Introduction High-dimensional problems

Ordinary differential equations

Parallel time-dependent variational principle
algorithm for tensor trains

Sergey Dolgov

joint work with Paul Secular, Nikita Gourianov, Michael Lubasch,
Stephen R. Clark and Dieter Jaksch

‘fa\ UNIVERSITY OF
GO BATH

Exploiting Algebraic and Geometric Structure in Time-Integration Methods
Pisa, April 3 2024

Sergey Dolgov 1/22

Introduction

High-dimensional problems
Ordinary differential equations

High-dimensional time-dependent problems

o Fokker-Planck/Chemical master equations
e Stochastic mechanics

o Gene regulation
e Virus replication

@ Schroedinger equation
o Condensed matter physics

o Computational chemistry

o Magnetic resonance

Sergey Dolgov 1/22

Introduction High-dimensional problems

Ordinary differential equations

Why tensors?

o Motivation: a multivariate function u(x!,..., x9)
... discretized independently in each variable.

Central object: an array of discrete values = tensor:

.. . ik=1,...,nk,
u(iv, iy - .-y id)- k=1,....d.

o For example u(i1, ..., iq) = u(x;,. .. ,x,-d).

Curse of dimensionality: mem = n“.

(think of 1080 .. .)

Sergey Dolgov 2/22

Introduction o 5 :
High-dimensional problems

Ordinary differential equations

Large but structured

Our problem of interest is

di
A
at
4(0) = o
o)\(A) e C_. in our app A= —A"
o i(t) € CN with N = n? ~ 10%0.
e However, i(t) can be indexed by i1, ..., ig as u(i,...,i4,t).

Sergey Dolgov 3/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

2 variables: low-rank matrices

@ Low-rank matrix decomposition:

Zv YW (j) + O(¢)

%

e Rank r < n
o mem(V) + mem(W) = 2nr < n? = mem(u)

e Singular Value Decomposition: optimal £(r) dependence

@ Riemannian manifold M,

Sergey Dolgov 4/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

Can solve instead

dif
d—ltl — A(u)|| = min over u(t) € M,
u(0) = i

e Equivalently Z—g = P, - A(u), where
@ P, is an orthogonal projector on (vectorised)

e T,M,, the tangent space of the manifold of rank-r matrices.

Sergey Dolgov 5/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

Can solve instead

di
d—;l — A(u)|| = min over u(t) € M,
u(0) =

Dynamical low-rank approximation:?

o Let u=VSW* SeCrxr
@ Split the projector
P,=(WWH &I —(WWH e (W) +1e(Wh.

'[Koch, Lubich '07], [Lubich, Oseledets '14]

Sergey Dolgov 5/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(0) = VoSoWj with Vg, W orthogonal.

Sergey Dolgov 6/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(0) = VoSoWj with Vg, W orthogonal.
@ Solve ‘L—’: = A(KW)W starting from K(0) = VuS. ‘K"

Sergey Dolgov 6/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(0) = VoSoWj with Vg, W orthogonal.
@ Solve ‘L—’: = A(KW)W starting from K(0) = VuS. ‘K"
° Factorise V151 = qr(K(t)).

Sergey Dolgov 6/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(0) = VoSoWj with Vg, W orthogonal.
@ Solve ‘L—’: = A(KW)W starting from K(0) = VuS. ‘K"
° Factorise V151 = qr(K(t)).
@ Solve ‘é/—f = —VFA(ViSW)W starting from S(0) = 5;. “S”

Sergey Dolgov 6/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors

Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(O) = Vo So W with Vo, Wo orthogonal.
° Solve = A(KW)W starting from K(0) = VuS. K"
° Factorlse V1S = qr(K(t)).
@ Solve ¢ dt = —VFA(ViSW)W starting from S(0) = 5;. “S”
o Solve %t* = V/;A(V4L*) starting from L*(0) = S(t)W;.

-

Sergey Dolgov 6/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(O) = Vo So W with Vo, Wo orthogonal.
° Solve = A(KW)W starting from K(0) = VuS. K"
° Factorlse V1S = qr(K(t)).
@ Solve ¢ dt = —VFA(ViSW)W starting from S(0) = 5;. “S”
dL* = VJA(V1L*) starting from L*(0) = S(t)W5. !
° Factorlse WhSs = qr(L(t)).

@ Solve

-

Sergey Dolgov 6/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors

Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(O) = Vo So W with Vo, Wo orthogonal.
° Solve = A(KW)W starting from K(0) = VuS. K"
° Factorlse V1S = qr(K(t)).
@ Solve ¢ dt = —VFA(ViSW)W starting from S(0) = 5;. “S”
dL* = VJA(V1L*) starting from L*(0) = S(t)W5. !
° Factorlse WhSs = qr(L(t)).
o u(t)=WViSsWy.

