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Motivation: electronic structure calculation for molecules

Computation of the evolution in time of the state of the set of electrons in a molecule:
electrical, magnetical, optical properties...
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Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric
charges are denoted by R1, . . . , RM P R3 and Z1, . . . , ZM P N˚ respectively;

N electrons, considered as quantum particles: at time t P R, the state of the electrons is
represented by a complex-valued function ψptq : R3N Ñ C. The function ψptq is called the
wavefunction of the system of electrons at time t P R.

Physical interpretation of the wavefunction:

For x1, . . . , xN P R3, the quantity |ψpt, x1, . . . , xNq|
2 represents the probability density at

time t of the positions x1, . . . , xN of the N electrons.

For B Ă R3N ,
ż

B
|ψpt, ¨q|2: probability that the electrons are located in the set B at time t.
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Time-dependent Schrödinger equation

"

iBtψptq ´ Hψptq “ 0, t P p0,T q
ψp0q “ ψ0

(1)

where the operator H “ H0 ` A is a self-adjoint operator on H “ L2pR3Nq with domain
DpHq “ H2pR3Nq called the Hamiltonian of the system of electrons and is given by

H0 “ ´∆x1,...,xN (kinetic energy)

and

A “ V px1, . . . , xNq “
M
ÿ

k“1

N
ÿ

i“1

´Zk

|xi ´ Rk |
`

ÿ

1ďiăjďN

1

|xi ´ xj |
(coulombic energy)
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Goal: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of (7) as the solution of a variational
problem of the form

@ϕ P XH , apψ,ϕq “ bpϕq

with

XH a Hilbert space of functions depending both on the time and space variable;

a : XH ˆ XH a continuous hermitian coercive sesquilinear form

b : XH Ñ C a continuous linear form

so that
ψ “ argmin

ϕPXH

Epϕq

with

@ϕ P XH , Epϕq “
1

2
apϕ,ϕq ´ bpϕq

There are several ways to do so!
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Wishlist

One would like the previous variational formulation to have the following properties:

the space XH should be easy to characterize;

the coercivity and continuity constants of a and b should not depend too strongly on the
value of the final time T ;

Two main interests/motivations:

global space-time Galerkin discretization methods: given Xd Ă XH a finite-dimensional
subspace of XH , compute ψd P Xd solution to

@ϕd P Xd , apψd , ϕd q “ bpϕd q

Cea’s lemma: }ψ ´ ψd }XH
ď C infϕdPXd

}ψ ´ ϕd }XH

dynamical low-rank approximations well-defined on the whole time interval p0,T q whatever
the value of the final time T
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References on global space-time discretization methods for TD Schrödinger
equations

Petrov-Galerkin discretizations:

[Demkowicz et al., 2017], [Gomez, Moiola, 2022], [Gomez, Moiola, 2024], [Hain, Urban, 2022]

At least up to our knowledge, all restricted to

bounded spatial domains;

bounded/smooth interaction potentials.
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Notation and definition of weak solutions

Let H be a Hilbert space equipped with a scalar product x¨, ¨y and associated norm | ¨ |

Let H be a self-adjoint operator on H with domain DpHq

Let I :“ p0,T q and consider the Bochner space L2pI ;Hq

For all u0 P H and f P L2pI ;Hq, consider u‹ the unique weak solution to

"

iBtu‹ptq ´ Hu‹ptq “ f ptq, t P I ,
u‹p0q “ u0

(2)

Definition (Notion of weak solutions)

A function u‹ P L2pI ;Hq is said to be a weak solution to (2) if and only if

(C1) @v P C0
c pI ,DpHqq X C1

c pI ,Hq,

pu‹|piBt ´ HqvqL2pI ;Hq “ pf |vqL2pI ;Hq

(C2) u‹p0q “ u0

Remark: Actually, (C1) implies that u‹ P C0pI ;Hq, which enables to give a meaning to (C2)
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A first variational formulation (not useful)

