2^{2^{\kappa}})}$, $\mathsf{A}(\mathbf{\Sigma}_{4}^{1})$ holds.

Proof.

Since κ is strong, x^{\sharp} exists for all sets x, hence every Σ_2^1 -set in V is universally Baire. Moreover, if $G \subseteq \text{Coll}(\omega, 2^{2^{\kappa}})$ is V-generic, every Σ_3^1 -set in V[G] is universally Baire. Thus, $V[G] \models A(\Sigma_4^1)$. \Box

Clearly, we can replicate this reasoning and find

Lemma

If $\kappa_1 < \cdots < \kappa_n$ are strong cardinals, in $V^{\text{Coll}(\omega, 2^{2^{\kappa_n}})}$ every Σ^1_{n+2} -set is universally Baire and $A(\Sigma^1_{n+3})$ holds.

< ロ ト < 戸 ト < 三 ト < 三 ト < 三 < つ へ (P 27/28)</p>

Clearly, we can replicate this reasoning and find

Lemma

If $\kappa_1 < \cdots < \kappa_n$ are strong cardinals, in $V^{\text{Coll}(\omega, 2^{2^{\kappa_n}})}$ every Σ_{n+2}^1 -set is universally Baire and $A(\Sigma_{n+3}^1)$ holds.

Theorem

If κ is the supremum of ω -many strong cardinals, then $V^{\text{Coll}(\omega,\kappa)}$ is a model of Projective Absoluteness (PA). Hence,

$$Con(ZFC + \omega - SC) \Rightarrow Con(ZFC + PA).$$

Thanks for the attention!

<<p>
4 ロト 4 日 ト 4 目 ト 4 目 ト 目 の Q C 28/28