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Heat equation


∂v

∂t
−∇2v = f (x, t) in Ω× (0, tf ),

v(x, t) = g(x, t) on ∂Ω× (0, tf ),

v(x, 0) = v0(x) in Ω,

Finite Elements in space + Runge-Kutta time discretizations

Mvn+1 = Mvn + τM
s∑

i=1

bikin n = 0, . . . , nt − 1,

The stages kin are defined as follows:

Mkin + Kvn + τK
∑s

j=1 aijkjn = fin, i = 1, . . . , s, n = 0, . . . , nt − 1,

where

(fin)m =

∫
Ω
f (x, tn + ciτ)φm dΩ, i = 1, . . . , s.

K and M are the stiffness and mass matrix respectively.

Coefficients aij → ARK, bi → bRK form the Butcher tableau.
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All-at-once matrix formulation

[
Φ Ψ1

Ψ2 ΘH

]
︸ ︷︷ ︸

A

[
v
k

]
=

[
r1

r2

]
,

where

Φ =


M

−M
. . .

. . .
. . .

−M M

 Ψ1 = −


0

τb>RK ⊗M

. . .

τb>RK ⊗M



Ψ2 =

e⊗ K

. . .

e⊗ K 0

 ΘH = Int ⊗ Θ̂H ,

Θ̂H = Is ⊗M + τARK ⊗ K
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Preconditioner

We consider as a preconditioner for A =

[
Φ Ψ1

Ψ2 ΘH

]
the matrix P =

[
S Ψ1

0 ΘH

]
,

where S = Φ−Ψ1Θ−1
H Ψ2 is the Schur complement.

Specifically we have

S =

 M

.. .

M




Inx

−Inx + X̂
. . .

. . .
. . .

−Inx + X̂ Inx


︸ ︷︷ ︸

Ŝ

,

where

X̂ = τ
[

b1Inx . . . bs Inx
]

[Is ⊗M + τARK ⊗ K]︸ ︷︷ ︸
Θ̂H

−1 [e⊗ K] .
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Practical approximation of P

P is optimal.

In fact, supposing that both ΘH and S are invertible,

1 λ(P−1A) = {1}
2 the minimal polynomial of the P−1A has degree 2 (GMRES will converge in at

most 2 iterations)

WARNING! We can not explicitly form the Schur complement S due to the large
dimension of the system.

Practical approximation of P

Application of block diagonal matrix ΘH needs solution of nt linear systems with
matrix Is ⊗M + τARK ⊗ K. Preconditioner needed.

A parallel solve for Ŝ is performed by MGRIT routine [Falgout et al, SISC 2014]
employing the XBraid v3.0.0 routine.

Falgout, Friedhoff, Kolev, MacLachlan and Schröder

Parallel time integration with multigrid

SISC, 2014
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Preconditioner for the stages

We need an optimal preconditioner for the system of the stages

(Is ⊗M + τARK ⊗ K)︸ ︷︷ ︸
Θ̂H

k = b

The idea is to compute a (real) SVD of ARK: ARK = UΣV>. Hence

Is ⊗M + τARK ⊗ K = Is ⊗M + τUΣV> ⊗ K

= (U ⊗ Inx )[(U>V )⊗M + τΣ⊗ K](V> ⊗ Inx ).

The eigenvalues of U>V lie all on the unit circle centered at the origin of the complex
plane, and its eigenvectors are mutually orthogonal.

Main idea. Since |λ(UTV )| = 1, we approximate U>V ≈ Is and propose the following
preconditioner:

PRK := [U ⊗ Inx ] [Is ⊗M + τΣ⊗ K]
[
V> ⊗ Inx

]
≈ Θ̂H .

Note that now the systems to be solved (with Is ⊗M + τΣ⊗ K) are decoupled due to
diagonal matrix Σ.
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Preconditioner application

To (approximately) solve for P =

[
S Ψ1

0 ΘH

]
, we employ the (inner) GMRES

method to solve for Θ̂H with preconditioner

PRK = (U ⊗ Inx )(Is ⊗M + τΣ⊗ K)(V> ⊗ Inx ).

