New global space-time variational formulation for the time-dependent Schrödinger equation

Mi-Song Dupuy³, Virginie Ehrlacher^{1,2}, Clément Guillot^{1,2}

¹Ecole des Ponts ParisTech

²INRIA Paris

³Sorbonne Université

ParisTech

European Research Council

Established by the European Commission

Exploiting Algebraic and Geometric Structure in Time Integration methods, 3rd April 2024

Virginie	Ehrlacher	(CERMICS)
----------	-----------	-----------

Aim and motivation

- 2 Variational formulation of the time-dependent Schrödinger equation
- Application to the many-body electronic Schrödinger problem
- Global space-time discretization methods
- 5 Dynamical low-rank approximations

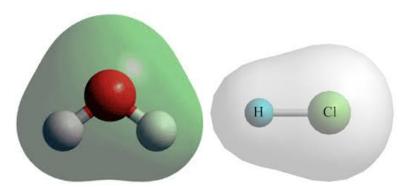
5 Summary

Aim and motivation

- 2 Variational formulation of the time-dependent Schrödinger equation
- 3 Application to the many-body electronic Schrödinger problem
- Global space-time discretization methods
- 5 Dynamical low-rank approximations

Summary

Motivation: electronic structure calculation for molecules



Computation of the **evolution in time of the state of the set of electrons** in a molecule: electrical, magnetical, optical properties...

Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Many-body Schrödinger model

For the sake of simplicity, atomic units will be used and the influence of spin will be neglected.

Born-Oppenheimer approximation:

Let us consider a physical system composed of

Born-Oppenheimer approximation:

Let us consider a physical system composed of

M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by R₁, ..., R_M ∈ ℝ³ and Z₁, ..., Z_M ∈ ℝ* respectively;

Born-Oppenheimer approximation:

Let us consider a physical system composed of

- M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by R₁, ..., R_M ∈ ℝ³ and Z₁, ..., Z_M ∈ ℝ* respectively;
- *N* electrons, considered as quantum particles: at time $t \in \mathbb{R}$, the state of the electrons is represented by a complex-valued function $\psi(t) : \mathbb{R}^{3N} \to \mathbb{C}$. The function $\psi(t)$ is called the wavefunction of the system of electrons at time $t \in \mathbb{R}$.

イロト イボト イヨト イヨト

Born-Oppenheimer approximation:

Let us consider a physical system composed of

- M nuclei, that are assumed to be (fixed) classical point charges, whose positions and electric charges are denoted by R₁, ..., R_M ∈ ℝ³ and Z₁, ..., Z_M ∈ ℝ* respectively;
- *N* electrons, considered as quantum particles: at time $t \in \mathbb{R}$, the state of the electrons is represented by a complex-valued function $\psi(t) : \mathbb{R}^{3N} \to \mathbb{C}$. The function $\psi(t)$ is called the wavefunction of the system of electrons at time $t \in \mathbb{R}$.

Physical interpretation of the wavefunction:

For $x_1, \ldots, x_N \in \mathbb{R}^3$, the quantity $|\psi(t, x_1, \ldots, x_N)|^2$ represents the probability density at time t of the positions x_1, \ldots, x_N of the N electrons.

For $B \subset \mathbb{R}^{3N}$,

 $\int_{B}|\psi(t,\cdot)|^{2}:$ probability that the electrons are located in the set B at time t.

イロン イヨン イヨン イヨン 三日

$$\begin{aligned} &i\partial_t \psi(t) - \mathbf{H}\psi(t) = 0, \quad t \in (0, \mathbf{T}) \\ &\psi(0) = \psi_0 \end{aligned}$$

where the operator $H = H_0 + A$ is a self-adjoint operator on $\mathcal{H} = L^2(\mathbb{R}^{3N})$ with domain $D(H) = H^2(\mathbb{R}^{3N})$ called the **Hamiltonian** of the system of electrons and is given by

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

Goal: quadratic variational formulation of the TD Schrödinger equation

Our aim here is to express equivalently the solution ψ of (7) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_H, \quad \mathbf{a}(\psi, \varphi) = \mathbf{b}(\varphi)$

with

- \mathcal{X}_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- $b: \mathcal{X}_H \to \mathbb{C}$ a continuous linear form

Our aim here is to express equivalently the solution ψ of (7) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_{H}, \quad \mathbf{a}(\psi, \varphi) = \mathbf{b}(\varphi)$

with

- \mathcal{X}_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- $b: \mathcal{X}_H \to \mathbb{C}$ a continuous linear form

so that

$$\psi = \operatorname*{argmin}_{\varphi \in \mathcal{X}_H} \mathcal{E}(\varphi)$$

with

$$\forall \varphi \in \mathcal{X}_{H}, \quad \mathcal{E}(\varphi) = \frac{1}{2}a(\varphi, \varphi) - b(\varphi)$$

Our aim here is to express equivalently the solution ψ of (7) as the solution of a variational problem of the form

 $\forall \varphi \in \mathcal{X}_{H}, \quad \mathbf{a}(\psi, \varphi) = \mathbf{b}(\varphi)$

with

- \mathcal{X}_H a Hilbert space of functions depending both on the time and space variable;
- $a: \mathcal{X}_H \times \mathcal{X}_H$ a continuous hermitian coercive sesquilinear form
- $b: \mathcal{X}_H \to \mathbb{C}$ a continuous linear form

so that

$$\psi = \operatorname*{argmin}_{\varphi \in \mathcal{X}_H} \mathcal{E}(\varphi)$$

with

$$\forall \varphi \in \mathcal{X}_{H}, \quad \mathcal{E}(\varphi) = \frac{1}{2}a(\varphi, \varphi) - b(\varphi)$$

There are several ways to do so!

