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Generic Absoluteness

Generic Absoluteness is a property of models of Set Theory. The

ultimate form of Generic Absoluteness would be something like:

for every forcing notion P, V is elementarily equivalent to V P.

This is clearly impossible, since for example we can force both CH

and  CH. We have three ways to weaken the statement.
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Generic Absoluteness

1 Considering some model M, such as Hκ or LpRq, instead of

V , and the elementary equivalence of M and MP.

2 Restricting the forcing notions to belong to some class Γ, for

example the class of ccc, proper, stationary-preserving...

3 Lowering the complexity of the elementary equivalence:

instead of the whole equivalence, only for some formulæ.

Obviously we can combine these weakenings.
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Generic Absoluteness

Today, we are interested in generic absoluteness for the model V

and for all forcing notions, but with projective sentences.

A formula is Σ1
0 if it is a first-order formula in the language of

Peano Arithmetic. A formula is Π1
n if its negation is Σ1

n. A formula

is Σ1
n`1 if it is pDx P Rq ψ, with ψ a Π1

n-formula.

Σ1
n-sentences (lightface) have no real parameters.

A sentence is Σ1
n (boldface) if it is Σ1

n with real parameters.
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Generic Absoluteness

We will denote by ApΦq the statement:

for every forcing notion P, V is Φ-elementarily equivalent to V P.

Shoenfield’s Absoluteness theorem tells us that ApΣ1
2q holds.

ApΣ1
3q is not provable in ZFC: the sentence !there exists a

non-constructible real" is Σ1
3, fails in L, and holds in Lrcs (Cohen).
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Generic Absoluteness

We are interested in the consistency strength of

PA :” for all n ă ω, ApΣ1
nq holds.

Kai Hauser, The Consistency Strength of Projective Absoluteness:

if ZFC` PA is consistent, then also ZFC ` !there are ω-many

strong cardinals" is consistent. And the other direction?
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Strong Cardinals

A cardinal κ is λ-strong for some ordinal λ ě κ if there is

j : V Ñ M elementary embedding such that M is transitive,

Vλ Ď M, the critical point of j is κ, and jpκq ą λ.

A cardinal κ is strong if it is λ-strong for all λ ě κ.

Any (κ-)strong cardinal κ is measurable: a characterization of

measurable cardinals is !there is j : V Ñ M with critpjq “ κ".
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Strong Cardinals

A famous theorem by Kunen tells that 07 exists if and only if there

is a nontrivial elementary embedding j : LÑ L.

We can generalize Kunen’s theorem and find that, for any set x , x 7

exists if and only if there is a nontrivial elementary embedding

j : Lpxq Ñ Lpxq. This could be a definition for !x 7 exists".

Lemma

If there is a strong cardinal, then, for every set x , x 7 exists.
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Strong Cardinals

Proof.

Let κ be strong, λ with x P Vλ, and j1 : V Ñ M1 an elementary

embedding with M1 transitive, Vλ Ď M1, critpj1q “ κ, j1pκq ą λ.

Since κ is measurable in V , and j1 is elementary, j1pκq is

measurable in M1. Let j2 : M1 Ñ M2 be with critpj2q “ j1pκq.

Since x P Vλ, it holds j2pxq “ x . Then j2 restricted to Lpxq is a

nontrivial elementary embedding from Lpxq to Lpj2pxqq “ Lpxq.

11/28



Strong Cardinals

Proof.

Let κ be strong, λ with x P Vλ, and j1 : V Ñ M1 an elementary

embedding with M1 transitive, Vλ Ď M1, critpj1q “ κ, j1pκq ą λ.

Since κ is measurable in V , and j1 is elementary, j1pκq is

measurable in M1. Let j2 : M1 Ñ M2 be with critpj2q “ j1pκq.

Since x P Vλ, it holds j2pxq “ x . Then j2 restricted to Lpxq is a

nontrivial elementary embedding from Lpxq to Lpj2pxqq “ Lpxq.

11/28



Strong Cardinals

Proof.

Let κ be strong, λ with x P Vλ, and j1 : V Ñ M1 an elementary

embedding with M1 transitive, Vλ Ď M1, critpj1q “ κ, j1pκq ą λ.