Theorem

If the real part of Rayleigh quotient
x∗(U>V )x

x∗x
is positive, for any x ∈ Cs \ {0}

then the eigenvalues of the matrix P−1
RKΘ̂H all lie in the right-half of the unit circle

centered at the origin of the Gauss plane. If in addition 1 ∈ σ(UTV ) then

1 ∈ σ(P−1
RKΘ̂H) with multiplicity nx .

• Assumption Re(σ(UTV )) > 0 holds for all RK methods we tried, up to order 7 .

5-stage Radau method (order 9) works fine in practice but it has a pair of eigenvalues
with real part equal to −5× 10−4.

• for odd s eigenvalue 1 always belongs to σ(UTV ).

Leveque, Bergamaschi, Martinez, Pearson

Parallel-in-Time Solver for the All-at-Once Runge–Kutta Discretization
https://arxiv.org/abs/2303.02090, 2023

https://arxiv.org/abs/2303.02090


Eigenvalues of P−1
RKΘ̂

Q2 elements, ` = 4 with h = 2−`, τ = 0.2. Unit circle in green.

3-stages Gauss 4-stages Lobatto IIIC

5-stages Radau IIA 9-stages Radau IIA
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Properties of the SVD preconditioner

Even when the hypotheses of the Theorem are not satisfied: the preconditioner
performs well:

GMRES residual after 5 and 10 inner iterations (Lobatto RK method) is weakly
influenced by the number of stages s.

s ‖r5‖ ‖r10‖
3 2.8228e-03 4.0014e-06
5 5.3229e-02 1.7263e-03
7 5.2125e-02 6.1990e-03
9 5.6382e-02 8.1128e-03
11 6.6290e-02 1.2204e-02
13 7.2945e-02 1.8589e-02
15 7.8344e-02 1.8545e-02
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Construction of RK methods satisfying the hypotheses

We recall the W-transformation (Theorem 5.1, p. 71, Hairer & Wanner book, [HW]) to
construct a stable implicit RK method of a given order. Given an integer s ≥ 2,

let Ps(x) a shifted and scaled Legendre polynomial. The nodes ci are the roots of

P̂(x) = Ps(x) + α1Ps−1(x) + α2Ps−2(x).

The weights satisfy the usual (interpolatory) condition B(s − 2):

s∑
i=1

bic
q−1
i =

1

q
, for q = 1, . . . , s − 2.

Define matrix W as W = (wij ), and wij = Pj−1(ci ), εk = 1

2
√

4k2−1
, and

X =


0.5 −ε1

ε1 0
. . .

. . . 0 βs−1
εs−1 βs

 .
Then ARK = W−1XW corresponds to an RK method of order 2s − 2 .
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Construction of RK methods satisfying the hypotheses

We are (almost) free to vary four parameters α1, α2, βs−1, βs to maximize the
minimum of the real parts of the eigenvalues of U>V .

Constraints on the parameters:

α2 <
s − 1

s

√
2s + 1

2s − 3
to have real ci ’s

βs−1 < 0 ∧ βs ≥ 0, for A-stability, see (5.45) of [HW].

Then run Matlab function fminconc for the constrained optimization problem

µ = max
α1,α2,βs−1,βs

min{Re(λ) : λ ∈ σ(U>V )}

Aim: µ > 0.
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Construction of RK methods satisfying the hypotheses

Compare with Lobatto(s) method

µmin = min{Re(λ) : λ ∈ σ(U>V )}

s µ µmin βs−1 βs α1 α2

3 0.6329 0.3855 −0.0005 0.6138 −2.2912 −2.9759
4 0.3371 0.1472 −2.9977 1.0152 −2.9955 0.1492
5 0.2354 0.0155 −1.4125 0.4791 −1.6364 −2.3049
6 0.1131 −0.0431 −0.4872 0.2597 −2.5456 −1.6340
7 0.0476 −0.0701 −0.4240 0.2304 −2.4701 −1.3328
8 0.0034 −0.0892 −0.3376 0.1950 −2.0680 −1.1077
9 −0.0223 −0.1036 −0.3371 0.1985 −1.7087 −0.9326

10 −0.0392 −0.1143 −2.0388 1.1091 −1.4238 −0.8077

Up to s = 8 (order 14) RK matrices satisfy the hypotheses of the Theorem.