Virginie	Ehrlacher ((CERMICS))
----------	-------------	-----------	---

イロト イヨト イヨト イヨト

One would like the previous variational formulation to have the following properties:

イロン イロン イヨン イヨン

One would like the previous variational formulation to have the following properties:

• the space \mathcal{X}_H should be easy to characterize;

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;

Two main interests/motivations:

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;

Two main interests/motivations:

• global space-time Galerkin discretization methods: given $\mathcal{X}_d \subset \mathcal{X}_H$ a finite-dimensional subspace of \mathcal{X}_H , compute $\psi_d \in \mathcal{X}_d$ solution to

 $\forall \varphi_d \in \mathcal{X}_d, \quad \mathbf{a}(\psi_d, \varphi_d) = \mathbf{b}(\varphi_d)$

Cea's lemma: $\|\psi - \psi_d\|_{\mathcal{X}_H} \leq C \inf_{\varphi_d \in \mathcal{X}_d} \|\psi - \varphi_d\|_{\mathcal{X}_H}$

イロト イヨト イヨト イヨト

One would like the previous variational formulation to have the following properties:

- the space \mathcal{X}_H should be easy to characterize;
- the coercivity and continuity constants of *a* and *b* should not depend too strongly on the value of the final time *T*;

Two main interests/motivations:

• global space-time Galerkin discretization methods: given $\mathcal{X}_d \subset \mathcal{X}_H$ a finite-dimensional subspace of \mathcal{X}_H , compute $\psi_d \in \mathcal{X}_d$ solution to

 $\forall \varphi_d \in \mathcal{X}_d, \quad \mathbf{a}(\psi_d, \varphi_d) = \mathbf{b}(\varphi_d)$

Cea's lemma: $\|\psi - \psi_d\|_{\mathcal{X}_H} \leq C \inf_{\varphi_d \in \mathcal{X}_d} \|\psi - \varphi_d\|_{\mathcal{X}_H}$

• dynamical low-rank approximations well-defined on the whole time interval (0, T) whatever the value of the final time T

<ロ> <四> <四> <四> <三</p>

References on global space-time discretization methods for TD Schrödinger equations

Petrov-Galerkin discretizations:

[Demkowicz et al., 2017], [Gomez, Moiola, 2022], [Gomez, Moiola, 2024], [Hain, Urban, 2022]

At least up to our knowledge, all restricted to

- bounded spatial domains;
- bounded/smooth interaction potentials.

Aim and motivation

Variational formulation of the time-dependent Schrödinger equation

3 Application to the many-body electronic Schrödinger problem

Global space-time discretization methods

5 Dynamical low-rank approximations

6 Summary

- Let $\mathcal H$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot
 angle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

- Let $\mathcal H$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot
 angle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$i\partial_t u^*(t) - Hu^*(t) = f(t), \quad t \in I,$$

 $u^*(0) = u_0$ (2)

- Let ${\cal H}$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot\rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$i\partial_t u^*(t) - Hu^*(t) = f(t), \quad t \in I,$$

 $u^*(0) = u_0$ (2)

Definition (Notion of weak solutions)

A function $u^* \in L^2(I; \mathcal{H})$ is said to be a weak solution to (2) if and only if (C1) $\forall v \in C^0_c(I, D(H)) \cap C^1_c(I, \mathcal{H})$,

$$(u^{\star}|(i\partial_t - H)v)_{L^2(I;\mathcal{H})} = (f|v)_{L^2(I;\mathcal{H})}$$

(C2) $u^{\star}(0) = u_0$

- Let $\mathcal H$ be a Hilbert space equipped with a scalar product $\langle\cdot,\cdot\rangle$ and associated norm $|\cdot|$
- Let H be a self-adjoint operator on \mathcal{H} with domain D(H)
- Let I := (0, T) and consider the Bochner space $L^2(I; H)$

For all $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$, consider u^* the unique weak solution to

$$i\partial_t u^*(t) - Hu^*(t) = f(t), \quad t \in I,$$

 $u^*(0) = u_0$ (2)

Definition (Notion of weak solutions)

A function $u^* \in L^2(I; \mathcal{H})$ is said to be a weak solution to (2) if and only if (C1) $\forall v \in C_c^0(I, D(H)) \cap C_c^1(I, \mathcal{H})$,

$$(u^{\star}|(i\partial_t - H)v)_{L^2(I;\mathcal{H})} = (f|v)_{L^2(I;\mathcal{H})}$$