Since κ is measurable in V , and j1 is elementary, j1pκq is

measurable in M1. Let j2 : M1 Ñ M2 be with critpj2q “ j1pκq.

Since x P Vλ, it holds j2pxq “ x . Then j2 restricted to Lpxq is a

nontrivial elementary embedding from Lpxq to Lpj2pxqq “ Lpxq.

11/28



Trees and Projections

12/28



Trees and Projections

A tree on Xăω ˆ Yăω is a set of pairs xs, ty with s P Xăω,

t P Yăω and `psq “ `ptq, closed under initial segments.

The set of infinite branches rT s of T is defined as

rT s :“ txx , yy P Xω ˆ Y ω : @n ă ω, xx æ n, y æ ny P T u.

The projection prT s of T is instead defined as

prT s :“ tx P Xω : Dy P Y ω : xx , yy P rT su.
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Trees and Projections

Notice that prT s “ ∅ if and only if rT s “ ∅. In particular,

prT s “ ∅ is absolute under set forcing: prT s “ ∅ in the ground

model if and only if prT sV rG s “ ∅ for any (or for all) generic G .

Indeed, rT s “ ∅ is equivalent to: xT ,Ěy is well-founded.

Lemma

If S and T are trees on Xăω ˆ Yăω with prSs X prT s “ ∅, then

in any forcing extension V rG s it holds prSsV rG s X prT sV rG s “ ∅.
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Trees and Projections

Let T be a tree on ωăω ˆ λăω. We define T |δ as follows:

T |δ :“ txs, uy P T : u P δăωu

for all ω ă δ ă λ.

If κ is strongly inaccessible, T is said to be

κ-good if for all ω ă δ ă κ with δ “ iδ and every P P Vδ,

P , prT s “ prT |δs.

Notice that the set of δ ă κ with δ “ iδ is a club in κ (since

iδ “ |Vδ|). Every such δ is a strong limit: if P P Vδ then |P| ă δ.
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Trees and Projections

Lemma

If κ is strongly inaccessible, for all trees T on ωăω ˆ λăω there is a

κ-good tree T ˚ on ωăω ˆ κăω such that prT s “ prT ˚s.

Collpω, δq, with δ a cardinal, is the partial order consisting of all

finite sequences of ordinals less than δ, ordered by extension. This

is the Lévy collapse, that forces δ to be countable in the generic

extension. The cardinality of the forcing notion Collpω, δq is δ.
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Trees and Projections

Theorem (Woodin)

Let κ ă λ be cardinals such that κ is λ-strong and λ “ iλ.

Let j : V Ñ M be an elementary embedding with M transitive,

Vλ Ď M, critpjq “ κ, jpκq ą λ. Let T Ď ωăω ˆ κăω be κ-good.

If G Ď Collpω, 22
κ
q is V -generic, then in V rG s there is a tree S

such that for every P P VλrG s and every V rG s-generic filter H Ď P,

V rG srHs ( prjpT qs \ prSs “ R.

17/28



Trees and Projections

Theorem (Woodin)

Let κ ă λ be cardinals such that κ is λ-strong and λ “ iλ.

Let j : V Ñ M be an elementary embedding with M transitive,

Vλ Ď M, critpjq “ κ, jpκq ą λ. Let T Ď ωăω ˆ κăω be κ-good.

If G Ď Collpω, 22
κ
q is V -generic, then in V rG s there is a tree S

such that for every P P VλrG s and every V rG s-generic filter H Ď P,

V rG srHs ( prjpT qs \ prSs “ R.

17/28



Trees and Projections

Theorem (Woodin)

Let κ ă λ be cardinals such that κ is λ-strong and λ “ iλ.

Let j : V Ñ M be an elementary embedding with M transitive,

Vλ Ď M, critpjq “ κ, jpκq ą λ. Let T Ď ωăω ˆ κăω be κ-good.

If G Ď Collpω, 22
κ
q is V -generic, then in V rG s there is a tree S

such that for every P P VλrG s and every V rG s-generic filter H Ď P,

V rG srHs ( prjpT qs \ prSs “ R.