Eigenvalues are shifted towards the right part of the complex plane by the
optimization procedure.
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Are the eigenvalues of the preconditioned Θ̂k bounded away from zero?
Heuristic says: Yes!

The eigenvalues of P−1
RKΘ̂k solve the following generalized eigenvalue problem:

(U>V + τλ̄Σ)x = λ(Is + τλ̄Σ)x,

where λ̄ is an eigenvalue of M−
1
2 KM−

1
2 . This can be seen as a perturbation of(

Λ + τλ̄Σ
)

x = λ
(
Is + τλ̄Σ

)
x, Λ = diag(µ1, . . . , µs).

For every j , setting µj ≡ a + ib, c = τλ̄σj , with a ≥ µmin > 0, we have

λ =
a + ib + c

1 + c
=

a + c

1 + c
+ i

b

1 + c
, |λ|2 =

(a + c)2 + b2

(1 + c)2
.

Whence

|λ|2 =
1 + 2ac + c2

(1 + c)2
= 1+2(a−1)

c

(1 + c)2
≡ ϕ(c) ≥ ϕ(1) =

1 + a

2
≥

1 + µmin

2
≥

1

2
,

which shows that the eigenvalues are outside the circle of center 0 and radius
√

2
2

.
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Alternative preconditioners for Θ̂k (comparisons underway)

L and U: triangular factor in the LU decomposition of A−1
RK (with diag(U) = Is)

Spectral decomposition of L as
L = SΛS−1.

Munch-et-al’s preconditioner is defined as

P−1
RK = (S ⊗ In) (Λ⊗M + τ Is ⊗ K)−1 (S−1 ⊗ In

)
PRO: Eigenvalue distribution of P−1

RKΘ̂k more favorable.

CON: Matrix S exponentially ill-conditioned with the number of stages s.

Munch, Dravins, Kronbichler, Neytcheva
Stage-parallel fully implicit Runge-Kutta implementations with optimal multilevel preconditioners at the scaling limit
https://doi.org/10.48550/arXiv.2209.06700
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Approximate inversion of the Schur complement

Recalling the expression for S .

S =

 M

.. .

M




Inx

−Inx + X̂
. . .

. . .
. . .

−Inx + X̂ Inx


︸ ︷︷ ︸

Ŝ

,

Solving then for S requires multiplying by matrix

X̂ = τ
[
b1Inx . . . bs Inx

] [
Is ⊗M + τARK ⊗ K

]−1 [
e⊗ K

]
which in its turn calls for (a GMRES) solution of nt systems with Θ̂H .
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Stokes equations


∂~v

∂t
−∇2~v +∇p = ~f (x, t) in Ω× (0, tf ),

∇ · ~v = 0 in Ω× (0, tf ), click to go to the test

~v(x, t) = ~g(x, t) on ∂Ω× (0, tf ),

~v(x, 0) = ~v0(x) in Ω.

After dividing the time interval [0, tf ] into nt subintervals, the discretization of the
Stokes equation by a Runge–Kutta method reads:

Mvvn+1 = Mvvn + τMv
∑s

i=1 bik
v
in n = 0, . . . , nt − 1,

Mppn+1 = Mppn + τMp
∑s

i=1 bik
p
in n = 0, . . . , nt − 1,

The stages kvin and kpin are defined as:

Mvkvin + K vvn + τK v
∑s

j=1 aijk
v
jn + B>pn + τB>

∑s
j=1 aijk

p
jn = fin,

Bvn + τB
∑s

j=1 aijk
v
jn = 0,

fjn accounts for the discretization of the source term,

K v and Mv (resp., Kp and Mp) are the vector– (resp. pressure–) stiffness and
mass matrices.