(C2) $u^{\star}(0) = u_0$

Remark: Actually, (C1) implies that $u^* \in C^0(\overline{I}; \mathcal{H})$, which enables to give a meaning to (C2)

イロン イロン イヨン イヨン

A first variational formulation (not useful)

Define

$$\mathcal{X}_{H} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves } (2) \right\}$$

Define

$$\mathcal{X}_{H} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves (2)} \right\}$$

This space is a Hilbert space when equipped with the inner product

$$\forall u, v \in \mathcal{X}_{H}, \ (u, v)_{\mathcal{X}_{H}} = \langle u(0), v(0) \rangle + T((i\partial_{t} - H)u|(i\partial_{t} - H)v)_{L^{2}(I;\mathcal{H})}$$
(3)

The associated norm is then denoted by

$$\forall u \in \mathcal{X}_{H}, \ \|u\|_{\mathcal{X}_{H}} = \left(|u(0)|^{2} + T\|(i\partial_{t} - H)u\|_{L^{2}(I,\mathcal{H})}^{2}\right)^{\frac{1}{2}}$$
(4)

イロト イヨト イヨト イヨト

Define

$$\mathcal{X}_{H} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves (2)} \right\}$$

This space is a Hilbert space when equipped with the inner product

$$\forall u, v \in \mathcal{X}_{H}, \ (u, v)_{\mathcal{X}_{H}} = \langle u(0), v(0) \rangle + T((i\partial_{t} - H)u|(i\partial_{t} - H)v)_{L^{2}(I;\mathcal{H})}$$
(3)

The associated norm is then denoted by

$$\forall u \in \mathcal{X}_{H}, \ \|u\|_{\mathcal{X}_{H}} = \left(|u(0)|^{2} + T\| (i\partial_{t} - H)u\|_{L^{2}(I,\mathcal{H})}^{2} \right)^{\frac{1}{2}}$$
(4)

Equivalent formulation:

$$u^{*} = \operatorname*{argmin}_{u \in \mathcal{X}_{H}} |u(0) - u_{0}|^{2} + T \| (i\partial_{t} - H)u - f \|_{L^{2}(I, \mathcal{H})}^{2}$$

Define

$$\mathcal{X}_{\mathcal{H}} = \left\{ u^{\star} \in L^{2}(I; \mathcal{H}) : \exists (u_{0}, f) \in \mathcal{H} \times L^{2}(I; \mathcal{H}) \text{ such that } u^{\star} \text{ solves (2)} \right\}$$

This space is a Hilbert space when equipped with the inner product

$$\forall u, v \in \mathcal{X}_{H}, \ (u, v)_{\mathcal{X}_{H}} = \langle u(0), v(0) \rangle + T((i\partial_{t} - H)u|(i\partial_{t} - H)v)_{L^{2}(I;\mathcal{H})}$$
(3)

The associated norm is then denoted by

$$\forall u \in \mathcal{X}_{H}, \ \|u\|_{\mathcal{X}_{H}} = \left(|u(0)|^{2} + T\| (i\partial_{t} - H)u\|_{L^{2}(I,\mathcal{H})}^{2} \right)^{\frac{1}{2}}$$
(4)

Equivalent formulation:

$$u^{\star} = \operatorname*{argmin}_{u \in \mathcal{X}_{H}} |u(0) - u_{0}|^{2} + T \| (i\partial_{t} - H)u - f \|_{L^{2}(I,\mathcal{H})}^{2}$$

Problem: what is the space \mathcal{X}_H ?

Virginie	Ehrlacher	(CERMICS)
----------	-----------	-----------

Theorem

The application

$$\begin{array}{rcl} L^2(I;\mathcal{H}) & \to & L^2(I;\mathcal{H}) \\ u & \mapsto & e^{itH}u \end{array}$$

defines an isomorphism between \mathcal{X}_H and $H^1(I; \mathcal{H})$.

イロン イロン イヨン イヨン

(5)

Theorem

The application

$$\begin{array}{cccc} L^2(I;\mathcal{H}) & \to & L^2(I;\mathcal{H}) \\ u & \mapsto & e^{itH}u \end{array}$$
 (5)

defines an isomorphism between \mathcal{X}_{H} and $H^{1}(I;\mathcal{H}).$

In other words,

$$\mathcal{X}_{H} = \left\{ e^{-itH} v : v \in H^{1}(I; \mathcal{H}) \right\}$$

Theorem

The application

$$\begin{array}{ccc} L^2(I;\mathcal{H}) & \to & L^2(I;\mathcal{H}) \\ u & \mapsto & e^{itH}u \end{array}$$
(5)

defines an isomorphism between \mathcal{X}_H and $H^1(I; \mathcal{H})$.

In other words,

$$\mathcal{X}_{H} = \left\{ e^{-itH} v : v \in H^{1}(I; \mathcal{H}) \right\}$$

Problem again: the evolution group e^{-itH} is not easy to compute/characterize in general

イロン イロン イヨン イヨン

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

イロン イロン イヨン イヨン

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

• the space \mathcal{X}_{H_0} can be easily characterized and discretized

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- A is a "small perturbation" of H_0 in some sense

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- A is a "small perturbation" of H_0 in some sense

many-body electronic Schrödinger operator: $H_0 = -\Delta_{x_1,...,x_N}$.