Define
XH “

 

u‹ P L2pI ;Hq : Dpu0, f q P Hˆ L2pI ;Hq such that u‹ solves (2)
(

This space is a Hilbert space when equipped with the inner product

@u, v P XH , pu, vqXH
“ xup0q, vp0qy ` T ppiBt ´ Hqu|piBt ´ HqvqL2pI ;Hq (3)

The associated norm is then denoted by

@u P XH , }u}XH
“

´

|up0q|2 ` T}piBt ´ Hqu}2
L2pI ,Hq

¯ 1
2

(4)

Equivalent formulation:

u‹ “ argmin
uPXH

|up0q ´ u0|
2 ` T}piBt ´ Hqu ´ f }2

L2pI ,Hq

Problem: what is the space XH?
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First characterization of XH

Theorem

The application
"

L2pI ;Hq Ñ L2pI ;Hq
u ÞÑ e itHu

(5)

defines an isomorphism between XH and H1pI ;Hq.

In other words,

XH “

!

e´itHv : v P H1pI ;Hq
)

Problem again: the evolution group e´itH is not easy to compute/characterize in general
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Main idea: H “ H0 ` A

Key ingredient: write the operator H as H “ H0 ` A for some operators H0 and A so that

the space XH0
can be easily characterized and discretized

A is a ”small perturbation” of H0 in some sense

many-body electronic Schrödinger operator: H0 “ ´∆x1,...,xN .

The proofs of the following results rely on Kato’s smoothing theory [Reed, Simon, 1978]
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Assumptions on H0 and A

Assumptions (A):

(A1) The operator H0 is a self-adjoint operator on H with domain DpH0q

(A2) The operator A is a closed symmetric operator on H such that DpH0q Ă DpAq

(A3) There exists some ε ą 0 such that

sup
λPR

›

›ApH0 ´ λ˘ iεq´1
›

› ă 1 (6)

Theorem

Let H0 and A be operators on H satisfying the set of assumptions (A).

Then H “ H0 ` A defined on DpHq :“ DpH0q is self-adjoint.

It holds that XH “ XH0

There exist constant α,C ą 0 independent of T such that

@u P XH0
,

α

1` T
}u}XH0

ď }u}XH
ď Cp1` T q}u}XH0
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Consequence: second variational formulation

u‹ “ argmin
uPXH0

|up0q ´ u0|
2 ` }piBt ´ H0 ´ Aqu ´ f }2L2pI ;Hq

XH0
“

!

e´itH0v : v P H1pI ;Hq
)

Let v‹ P H1pI ;Hq such that u‹ “ e´itH0v‹. We then have

v‹ “ argmin
vPH1pI ;Hq

|pe´itH0vqp0q ´ u0|
2 `

›

›

›
piBt ´ H0 ´ Aqpe´itH0vq ´ f

›

›

›

2

L2pI ;Hq

pe´itH0vqp0q “ vp0q

since the evolution group e itH0 is a unitary group, it holds that

›

›

›
piBt ´ H0 ´ Aqpe´itH0vq ´ f

›

›

›

2

L2pI ;Hq
“

›

›

›
e itH0 piBt ´ H0 ´ Aqpe´itH0vq ´ e itH0 f

›

›

›

2

L2pI ;Hq

for all v P H1pI ;Hq, e itH0 piBtqe´itH0v “ e itH0e´itH0 pH0 ` iBtqv “ pH0 ` iBtqv

and e itH0H0e´itH0v “ e itH0e´itH0H0v because H0 commutes with e´itH0 .
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Consequence: second variational formulation

Theorem

Let H0 and A be operators on H satisfying (A). Let u0 P H and f P L2pI ;Hq.