B (BT ) is the discrete divergence (gradient) operator.
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All-at-once RK-Stokes

In matrix form, the system is, as before,[
Φ Ψ1

Ψ2 ΘS

]
︸ ︷︷ ︸

A

[
v
k

]
=

[
r1

r2

]
, with

Φ =


1
−1 · · ·

· · · · · ·
−1 1

⊗M, Ψ2 = Int ⊗ Ψ̂2

Ψ1 =

[
0

Int

]
⊗ (τb>RK ⊗M), ΘS = Int ⊗ Θ̂S

where the blocks defined for each time-step are M =

[
Mv 0
0 Mp

]
and

Ψ̂2 =

[
e⊗ K v e⊗ (B>)
e⊗ B 0

]
Θ̂S =

[
Is ⊗Mv + τARK ⊗ K v τARK ⊗ B>

τARK ⊗ B 0

]
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Preconditioner

Applying preconditioner P =

[
S Ψ1

0 ΘS

]
rests on efficiently approximating block Θ̂S

Θ̂S =

[
Is ⊗Mv + τARK ⊗ K v τARK ⊗ B>

τARK ⊗ B 0

]
=

[
Θ̂H τARK ⊗ B>

τARK ⊗ B 0

]

In order to solve for this matrix, we employ as a preconditioner

PRK =

[
Is ⊗Mv + τARK ⊗ K v 0

τARK ⊗ B SRK

]
≡
[

Θ̂H 0
τARK ⊗ B SRK

]
where

SRK = −τ2(ARK ⊗ B)Θ̂
−1
H (ARK ⊗ B>).

Again we need an efficient strategy to solve a system with PRK.

The (1, 1) block in PRK is preconditioned as described before for the Heat equation.
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Application of SRK

SRK = −τ2(ARK ⊗ Inp )Sint(ARK ⊗ Inp ).

where, using properties of the Kronecker product, we have defined

Sint = (Is ⊗ B)Θ̂
−1
H (Is ⊗ B>).

We approximate (precondition) Sint with

S̃int := (Is ⊗ Kp)(Is ⊗Mp + τARK ⊗ Kp)−1(Is ⊗Mp).

employing the block-commutator argument derived independently in

Leveque, Pearson

Parameter-robust preconditioning for Oseen iteration applied to stationary and instationary Navier–Stokes control
SISC, 2022

Danieli, Southworth, Wathen

Space-time block preconditioning for incompressible flow
SISC, 2022

Then, our approximation of the Schur complement is given by

S̃RK = −τ2(ARK ⊗ Inp )S̃int(ARK ⊗ Inp ).
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How good is S̃RK as a preconditioner for SRK?

Eigenvalues of S̃−1
RKSRK

3-stages Gauss. 3-stages Lobatto IIIC.

3-stages Radau IIA.
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Summarizing

P̃RK =

[
U ⊗ Inv 0

0 U ⊗ Inp

]
P̃int

[
V> ⊗ Inv 0

0 V> ⊗ Inp

]
,

with

P̃int =

[
Is ⊗M + τΣ⊗ K 0

τΣ⊗ B −τ2
(
(ΣV>)⊗ Inp

)
S̃int

(
(UΣ)⊗ Inp

) ] .
S̃int := (Is ⊗ Kp)(Is ⊗Mp + τARK ⊗ Kp)−1(Is ⊗Mp).

Solution of a system with P̃RK involves solution of a system with Θ̂H and “inversion”
of S̃RK.

S̃−1
RK = −τ−2

(
(UΣ)⊗ Inp

)−1
(Is⊗M−1

p )(Is⊗Mp+τARK⊗Kp)(Is⊗K−1
p )

(
(ΣV>)⊗ Inp

)−1

whose application to a vector is carried on by iterative solution of systems with Mp

and Kp .
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Stokes equations: parallel all-at-once solve

Problem: time-dependent version of the lid-driven cavity

Initial condition ~v(x, 0) = ~0

Flow described by the Stokes equations with ~f (x, t) = ~0 and the following boundary
conditions:

~g(x, t) =


[t, 0]> on ∂Ω1 × (0, 1),

[1, 0]> on ∂Ω1 × [1, tf ),

[0, 0]> on (∂Ω \ ∂Ω1)× (0, tf ).

We set ∂Ω1 := (−1, 1)× {1}.