Key ingredient: write the operator H as $H = H_0 + A$ for some operators H_0 and A so that

- the space \mathcal{X}_{H_0} can be easily characterized and discretized
- A is a "small perturbation" of H_0 in some sense

many-body electronic Schrödinger operator: $H_0 = -\Delta_{x_1,...,x_N}$.

The proofs of the following results rely on Kato's smoothing theory [Reed, Simon, 1978]

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1$$
(6)

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1$$
(6)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \left\| A(H_0 - \lambda \pm i\varepsilon)^{-1} \right\| < 1$$
(6)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

• Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \|A(H_0 - \lambda \pm i\varepsilon)^{-1}\| < 1$$
(6)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

- Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.
- It holds that $\mathcal{X}_H = \mathcal{X}_{H_0}$

Assumptions (A):

- (A1) The operator H_0 is a self-adjoint operator on \mathcal{H} with domain $D(H_0)$
- (A2) The operator A is a closed symmetric operator on \mathcal{H} such that $D(\mathcal{H}_0) \subset D(A)$
- (A3) There exists some $\varepsilon > 0$ such that

$$\sup_{\lambda \in \mathbb{R}} \left\| A(H_0 - \lambda \pm i\varepsilon)^{-1} \right\| < 1$$
(6)

Theorem

Let H_0 and A be operators on \mathcal{H} satisfying the set of assumptions (A).

- Then $H = H_0 + A$ defined on $D(H) := D(H_0)$ is self-adjoint.
- It holds that $\mathcal{X}_H = \mathcal{X}_{H_0}$
- There exist constant α , C > 0 independent of T such that

$$\forall u \in \mathcal{X}_{\mathcal{H}_0}, \quad \frac{\alpha}{1+T} \|u\|_{\mathcal{X}_{\mathcal{H}_0}} \leq \|u\|_{\mathcal{X}_{\mathcal{H}}} \leq C(1+T) \|u\|_{\mathcal{X}_{\mathcal{H}_0}}$$

Virginie Ehrlacher	(CERMICS)
--------------------	-----------

$$u^{\star} = \underset{u \in \mathcal{X}_{H_0}}{\operatorname{argmin}} |u(0) - u_0|^2 + \|(i\partial_t - H_0 - A)u - f\|_{L^2(I;\mathcal{H})}^2$$

$$\begin{split} u^{\star} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f \|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

2

$$\begin{split} u^{\star} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f \|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{*} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} \left| (e^{-itH_{0}}v)(0) - u_{0} \right|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$
• $(e^{-itH_{0}}v)(0) = v(0)$

$$\begin{split} u^{*} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_{0}}} |u(0) - u_{0}|^{2} + \| (i\partial_{t} - H_{0} - A)u - f\|_{L^{2}(I;\mathcal{H})}^{2} \\ &\mathcal{X}_{H_{0}} = \left\{ e^{-itH_{0}}v : \ v \in H^{1}(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$\left\| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right\|_{L^2(I;\mathcal{H})}^2 = \left\| e^{itH_0}(i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}^2$$

$$\begin{split} u^{\star} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + \| (i\partial_t - H_0 - A)u - f \|_{L^2(I;\mathcal{H})}^2 \\ &\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : \ v \in H^1(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$\left| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right|_{L^2(I;\mathcal{H})}^2 = \left\| e^{itH_0}(i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}^2$$

• for all $v \in H^1(I; \mathcal{H})$, $e^{itH_0}(i\partial_t)e^{-itH_0}v = e^{itH_0}e^{-itH_0}(H_0 + i\partial_t)v = (H_0 + i\partial_t)v$

Virginie Ehrlacher (CERMICS)

▶ < ≣ ▶ ≡ ∽ < Pisa, 04/03/24 16/33

$$\begin{split} u^{\star} &= \operatorname*{argmin}_{u \in \mathcal{X}_{H_0}} |u(0) - u_0|^2 + \| (i\partial_t - H_0 - A)u - f \|_{L^2(I;\mathcal{H})}^2 \\ &\mathcal{X}_{H_0} = \left\{ e^{-itH_0} v : \ v \in H^1(I;\mathcal{H}) \right\} \end{split}$$

Let $v^* \in H^1(I; \mathcal{H})$ such that $u^* = e^{-itH_0}v^*$. We then have

$$v^{\star} = \underset{v \in H^{1}(I;\mathcal{H})}{\operatorname{argmin}} |(e^{-itH_{0}}v)(0) - u_{0}|^{2} + \left\| (i\partial_{t} - H_{0} - A)(e^{-itH_{0}}v) - f \right\|_{L^{2}(I;\mathcal{H})}^{2}$$

- $(e^{-itH_0}v)(0) = v(0)$
- since the evolution group e^{itH_0} is a unitary group, it holds that

$$\left| (i\partial_t - H_0 - A)(e^{-itH_0}v) - f \right|_{L^2(I;\mathcal{H})}^2 = \left\| e^{itH_0}(i\partial_t - H_0 - A)(e^{-itH_0}v) - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}^2$$

• for all $v \in H^1(I; \mathcal{H})$, $e^{itH_0}(i\partial_t)e^{-itH_0}v = e^{itH_0}e^{-itH_0}(H_0 + i\partial_t)v = (H_0 + i\partial_t)v$

and $e^{itH_0}H_0e^{-itH_0}v = e^{itH_0}e^{-itH_0}H_0v$ because H_0 commutes with e^{-itH_0} .