Then, the solution u‹ to (2) is given by u‹ “ e´itH0v‹ where v‹ P H1pI ;Hq is the unique
solution to

v‹ “ argmin
vPH1pI ;Hq

F pvq

with
F pvq “ |vp0q ´ u0|

2 ` T
›

›

›
piBt ´ e itH0Ae´itH0 qv ´ e itH0 f

›

›

›

L2pI ;Hq

Moreover, there exists α,C ą 0 independent on T such that

@v P H1pI ;Hq,
α

1` T
}v ´ v‹}H1pI ;Hq ď

b

F pvq ď Cp1` T q}v ´ v‹}H1pI ;Hq

Remark: We obtain a similar result in the case when u‹ is the solution of a time-dependent
Schrödinger equation of the form

"

iBtu‹ptq ´ pH0 ` A` Bptqqu‹ptq “ f ptq, t P I ,
u‹p0q “ u0

where B : I Q t ÞÑ Bptq is a strongly continuous family of bounded self-adjoint operators on H.
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Outline of the talk

1 Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

4 Global space-time discretization methods

5 Dynamical low-rank approximations

6 Summary
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Many-body electronic Schrödinger problem

"

iBtψptq ´ Hψptq “ 0, t P p0,T q
ψp0q “ ψ0

(7)

where the operator H “ H0 ` A is a self-adjoint operator on H “ L2pR3Nq with domain
DpHq “ H2pR3Nq is given by

H0 “ ´∆x1,...,xN (kinetic energy)

and

A “ V px1, . . . , xNq “
M
ÿ

k“1

N
ÿ

i“1

´Zk

|xi ´ Rk |
`

ÿ

1ďiăjďN

1

|xi ´ xj |
(coulombic energy)

Question: Do H0 and A satisfy assumptions (A1)-(A2)-(A3)?
YES!!!

WHY???
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Kato smoothing theory

Theorem

Let H0 and A be operators on H satisfying (A1)-(A2).

Then, if

sup
ϕPH, |ϕ|“1

ż

R
dt|Ae´itH0ϕ|2 ă 8,

then H0 and A satisfy (A3).

The operator A is said to be H0-smooth.

Theorem

sup
ϕPL2pR3N q, }ϕ}

L2pR3N q
“1

ż

R
dt

›

›

›
Ve it∆ϕ

›

›

›

2

L2pR3N q
ď 2

c

2

π

˜

N
M
ÿ

k“1

Zk `
NpN ´ 1q

2
?

2

¸

(8)

stems from Kato-Yajima inequality: [Kato,Yajima,1989], [Burq, 2004]
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Variational formulation: many-body electronic Schrödinger case

Theorem

Let u0 P L2pR3Nq. Let ψ be the solution to (7), and v‹ :“ e´it∆ψ.

Define for any v P H1pI ; L2pR3Nqq the functional

F pvq “ }vp0q ´ u0}
2
L2pR3N q

` T
›

›

›
piBt ´ e´it∆Ve it∆qv

›

›

›

2

L2pI ,L2pR3N qq
. (9)

Then, there exist constants C , α ą 0 such that for any v P H1pI , L2pR3Nqq,

α

1` T
}v ´ v‹}H1pI ,L2pR3N qq ď

b

F pvq ď C
?

1` T }v ´ v‹}H1pI ,L2pR3N qq (10)
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Outline of the talk

1 Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

4 Global space-time discretization methods

5 Dynamical low-rank approximations

6 Summary
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Electronic many-body Schrödinger case

v‹ “ argmin
vPH1pI ;L2pR3N qq

F pvq

with

}vp0q ´ u0}
2
L2pR3N q

` T
›

›

›
piBt ´ e´it∆Ve it∆qv

›

›

›

2

L2pI ,L2pR3N qq

Idea: Find a discretization space Vd Ă H1pI ; L2pR3Nqq and find

v‹d “ argmin
vPVd

F pvq

By Céa’s lemma, we then have

}v‹ ´ v‹d }H1pI ;L2pR3N qq ď C inf
vdPVd

}v‹ ´ vd }H1pI ;L2pR3N qq

Ongoing work:

Hagedorn functions [Lasser, Lubich, 2020]

Space-time wavelets (on-going work with Markus Bachmayr)
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By Céa’s lemma, we then have

}v‹ ´ v‹d }H1pI ;L2pR3N qq ď C inf
vdPVd

}v‹ ´ vd }H1pI ;L2pR3N qq

Ongoing work:

Hagedorn functions [Lasser, Lubich, 2020]

Space-time wavelets (on-going work with Markus Bachmayr)

Virginie Ehrlacher (CERMICS) Schrödinger Pisa, 04/03/24 23 / 33



Preliminary results on a simpler test case

Periodic boundary conditions on r0, 1s2:

#

iBtu‹ “ p´∆x,y ` V pt, x , yqqu‹,

up0q “ u0,
(11)

with V pt, x , yq “ cosp2πpx ´ c1tqq ` cosp2πpy ´ c2tqq ` cosp2πpx ´ yqq for some constants
c1, c2 ą 0.

Discretization: Tchebychev polynomials in time and Fourier modes in space

Comparison with a Cranck-Nicholson time scheme

For a fixed number of Fourier modes (dicretization in space), K is either:

maximal degree of Tchebychev polynomials in the global space-time scheme

maximal number of time steps in the Cranck-Nicholson scheme

Time interval: r´τ, τ s
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Error in } ¨ }C0pI ;L2pp0,1q2qq
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Computational time
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Outline of the talk

1 Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

4 Global space-time discretization methods

5 Dynamical low-rank approximations

6 Summary
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Low-rank tensor formats

Question: What can we do when N, the number of electrons is large?

Let Σ Ă H “ L2pR3Nq be a susbet of functions of x1, . . . , xN which can be represented in some
low-rank tensor format (or more generally with low complexity).

Examples:

Pure tensor products: Σ “
 

r1px1q . . . rNpxNq, r1, . . . , rN P L2pR3q
(

(with antisymmetry: set of Slater determinants)

Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)

Tensor Train format, Hierarchical Tree format

Ceruti, Dolgov, Dupuy, Grigori, Hackbusch, Kressner, Khoromskij, Lasser, Lombardi, Lubich,
Oseledets, Schneider, Uschmajew,...

Dynamical low-rank approximation: The aim is to compute an approximation ru of u‹ (or ψ)
such that ruptq P Σ for all t.
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Dirac-Frenkel variational principle

Find ru such that for almost all t,

xpiBt ´ Hqruptq, δruy “ xf ptq, δruy, @δru P T
ruptqΣ, (12)

where T
ruptqΣ is the tangent space to Σ at point ruptq.

In general, except in some particular situations, one can only obtain the local existence in time of
a solution ru to (12).
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Alternative variational principle?

Very nice property: e it∆ is a pure tensor product of operators:

e it∆x1,...,xN “ e it∆x1 b . . .b e it∆xN

Rather look for ru “ e it∆
rv solution to

rv P argmin
rwPH1pI ;Σq

F p rwq (13)

Theorem

Let Σ be a weakly closed subset of H. Then, H1pI ; Σq is a weakly closed subset of H1pI ;Hq.
Hence, there always exists at least one solution to (13).

In principle, global in time existence of dynamical low-rank approximations.
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Summary and perspectives

Result: New variational global space-time formulation of the solution of the time-dependent
Schrödinger equation
Analysis covers the case of potential with Coulombic singularities and unbounded domains

Perspectives:
Global space-time Galerkin discretization methods (preliminary numerical tests in simple test cases)
Alternative variational principle for dynamical low-rank approximations allowing for global-in-time
existence

Open question: how to impose norm conservation in this global space-time formulation?
Not completely obvious...
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Virginie Ehrlacher (CERMICS) Schrödinger Pisa, 04/03/24 32 / 33



Summary and perspectives

Result: New variational global space-time formulation of the solution of the time-dependent
Schrödinger equation
Analysis covers the case of potential with Coulombic singularities and unbounded domains

Perspectives:
Global space-time Galerkin discretization methods (preliminary numerical tests in simple test cases)
Alternative variational principle for dynamical low-rank approximations allowing for global-in-time
existence

Open question: how to impose norm conservation in this global space-time formulation?
Not completely obvious...

Virginie Ehrlacher (CERMICS) Schrödinger Pisa, 04/03/24 32 / 33



Thank you for your attention!
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