Simulations up to more than 200 time units.
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Numerical results. Sequential

2D examples.

Discretizations: Q1 and Q2 FE for the heat equation; inf–sup stable Taylor–Hood
Q2–Q1 for the Stokes equations.

` denotes the level of refinement: h = 2−`−1 (Q1), h = 2−` (Q2)

Solution to mass matrices: 20 steps of Chebyshev semi-iteration

Solution to stiffness/related matrices: Multigrid with 2 V-cycles of the HSL MI20

solver.

FGMRES as the outer solver (10−8 tolerance on the relative residual)

Linear systems with ΘH are solved with GMRES and maximum number of
iterations 5 (Heat equation) 10 (Stokes equation).

MATLAB R2018b, (1.70GHz Intel quad-core i5 processor with 8 GB RAM)
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Heat equation: All-at-once solver with Lobatto IIIC methods

Test case with exact solution known.

it = outer FGMRES iterations

Q1 Q2

s ` DoF it CPU verror DoF it CPU verror

2

4 11,025 6 1.7 3.56e-03 133,579 7 16 3.25e-04
5 93,217 7 8.2 1.05e-03 1,528,065 8 162 4.56e-05
6 766,017 7 58 2.71e-04 17,580,610 8 1979 4.64e-06

3

4 5625 6 1.1 1.28e-03 39,401 7 4.9 1.58e-05
5 31,713 6 3.3 3.63e-04 257,985 7 27 2.59e-06
6 194,481 7 16 8.27e-05 1,758,061 8 231 2.58e-07

4

4 4725 8 1.1 1.54e-03 29,791 9 7 1.57e-06
5 29,791 10 4.7 3.53e-04 162,729 10 26 7.26e-08
6 142,884 9 16.0 8.40e-05 983,869 9 157 3.71e-07

5

4 5625 9 1.7 1.54e-03 29,791 9 5.5 1.17e-06
5 24,025 9 3.6 4.01e-04 146,853 10 25 5.30e-08
6 123,039 9 15.0 9.64e-05 790,321 9 137 2.18e-07

25 of 33



Heat equation: All-at-once solver with Radau IIA methods

it = outer FGMRES iterations

Q1 Q2

s ` DoF it CPU verror DoF it CPU verror

2

4 5625 6 0.9 1.35e-03 47,089 7 5.2 2.51e-05
5 38,440 6 3.0 3.46e-04 384,993 8 40 3.41e-06
6 254,016 7 19 8.35e-05 3,112,897 8 351 5.71e-07

3

4 4725 7 0.9 1.46e-03 27,869 7 3.4 2.28e-06
5 27,869 7 2.9 3.30e-04 178,605 8 21 2.24e-07
6 130,977 7 11 1.03e-04 1,048,385 8 136 2.68e-08

4

4 4725 9 1.4 1.54e-03 24,986 10 4.7 1.12e-06
5 24,986 10 4.0 3.77e-04 142,884 12 27 7.14e-08
6 123,039 10 15 9.00e-05 741,934 12 159 1.34e-08

5

4 5625 10 1.9 1.54e-03 24,025 10 4.8 1.20e-06
5 24,025 10 4.1 4.01e-04 146,853 9 22 3.15e-07
6 123,039 10 17 9.65e-05 693,547 9 119 1.82e-07

Comment: satisfactory scalability with respect to both meshsize parameter ` and
number of stages.
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Comparisons with ParaDiag. Sequential

All-at-once solve of the Heat equation.

ParaDiag vs 5-stage Radau IIA methods – Q2 finite elements.

s ParaDiag 5-stage Radau IIA
DOF it CPU verror DOF it CPU verror

3 3825 4 0.1 2.26e-04 5625 10 1.1 1.92e-05
4 45,167 4 1.1 2.68e-05 24,025 9 3.7 1.21e-06
5 512,001 3 14 3.41e-06 146,853 10 32 7.59e-08
6 5,870,956 3 179 4.26e-07 693,547 10 176 1.08e-07
7 † – – – 3,186,225 8 761 6.47e-07

For fine meshes the proposed solver outperforms ParaDIAG.