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$.

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$. Then, the solution u^* to (2) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

 $v^{\star} = \operatorname*{argmin}_{v \in H^1(I;\mathcal{H})} F(v)$

with

$$F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0}Ae^{-itH_0})v - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}$$

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$. Then, the solution u^* to (2) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

$$v^{\star} = \operatorname*{argmin}_{v \in H^{1}(I;\mathcal{H})} F(v)$$

with

$$F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0}Ae^{-itH_0})v - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}$$

Moreover, there exists α , C > 0 independent on T such that

$$\forall v \in H^1(I; \mathcal{H}), \quad \frac{\alpha}{1+T} \|v - v^\star\|_{H^1(I; \mathcal{H})} \leq \sqrt{F(v)} \leq C(1+T) \|v - v^\star\|_{H^1(I; \mathcal{H})}$$

Let H_0 and A be operators on \mathcal{H} satisfying (A). Let $u_0 \in \mathcal{H}$ and $f \in L^2(I; \mathcal{H})$. Then, the solution u^* to (2) is given by $u^* = e^{-itH_0}v^*$ where $v^* \in H^1(I; \mathcal{H})$ is the unique solution to

$$v^{\star} = \operatorname*{argmin}_{v \in H^{1}(I;\mathcal{H})} F(v)$$

with

$$F(v) = |v(0) - u_0|^2 + T \left\| (i\partial_t - e^{itH_0}Ae^{-itH_0})v - e^{itH_0}f \right\|_{L^2(I;\mathcal{H})}$$

Moreover, there exists α , C > 0 independent on T such that

$$\forall \mathbf{v} \in H^1(I; \mathcal{H}), \quad \frac{\alpha}{1+T} \|\mathbf{v} - \mathbf{v}^\star\|_{H^1(I; \mathcal{H})} \leq \sqrt{F(\mathbf{v})} \leq C(1+T) \|\mathbf{v} - \mathbf{v}^\star\|_{H^1(I; \mathcal{H})}$$

Remark: We obtain a similar result in the case when u^* is the solution of a time-dependent Schrödinger equation of the form

$$\begin{cases} i\partial_t u^{\star}(t) - (H_0 + A + B(t))u^{\star}(t) = f(t), \quad t \in I, \\ u^{\star}(0) = u_0 \end{cases}$$

where $B: \overline{I} \ni t \mapsto B(t)$ is a strongly continuous family of **bounded** self-adjoint operators on \mathcal{H} .

Aim and motivation

2 Variational formulation of the time-dependent Schrödinger equation

Application to the many-body electronic Schrödinger problem

Global space-time discretization methods

Dynamical low-rank approximations

6 Summary

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$

$$\tag{7}$$

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^{M} \sum_{i=1}^{N} \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$

$$\tag{7}$$

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^M \sum_{i=1}^N \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

Question: Do H_0 and A satisfy assumptions (A1)-(A2)-(A3)?

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$

$$\tag{7}$$

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^M \sum_{i=1}^N \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

Question: Do H₀ and A satisfy assumptions (A1)-(A2)-(A3)? YES!!!

Virginie	Ehrlacher	(CERMICS)
----------	-----------	-----------

$$\begin{cases} i\partial_t \psi(t) - H\psi(t) = 0, \quad t \in (0, T) \\ \psi(0) = \psi_0 \end{cases}$$

$$\tag{7}$$

$$H_0 = -\Delta_{x_1,...,x_N}$$
 (kinetic energy)

and

$$A = V(x_1, \dots, x_N) = \sum_{k=1}^M \sum_{i=1}^N \frac{-Z_k}{|x_i - R_k|} + \sum_{1 \le i < j \le N} \frac{1}{|x_i - x_j|} \quad \text{(coulombic energy)}$$

Question: Do H₀ and A satisfy assumptions (A1)-(A2)-(A3)? YES!!! WHY???

Virginie	Ehrlacher	(CERMICS)
----------	-----------	-----------

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2).

イロト イヨト イヨト イヨト

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H}, \ |\varphi|=1}\int_{\mathbb{R}} dt |Ae^{-itH_0}\varphi|^2 < \infty,$$

then H_0 and A satisfy (A3).

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H}, \ |\varphi|=1}\int_{\mathbb{R}} dt |Ae^{-itH_0}\varphi|^2 < \infty,$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}dt|Ae^{-itH_0}\varphi|^2<\infty,$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Theorem

$$\sup_{\varphi \in L^2(\mathbb{R}^{3N}), \|\varphi\|_{L^2(\mathbb{R}^{3N})} = 1} \int_{\mathbb{R}} dt \left\| V e^{it\Delta} \varphi \right\|_{L^2(\mathbb{R}^{3N})}^2 \leq 2\sqrt{\frac{2}{\pi}} \left(N \sum_{k=1}^M Z_k + \frac{N(N-1)}{2\sqrt{2}} \right)$$
(8)

Let H_0 and A be operators on \mathcal{H} satisfying (A1)-(A2). Then, if

$$\sup_{\varphi\in\mathcal{H},\ |\varphi|=1}\int_{\mathbb{R}}dt|Ae^{-itH_0}\varphi|^2<\infty,$$

then H_0 and A satisfy (A3).