@ Solve

-

Total error is linear in step size, truncation and projection errors,
and independent of singular values.
[Kieri, Lubich, Walach '16]

Sergey Dolgov 6/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Many variables: low-rank tensors

@ Matrix Product States/Tensor Train:

ulin, - vig) = Y Us () U3, 0 () -+ U, (i)

Mk—1 L

ri
@ Or simply
u(iy, ..., ig) = U(i) - U9(iq).

@ Other tensor networks possible (HT, TTN, PEPS, MERA, ...)
2Wilson '75, White '93, Verstraete '04, Oseledets '09

Sergey Dolgov 7/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Tensor Train and Kronecker products

Another way of writing:

Ik
Y ULeU 00Ul

Qd—1"

ar=1
0<k<d

@ TT-ranks (r,...,rg—1) < (r,...,r).
o mem(U') + - -- 4 mem(U9) = O(dnr?) < n? = mem(u).

Sergey Dolgov 8/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Tensor Train: algebraic operations

@ Any data can be decomposed: TT-SVD theorem

Q

-1

e3(r, ... rg_1) < 2 (k).
1

=
Il

@ Decomposition of matrices

d
A=) AL QAL 5@ QAT .
5

@ ... and hence

Sergey Dolgov 9/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Tensor Train: distributivity

. factorised products

d
_Z A/fl “®< Ba— 1UOéd 1)'

o Take A=w' — fast quadratures with O(dnr?) cost.

Sergey Dolgov 10/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dynamical Tensor Train approximation

TT decomposition is a recursive matrix decomposition: let

i=) Uy oU3 e oU]

Qg1 "
Uz
Vs w
e “K” and “S” steps are implemented on (small) U?* directly.
e L*(0)= SWO* reduces to L%(in) = SU?(i).
o Integrate 9 only O(nr?) DoFs
o U3, ..., Ud are still fixed.

Sergey Dolgov 11/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dynamical Tensor Train approximation

General step3:

u(iy, ..., ig) = Ut(ir) - - U7 (i—1) UR(i) UK (gr) UK 2(ikgn) - - - U9(ig) -
N —

/

U<k(i<k) Kiy Wi, Uk (i k1)

@ Assume Ais also in TT = A(u) is a factorised product

3[Lubich, Oseledets, Vandereycken '15]

Sergey Dolgov 12/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dynamical Tensor Train approximation

General step3:

u(iy, ..., ig) = Ut(ir) - - U7 (i—1) UR(i) UK (gr) UK 2(ikgn) - - - U9(ig) -
N —

/

U<k(i<k) Kiy Wi, Uk (i k1)
_ <k k k+1 >k+1
A= Z Aﬁkq ® Aﬁk—lﬁk ® Aﬁk,ﬁk+1 ® A;SHI
B

@ Assume Ais also in TT = A(u) is a factorised product
o = we can multiply ASKU<K and A=KU>k at O(dnr*) cost.

3[Lubich, Oseledets, Vandereycken '15]

Sergey Dolgov 12/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dynamical Tensor Train approximation

General step3:

O ik, ik+1) = UX (i) UAF (lkg1)
S N ——
Kiy Wi

@ Assume Ais also in TT = A(u) is a factorised product
o = we can multiply ASKU<K and A=KU>k at O(dnr*) cost.
o This projects A(u) into AXf*1(©) = matrix “KSL" *

3[Lubich, Oseledets, Vandereycken '15] *cf. DMRG [White '93]

Sergey Dolgov 12/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors

Parallel low-rank tensor integration

Rank-adaptive dynamical approximation

o Let Poy = USK(USK)*, Py = UPK(UPK)™,

This TT-KSL scheme is a splitting scheme for ‘Z,—‘z = P, - A(u) with

d d—1
Pu=Y Pk @I @Psg— > Pepi1 @ Psy,
k=1 k=1

the orthogonal projector onto the T-space of the TT manifold.
@ However, we can define a 2-core projector:

d—1 d—2
Pu=) Puk®I®IQPsry1— Y Por1®/®Popin
k=1 k=1

Sergey Dolgov 13/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Rank-adaptive dynamical approximation

This gives an adaptive integrator similar to DMRG:*
o Solve 942 = Akk+1(Q) starting from ©g = UK UKL,
° Factorise ©(t) ~ VSW* using truncated SVD. (new r)
o Solve 9t = —v*Akk+1(\/[) starting from Lo = SW*.
o Uk=V, Ut =1L(1).
o lterate k « (k—1) or (k+1)

*[Haegeman, Lubich, Oseledets, Vandereycken, Verstraete '16]

Sergey Dolgov 14/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Rank-adaptive dynamical approximation

This gives an adaptive integrator similar to DMRG:*
o Solve 942 = Akk+1(Q) starting from ©g = UK UKL,
° Factorise ©(t) ~ VSW* using truncated SVD. (new r)
o Solve 9t = —v*Akk+1(\/[) starting from Lo = SW*.
o Uk=V, Ut =1L(1).
o lterate k + (k—1) or (k+1)?