This is mainly due to the high order RK discretization which allows reduction of
number of time-steps and hence the overall size of the system.

Gander, Liu, Wu, Yue, Zhou

ParaDiag: parallel-in-time algorithms based on the diagonalization technique
https://doi.org/10.48550/arXiv.2005.09158, 2021
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Parallel machine and efficiency indicators

The parallel code is written in Fortran 95 with pure MPI as the message passing
protocol, and compiled with the -O5 option.

Computing machine: Marconi 100: IBM Power AC922 (located at CINECA, Bologna)
with 980 computing nodes and 2x16 cores at 2.6(3.1) GHz on each node.

Tnp = CPU seconds when running the code on np processors.

Parallel efficiency measures: Speedup Snp and Efficiency Enp :

Snp =
T1

Tnp

, Enp =
Snp

np
=

T1

Tnpnp
.

TΘ
np and T S

np → approximate inversion of Θ and S preconditioner blocks.

We approximate (from below) T1 time by setting T1 := 2npTΘ
np since

T1 . 2TΘ
1 . 2npT

Θ
np

Thus we underestimate T1 and also both Snp and Enp .
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Parallelization

Uniform distribution of the data: each processor manages nt/np timesteps.

To solve the system with Ŝ at every FGMRES iteration we employed the Parallel
MGRIT: Xbraid with the following parameters

Coarsening factor: cfactor = 4,

Minimum coarse grid size: min coarse = 2,

Maximum number of iterations: max its = 1.

Test cases (last column: number of FGMRES outer iterations)

# Eq. RK method Tf order nt ` s Total Ndof Its
FE RK

1 Heat Radau IIA 255.9 3 7 2048 8 4 2 674 140 160 11
2 Heat Lobatto IIIC 2047.9 3 6 16384 7 4 5 326 913 024 9
3 Stokes Radau IIA 386.8 2 5 2048 7 3 1 201 839 360 13
4 Stokes Lobatto IIIC 510.7 2 6 2048 7 4 1 502 262 528 19
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Heat equation

Test case # 1

Test case # 2

p TΘ
np

T S
np

Tnp Snp Enp

64 14471 17536 32065 58 90%
128 7254 11717 19000 98 76%
256 3639 9511 13166 141 55%
512 1888 8419 10320 180 35%

256 3061 4103 7187 224 87%
512 1586 2568 4168 386 75%

1024 784 1785 2583 622 61%
2048 427 1485 1926 834 41%
4096 205 1334 1545 1040 25%

CPUs vs np for test case #2.

Blue line: real CPUs

Red line: ideal CPUs

assuming 100% efficiency.

Parallel run with np = 4096 1545 seconds = 25 minutes
Sequential run (projected CPU) 288381 seconds = 3 days 8 hours



Results for the Stokes equation

Simulation of the Lid-Driven Cavity.

Each block of the preconditoner is approximately inverted with 10 GMRES (inner)
iterations

(Outer) FGMRES is restarted after 20 iterations, with tolerance of 10−6.

CPUs, speedups and parallel efficiencies for test case #3 (left) and #4 (right).

p TΘ
np T S

np Tnp Snp Enp TΘ
np T S

np Tnp Snp Enp

64 10345 13540 23925 55 87% 21314 26696 48084 57 89%
128 5180 8898 14100 94 73% 10685 17521 28247 97 76%
256 2624 7228 9870 134 52% 5257 13921 19207 142 56%
512 1309 6288 7606 174 34% 2695 12375 15085 181 35%

Radau IIIA Lobatto IIC
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State-of-the-art and Next steps

What we have achieved:

Block triangular preconditioner based on the SVD of ARK (no complex
arithmetics!)

In the Stokes problem this is combined with the block-commutator preconditioner.

Robustness wrt space discretization parameter h and to the number of RK stages.

Parallel solution of the block bidiagonal system successfully performed by MGRIT.

High speedups and efficiencies up to a number of processors roughly nt/4.

Future directions:

Variable timestep implementation

(Non trivial) extension to problems with nonsymmetric operators.
Advection-diffusion, Navier-Stokes?

Parallelization also in space (to handle finer space discretization).
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