17/28



Universally Baire Sets

18/28



Universally Baire Sets

Universally Baire sets are a generalization of sets with the Baire

property. They are very well-behaved: they are measurable, have

the Baire property and (if 07 exists) the perfect set property.

A set A Ď R is λ-universally Baire if for all compact Hausdorff

spaces X with |X | ď λ and every continuous map f : X Ñ R, the

counterimage f´1A has the Baire property in X .

A set is universally Baire if it is λ-uB for all cardinals λ.
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Universally Baire Sets

Theorem (Feng-Magidor-Woodin)

A set A Ď R is λ-universally Baire if and only if there are trees S

and T on ωăω ˆ ωăω such that A “ prSs and

P , prSs \ prT s “ R

for every forcing notion P with |P| ď λ.
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Universally Baire Sets

Recall that a set A Ď R is said to be Σ1
2 if it’s defined by a

Σ1
2-formula, or equivalently if it’s the continuous image of the

complementary of an analytic subset of R (projective hierarchy).

Theorem (Feng-Magidor-Woodin)

The following are equivalent:

1 for every set x , x 7 exists;

2 every Σ1
2-subset of R is universally Baire.
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UB Sets and Absoluteness

22/28



UB Sets and Absoluteness

Every analytic (Σ1
1) subset of R is universally Baire (provably, in

ZFC). The absoluteness ApΣ1
2q is also provable in ZFC.

Is there some link between these two notions?

Theorem

If every Σ1
n`1 subset of R is universally Baire, ApΣ1

n`2q holds.
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UB Sets and Absoluteness

Proof.

Let ϕ be a Σ1
n`2-sentence. This means that

ϕ ” Dx P R @y P R ψpx , y , aq

where ψpx , y , zq is a Σ1
n-formula and a P R is a parameter.

Now, the set A :“ tx P R : @y P R ψpx , y , aqu is Π1
n`1.

Fix a partial order P. By hypothesis, there are trees S and T on

ωăω ˆ ωăω such that A “ prSs and P , prSs \ prT s “ R.

Hence, ϕ is equivalent to prSs ‰ ∅, that is absolute.

24/28
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UB Sets and Absoluteness

Lemma

Let M be a model of a fragment of ZFC, let P P M, H Ď P be

M-generic. Assume that every Σ1
n-set is uB in M and let

b P RMrHs be a real. Then every Σ1
n-set is uB in Mrbs.

Theorem (Woodin)

Let 2 ď n ă ω and let κ be a strong cardinal. Assume every

Σ1
n-set is universally Baire. Then, after forcing with Collpω, 22

κ
q, in

the forcing extension every Σ1
n`1-set is universally Baire.

25/28



UB Sets and Absoluteness

Lemma

Let M be a model of a fragment of ZFC, let P P M, H Ď P be

M-generic. Assume that every Σ1
n-set is uB in M and let

b P RMrHs be a real. Then every Σ1
n-set is uB in Mrbs.

Theorem (Woodin)

Let 2 ď n ă ω and let κ be a strong cardinal. Assume every

Σ1
n-set is universally Baire. Then, after forcing with Collpω, 22

κ
q, in

the forcing extension every Σ1
n`1-set is universally Baire.

25/28



UB Sets and Absoluteness

Lemma

If κ is a strong cardinal, then, in V Collpω,22
κ
q, ApΣ1

4q holds.

Proof.

Since κ is strong, x 7 exists for all sets x , hence every Σ1
2-set in V is

universally Baire. Moreover, if G Ď Collpω, 22
κ
q is V -generic, every

Σ1
3-set in V rG s is universally Baire. Thus, V rG s |ù ApΣ1

4q.
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UB Sets and Absoluteness

Clearly, we can replicate this reasoning and find

Lemma

If κ1 ă ¨ ¨ ¨ ă κn are strong cardinals, in V Collpω,22
κn
q every

Σ1
n`2-set is universally Baire and ApΣ1

n`3q holds.

Theorem

If κ is the supremum of ω-many strong cardinals, then V Collpω,κq is

a model of Projective Absoluteness (PA). Hence,

ConpZFC` ω´SCq ñ ConpZFC` PAq.
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Thanks for the attention!
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