*[Haegeman, Lubich, Oseledets, Vandereycken, Verstraete '16]

Sergey Dolgov 14/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Parallelising over TT cores

Can we run steps for different k simultaneously?

@ Problem: V and W are orthogonal, while L and K are not
— different scales of TT cores.

Solution: inverse gauge conditions
o | VSW* = (VS)S1(SW*) |= the “KS~1L" scheme!

@ In the TT decomposition:

u(in, -, ig) = UY(i) Sy U (i) - - S2 U9 ().

All ||U|| = ||u|| (“centers’) — parallelisation makes sense.

Stability of inverting 5,777

Sergey Dolgov 15/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Inverse gauge = parallel TT algorithms

Problem: cond(Sx) = Ui However. . .
Tk

o ...if we use SVD: [Vsw* = (vS)s i (sw”)
S, = diag(1/sx). Numbers are perfectly conditioned!

This gives an abstract® algorithm:
@ Solve over overlapping subset of TT cores in parallel:
Process 0
UMi) - Syt JU™(im) St U (iman)l -+ U9(ia)

Process 1

e Synchronisation: solution/SVD on the overlap U™S, U™+,

®instantiated in par-DMRG [Stoudenmire, White '13], HT-ALS [Etter '16],
TT-Cross [D.,Savostyanov '19], and pTDVP discussed

Sergey Dolgov 16/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Parallel time-dependent variational principle

Assuming perfect load balance (d — 1) = Pm

o Computational cost: perfect scaling

d-1
oo~ 22 o+ ot)

P
Solve 92 and SVD projections of A

o Communication volume:

O r + nr?
(ar,)
projections of A U™,Sp,,Um+1

Sergey Dolgov 17/22

Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Parallel time-dependent variational principle

Assuming perfect load balance (d — 1) = Pm

o Computational cost: perfect scaling

d-1
oo~ 22 o+ ot)

P
Solve 92 and SVD projections of A

o Communication volume:

O r + nr?
(ar,)
projections of A U™,Sp,,Um+1

@ What about S, that are not updated in last step?

@ Limit the time step t to “small enough”
even the stable KSL may diverge if we step too far off the manifold

Sergey Dolgov 17/22

Numerical examples

Long-range Ising model

o Let 0%, 07,07 € C?*2 be the elementary Pauli matrices.

oletof =/® - ®I®c"®I®- ® I be operators of their
action on the kth particle (1 € {x,y, z}).

@ A Hamiltonian of the Ising chain subject to a magnetic field:
d

d
Z 1 . Z
A= —1 mO’iO’;’—lB O';((

k<m k=1

@ «a: (non)locality parameter, tunable in trapped ion experiments
@ a = oo: nearest-neighbour model, solvable by (parallel) TEBD.
e « < 3: TEBD splitting too inaccurate. Here begins the fun. ..

Sergey Dolgov 18/22

Numerical examples

Time step and stability of parallel TDVP

e =23, B=0.27
e d =641, r = 100

10_5 T T
1= [[u(e)]l]
At =0.002
10710+
« sequential renormalisation
10_15 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Time ¢

Sergey Dolgov 19/22

Numerical examples

Error scaling

@ Compare sequential solution with p = 2,16, 32 processes.

@ wWiotal = cumulative norm of discarded singular values.

5 104

»

[«)

) 10—6 R/

S ’ p = 32

2 108 —p=16

><' p=2

§ L0-10 ' Wtotal
0 2 4 6 &8 10

Time ¢

Sergey Dolgov 20/22

Numerical examples

Strong time scaling

100%
>
g 90%
[«5)
.&E)
< 80%
=
E
s 70%
¥
60%
1 8 16 24 32 1 8 16 24 32
Compute nodes (processes) Compute nodes (processes)

Sergey Dolgov 21/22

Numerical examples

Conclusion

Inverse gauge allows parallelisation of various TT algorithms

Including TDVP where time step is naturally tunable

communications
computations

— 0 as n,r,d — oo (weak scaling)

Reference: Phys. Rev. B 101 or arXiv:1912.06127

See also:
Ceruti, Kusch, Lubich: parallel DLRA arXiv:2304.05660

Sergey Dolgov 22/22

Numerical examples

Conclusion

Inverse gauge allows parallelisation of various TT algorithms

Including TDVP where time step is naturally tunable

communications
computations

— 0 as n,r,d — oo (weak scaling)

Reference: Phys. Rev. B 101 or arXiv:1912.06127

See also:
Ceruti, Kusch, Lubich: parallel DLRA arXiv:2304.05660

Thank you for your attention!

Sergey Dolgov 22/22

	Introduction
	High-dimensional problems
	Ordinary differential equations

	Dynamical low-rank algorithms
	Low-rank matrices
	Low-rank tensors
	Parallel low-rank tensor integration

	Numerical examples