The operator A is said to be H_0 -smooth.

Theorem

$$\sup_{\varphi \in L^2(\mathbb{R}^{3N}), \|\varphi\|_{L^2(\mathbb{R}^{3N})} = 1} \int_{\mathbb{R}} dt \left\| V e^{it\Delta} \varphi \right\|_{L^2(\mathbb{R}^{3N})}^2 \leq 2\sqrt{\frac{2}{\pi}} \left(N \sum_{k=1}^M Z_k + \frac{N(N-1)}{2\sqrt{2}} \right)$$
(8)

stems from Kato-Yajima inequality: [Kato, Yajima, 1989], [Burq, 2004]

Virginie Ehrlacher	(CERMICS)
--------------------	-----------

Let $u_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to (7), and $v^* := e^{-it\Delta}\psi$.

Let $u_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to (7), and $v^* := e^{-it\Delta}\psi$. Define for any $v \in H^1(I; L^2(\mathbb{R}^{3N}))$ the functional

$$F(v) = \|v(0) - u_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I,L^2(\mathbb{R}^{3N}))}^2.$$
(9)

Let $u_0 \in L^2(\mathbb{R}^{3N})$. Let ψ be the solution to (7), and $v^* := e^{-it\Delta}\psi$. Define for any $v \in H^1(I; L^2(\mathbb{R}^{3N}))$ the functional

$$F(v) = \|v(0) - u_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I,L^2(\mathbb{R}^{3N}))}^2.$$
(9)

Then, there exist constants $C, \alpha > 0$ such that for any $v \in H^1(I, L^2(\mathbb{R}^{3N}))$,

$$\frac{\alpha}{1+T} \|v - v^{\star}\|_{H^{1}(I,L^{2}(\mathbb{R}^{3N}))} \leq \sqrt{F(v)} \leq C\sqrt{1+T} \|v - v^{\star}\|_{H^{1}(I,L^{2}(\mathbb{R}^{3N}))}$$
(10)

Aim and motivation

- 2 Variational formulation of the time-dependent Schrödinger equation
- 3 Application to the many-body electronic Schrödinger problem

Global space-time discretization methods

5 Dynamical low-rank approximations

Summary

Electronic many-body Schrödinger case

$$v^{\star} = \operatorname*{argmin}_{v \in H^{1}(I; L^{2}(\mathbb{R}^{3N}))} F(v)$$

with

$$\|v(0) - u_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I,L^2(\mathbb{R}^{3N}))}^2$$

Electronic many-body Schrödinger case

$$v^{\star} = \operatorname*{argmin}_{v \in H^1(I; L^2(\mathbb{R}^{3N}))} F(v)$$

with

$$\|v(0) - u_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I, L^2(\mathbb{R}^{3N}))}^2$$

Idea: Find a discretization space $V_d \subset H^1(I; L^2(\mathbb{R}^{3N}))$ and find

 $v_d^{\star} = \operatorname*{argmin}_{v \in V_d} F(v)$

Electronic many-body Schrödinger case

$$v^{\star} = \operatorname*{argmin}_{v \in H^1(I; L^2(\mathbb{R}^{3N}))} F(v)$$

with

$$\|v(0) - u_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I,L^2(\mathbb{R}^{3N}))}^2$$

Idea: Find a discretization space $V_d \subset H^1(I; L^2(\mathbb{R}^{3N}))$ and find

 $v_d^{\star} = \operatorname*{argmin}_{v \in V_d} F(v)$

By Céa's lemma, we then have

$$\|v^{\star} - v_d^{\star}\|_{H^1(I;L^2(\mathbb{R}^{3N}))} \leq C \inf_{v_d \in V_d} \|v^{\star} - v_d\|_{H^1(I;L^2(\mathbb{R}^{3N}))}$$

Electronic many-body Schrödinger case

$$v^{\star} = \operatorname*{argmin}_{v \in H^1(I; L^2(\mathbb{R}^{3N}))} F(v)$$

with

$$\|v(0) - u_0\|_{L^2(\mathbb{R}^{3N})}^2 + T \left\| (i\partial_t - e^{-it\Delta} V e^{it\Delta}) v \right\|_{L^2(I,L^2(\mathbb{R}^{3N}))}^2$$

Idea: Find a discretization space $V_d \subset H^1(I; L^2(\mathbb{R}^{3N}))$ and find

 $v_d^{\star} = \operatorname*{argmin}_{v \in V_d} F(v)$

By Céa's lemma, we then have

$$\|v^{\star} - v_d^{\star}\|_{H^1(I;L^2(\mathbb{R}^{3N}))} \leq C \inf_{v_d \in V_d} \|v^{\star} - v_d\|_{H^1(I;L^2(\mathbb{R}^{3N}))}$$

