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Introduction

High-dimensional problems
Ordinary differential equations

High-dimensional time-dependent problems

o Fokker-Planck/Chemical master equations
e Stochastic mechanics

o Gene regulation
e Virus replication

@ Schroedinger equation
o Condensed matter physics

o Computational chemistry

o Magnetic resonance

Sergey Dolgov 1/22



Introduction High-dimensional problems

Ordinary differential equations

Why tensors?

o Motivation: a multivariate function u(x!,..., x9)
... discretized independently in each variable.

Central object: an array of discrete values = tensor:

.. . ik=1,...,nk,
u(iv, iy - .-y id)- k=1,....d.

o For example u(i1, ..., iq) = u(x;,. .. ,x,-d).

Curse of dimensionality: mem = n“.

(think of 1080 .. .)
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Introduction o 5 :
High-dimensional problems

Ordinary differential equations

Large but structured

Our problem of interest is

di
A
at
4(0) = o
o )\(A) e C_. in our app A= —A"
o i(t) € CN with N = n? ~ 10%0.
e However, i(t) can be indexed by i1, ..., ig as u(i,...,i4,t).
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Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

2 variables: low-rank matrices

@ Low-rank matrix decomposition:

Zv YW (j) + O(¢)

%

e Rank r < n
o mem(V) + mem(W) = 2nr < n? = mem(u)

e Singular Value Decomposition: optimal £(r) dependence

@ Riemannian manifold M,
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Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

Can solve instead

dif
d—ltl — A(u)|| = min  over u(t) € M,
u(0) = i

e Equivalently Z—g = P, - A(u), where
@ P, is an orthogonal projector on (vectorised)

e T,M,, the tangent space of the manifold of rank-r matrices.
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Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

Can solve instead

di
d—;l — A(u)|| = min  over u(t) € M,
u(0) =

Dynamical low-rank approximation:?

o Let u=VSW* SeCrxr
@ Split the projector
P,=(WWH &I —(WWH e (W) +1e(Wh.

'[Koch, Lubich '07], [Lubich, Oseledets '14]
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Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
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Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(0) = VoSoWj with Vg, W orthogonal.
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Dirac-Frenkel Time-Dependent Variational Principle (TDVP)
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Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors

Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(O) = Vo So W with Vo, Wo orthogonal.
° Solve = A(KW )W starting from K(0) = VuS. K"
° Factorlse V1S = qr(K(t)).
@ Solve ¢ dt = —VFA(ViSW )W starting from S(0) = 5;. “S”
o Solve %t* = V/;A(V4L*) starting from L*(0) = S(t)W;.

-

Sergey Dolgov 6/22



Low-rank matrices
Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(O) = Vo So W with Vo, Wo orthogonal.
° Solve = A(KW )W starting from K(0) = VuS. K"
° Factorlse V1S = qr(K(t)).
@ Solve ¢ dt = —VFA(ViSW )W starting from S(0) = 5;. “S”
dL* = VJA(V1L*) starting from L*(0) = S(t)W5. !
° Factorlse WhSs = qr(L(t)).

@ Solve

-
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Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear “KSL" scheme:
o Let u(O) = Vo So W with Vo, Wo orthogonal.
° Solve = A(KW )W starting from K(0) = VuS. K"
° Factorlse V1S = qr(K(t)).
@ Solve ¢ dt = —VFA(ViSW )W starting from S(0) = 5;. “S”
dL* = VJA(V1L*) starting from L*(0) = S(t)W5. !
° Factorlse WhSs = qr(L(t)).
o u(t)=WViSsWy.

@ Solve

-

Total error is linear in step size, truncation and projection errors,
and independent of singular values.
[Kieri, Lubich, Walach '16]
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Many variables: low-rank tensors

@ Matrix Product States/Tensor Train:

ulin, - vig) = Y Us () U3, 0 () -+ U, (i)

Mk—1 L

ri
@ Or simply
u(iy, ..., ig) = U(i) - U9(iq).