Ongoing work:

- Hagedorn functions [Lasser, Lubich, 2020]
- Space-time wavelets (on-going work with Markus Bachmayr)

$$\begin{cases} i\partial_t u^* = (-\Delta_{x,y} + V(t,x,y))u^*, \\ u(0) = u_0, \end{cases}$$
(11)

with $V(t, x, y) = \cos(2\pi(x - c_1 t)) + \cos(2\pi(y - c_2 t)) + \cos(2\pi(x - y))$ for some constants $c_1, c_2 > 0$.

$$\begin{cases} i\partial_t u^* = (-\Delta_{x,y} + V(t,x,y))u^*, \\ u(0) = u_0, \end{cases}$$
(11)

with $V(t, x, y) = \cos(2\pi(x - c_1 t)) + \cos(2\pi(y - c_2 t)) + \cos(2\pi(x - y))$ for some constants $c_1, c_2 > 0$.

Discretization: Tchebychev polynomials in time and Fourier modes in space

イロト イヨト イヨト イヨト

$$\begin{cases} i\partial_t u^* = (-\Delta_{x,y} + V(t,x,y))u^*, \\ u(0) = u_0, \end{cases}$$
(11)

with $V(t, x, y) = \cos(2\pi(x - c_1 t)) + \cos(2\pi(y - c_2 t)) + \cos(2\pi(x - y))$ for some constants $c_1, c_2 > 0$.

Discretization: Tchebychev polynomials in time and Fourier modes in space

Comparison with a Cranck-Nicholson time scheme

イロト イヨト イヨト イヨト

$$\begin{cases} i\partial_t u^* = (-\Delta_{x,y} + V(t, x, y))u^*, \\ u(0) = u_0, \end{cases}$$
(11)

with $V(t, x, y) = \cos(2\pi(x - c_1 t)) + \cos(2\pi(y - c_2 t)) + \cos(2\pi(x - y))$ for some constants $c_1, c_2 > 0$.

Discretization: Tchebychev polynomials in time and Fourier modes in space

Comparison with a Cranck-Nicholson time scheme

For a fixed number of Fourier modes (dicretization in space), K is either:

- maximal degree of Tchebychev polynomials in the global space-time scheme
- maximal number of time steps in the Cranck-Nicholson scheme

$$\begin{cases} i\partial_t u^* = (-\Delta_{x,y} + V(t, x, y))u^*, \\ u(0) = u_0, \end{cases}$$
(11)

with $V(t, x, y) = \cos(2\pi(x - c_1 t)) + \cos(2\pi(y - c_2 t)) + \cos(2\pi(x - y))$ for some constants $c_1, c_2 > 0$.

Discretization: Tchebychev polynomials in time and Fourier modes in space

Comparison with a Cranck-Nicholson time scheme

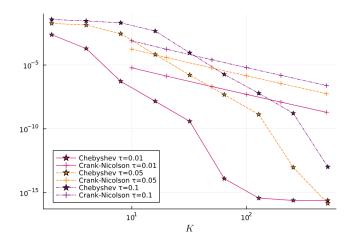
For a fixed number of Fourier modes (dicretization in space), K is either:

- maximal degree of Tchebychev polynomials in the global space-time scheme
- maximal number of time steps in the Cranck-Nicholson scheme

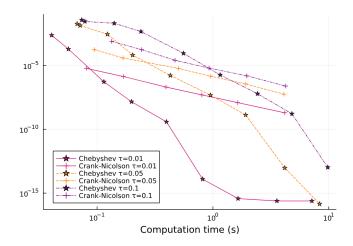
Time interval: $[-\tau, \tau]$

イロト イヨト イヨト イヨト

Error in $\|\cdot\|_{\mathcal{C}^0(I;L^2((0,1)^2))}$



Computational time



イロン イロン イヨン イヨン

Aim and motivation

- 2 Variational formulation of the time-dependent Schrödinger equation
- Application to the many-body electronic Schrödinger problem
- Global space-time discretization methods
- 5 Dynamical low-rank approximations

Summary

イロン イロン イヨン イヨン

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a susbet of functions of x_1, \ldots, x_N which can be represented in some low-rank tensor format (or more generally with low complexity).

イロト イヨト イヨト イヨト

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a susbet of functions of x_1, \ldots, x_N which can be represented in some low-rank tensor format (or more generally with low complexity).

Examples:

- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
- Tensor Train format, Hierarchical Tree format

Ceruti, Dolgov, Dupuy, Grigori, Hackbusch, Kressner, Khoromskij, Lasser, Lombardi, Lubich, Oseledets, Schneider, Uschmajew,...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let $\Sigma \subset \mathcal{H} = L^2(\mathbb{R}^{3N})$ be a susbet of functions of x_1, \ldots, x_N which can be represented in some low-rank tensor format (or more generally with low complexity).

Examples:

- Pure tensor products: $\Sigma = \{r_1(x_1) \dots r_N(x_N), r_1, \dots, r_N \in L^2(\mathbb{R}^3)\}$ (with antisymmetry: set of Slater determinants)
- Tucker format (with antisymmetry: Multi Configuration Self Consistent Field)
- Tensor Train format, Hierarchical Tree format

Ceruti, Dolgov, Dupuy, Grigori, Hackbusch, Kressner, Khoromskij, Lasser, Lombardi, Lubich, Oseledets, Schneider, Uschmajew,...

Dynamical low-rank approximation: The aim is to compute an approximation \tilde{u} of u^* (or ψ) such that $\tilde{u}(t) \in \Sigma$ for all t.

<ロ> <四> <四> <四> <三</p>

Find \tilde{u} such that for almost all t,

 $\langle (i\partial_t - H)\tilde{u}(t), \delta\tilde{u} \rangle = \langle f(t), \delta\tilde{u} \rangle, \quad \forall \delta\tilde{u} \in T_{\tilde{u}(t)}\Sigma,$ (12)

where $T_{\tilde{u}(t)}\Sigma$ is the tangent space to Σ at point $\tilde{u}(t)$.

ヘロト ヘロト ヘヨト ヘヨト

Find \tilde{u} such that for almost all t,

$$\langle (i\partial_t - H)\widetilde{u}(t), \delta\widetilde{u} \rangle = \langle f(t), \delta\widetilde{u} \rangle, \quad \forall \delta\widetilde{u} \in T_{\widetilde{u}(t)}\Sigma,$$
(12)

where $T_{\tilde{u}(t)}\Sigma$ is the tangent space to Σ at point $\tilde{u}(t)$.

In general, except in some particular situations, one can only obtain the local existence in time of a solution \tilde{u} to (12).

Alternative variational principle?

Very nice property: $e^{it\Delta}$ is a pure tensor product of operators:

$$e^{it\Delta_{x_1,\ldots,x_N}} = e^{it\Delta_{x_1}} \otimes \ldots \otimes e^{it\Delta_{x_N}}$$

イロン イロン イヨン イヨン

Very nice property: $e^{it\Delta}$ is a pure tensor product of operators:

$$e^{it\Delta_{x_1,\ldots,x_N}} = e^{it\Delta_{x_1}} \otimes \ldots \otimes e^{it\Delta_{x_N}}$$

Rather look for $\tilde{u} = e^{it\Delta}\tilde{v}$ solution to

$$\widetilde{\mathbf{v}} \in \underset{\widetilde{\mathbf{w}} \in H^1(I; \Sigma)}{\operatorname{argmin}} F(\widetilde{\mathbf{w}}) \tag{13}$$

< □ > < □ > < □ > < □ > < □ >

Theorem

Let Σ be a weakly closed subset of \mathcal{H} . Then, $H^1(I; \Sigma)$ is a weakly closed subset of $H^1(I; \mathcal{H})$. Hence, there always exists at least one solution to (13). **Very nice property:** $e^{it\Delta}$ is a pure tensor product of operators:

$$e^{it\Delta_{x_1,\ldots,x_N}} = e^{it\Delta_{x_1}} \otimes \ldots \otimes e^{it\Delta_{x_N}}$$

Rather look for $\tilde{u} = e^{it\Delta}\tilde{v}$ solution to

$$\widetilde{\mathbf{v}} \in \underset{\widetilde{\mathbf{w}} \in H^1(I; \Sigma)}{\operatorname{argmin}} F(\widetilde{\mathbf{w}}) \tag{13}$$

< □ > < □ > < □ > < □ > < □ >

Theorem

Let Σ be a weakly closed subset of \mathcal{H} . Then, $H^1(I; \Sigma)$ is a weakly closed subset of $H^1(I; \mathcal{H})$. Hence, there always exists at least one solution to (13).

In principle, global in time existence of dynamical low-rank approximations.

Aim and motivation

- 2 Variational formulation of the time-dependent Schrödinger equation
- Application to the many-body electronic Schrödinger problem
- Global space-time discretization methods
- Dynamical low-rank approximations

6 Summary

• **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation Analysis covers the case of **potential with Coulombic singularities and unbounded domains**

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation Analysis covers the case of **potential with Coulombic singularities and unbounded domains**
- Perspectives:

- **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation Analysis covers the case of **potential with Coulombic singularities and unbounded domains**
- Perspectives:
 - Global space-time Galerkin discretization methods (preliminary numerical tests in simple test cases)

• **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation

Analysis covers the case of potential with Coulombic singularities and unbounded domains

- Perspectives:
 - Global space-time Galerkin discretization methods (preliminary numerical tests in simple test cases)
 - Alternative variational principle for dynamical low-rank approximations allowing for global-in-time existence

• **Result**: New variational global space-time formulation of the solution of the time-dependent Schrödinger equation

Analysis covers the case of potential with Coulombic singularities and unbounded domains

- Perspectives:
 - Global space-time Galerkin discretization methods (preliminary numerical tests in simple test cases)
 - Alternative variational principle for dynamical low-rank approximations allowing for global-in-time existence
- **Open question**: how to impose norm conservation in this global space-time formulation? Not completely obvious...

イロト イヨト イヨト

Thank you for your attention!

イロト 不良 とくほとくほう