@ Other tensor networks possible (HT, TTN, PEPS, MERA, ...)
2Wilson '75, White '93, Verstraete '04, Oseledets '09
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Tensor Train and Kronecker products

Another way of writing:

Ik
Y ULeU 00Ul

Qd—1"

ar=1
0<k<d

@ TT-ranks (r,...,rg—1) < (r,...,r).
o mem(U') + - -- 4 mem(U9) = O(dnr?) < n? = mem(u).
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Dynamical low-rank algorithms Low-rank tensors
Parallel low-rank tensor integration

Tensor Train: algebraic operations

@ Any data can be decomposed: TT-SVD theorem

Q

-1

e3(r, ... rg_1) < 2 (k).
1

=
Il

@ Decomposition of matrices

d
A=) AL QAL 5@ QAT .
5

@ ... and hence
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Tensor Train: distributivity

. factorised products

d
_Z A/fl “®< Ba— 1UOéd 1)'

o Take A=w' — fast quadratures with O(dnr?) cost.
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Dynamical Tensor Train approximation

TT decomposition is a recursive matrix decomposition: let

i=) Uy oU3 e oU]

Qg1 "
Uz
Vs w
e “K” and “S” steps are implemented on (small) U?* directly.
e L*(0)= SWO* reduces to L%(in) = SU?(i).
o Integrate 9 only O(nr?) DoFs
o U3, ..., Ud are still fixed.
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Dynamical Tensor Train approximation

General step3:

u(iy, ..., ig) = Ut(ir) - - U7 (i—1) UR(i) UK (gr) UK 2(ikgn) - - - U9(ig) -
N —

/

U<k(i<k) Kiy Wi, Uk (i k1)

@ Assume Ais also in TT = A(u) is a factorised product

3[Lubich, Oseledets, Vandereycken '15]
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Dynamical Tensor Train approximation

General step3:

u(iy, ..., ig) = Ut(ir) - - U7 (i—1) UR(i) UK (gr) UK 2(ikgn) - - - U9(ig) -
N —

/

U<k(i<k) Kiy Wi, Uk (i k1)
_ <k k k+1 >k+1
A= Z Aﬁkq ® Aﬁk—lﬁk ® Aﬁk,ﬁk+1 ® A;SHI
B

@ Assume Ais also in TT = A(u) is a factorised product
o = we can multiply ASKU<K and A=KU>k at O(dnr*) cost.

3[Lubich, Oseledets, Vandereycken '15]
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Dynamical Tensor Train approximation

General step3:

O ik, ik+1) = UX (i) UAF (lkg1)
S N ——
Kiy Wi

@ Assume Ais also in TT = A(u) is a factorised product
o = we can multiply ASKU<K and A=KU>k at O(dnr*) cost.
o This projects A(u) into AXf*1(©) = matrix “KSL" *

3[Lubich, Oseledets, Vandereycken '15] *cf. DMRG [White '93]
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Rank-adaptive dynamical approximation

o Let Poy = USK(USK)*, Py = UPK(UPK)™,

This TT-KSL scheme is a splitting scheme for ‘Z,—‘z = P, - A(u) with

d d—1
Pu=Y Pk @I @Psg— > Pepi1 @ Psy,
k=1 k=1

the orthogonal projector onto the T-space of the TT manifold.
@ However, we can define a 2-core projector:

d—1 d—2
Pu=) Puk®I®IQPsry1— Y Por1®/®Popin
k=1 k=1
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Rank-adaptive dynamical approximation

This gives an adaptive integrator similar to DMRG:*
o Solve 942 = Akk+1(Q) starting from ©g = UK UKL,
° Factorise ©(t) ~ VSW* using truncated SVD. (new r)
o Solve 9t = —v*Akk+1(\/[) starting from Lo = SW*.
o Uk=V, Ut =1L(1).
o lterate k « (k—1) or (k+1)

*[Haegeman, Lubich, Oseledets, Vandereycken, Verstraete '16]
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Rank-adaptive dynamical approximation

This gives an adaptive integrator similar to DMRG:*
o Solve 942 = Akk+1(Q) starting from ©g = UK UKL,
° Factorise ©(t) ~ VSW* using truncated SVD. (new r)
o Solve 9t = —v*Akk+1(\/[) starting from Lo = SW*.
o Uk=V, Ut =1L(1).
o lterate k + (k—1) or (k+1)?

*[Haegeman, Lubich, Oseledets, Vandereycken, Verstraete '16]
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Parallelising over TT cores

Can we run steps for different k simultaneously?

@ Problem: V and W are orthogonal, while L and K are not
— different scales of TT cores.

Solution: inverse gauge conditions
o | VSW* = (VS)S1(SW*) |= the “KS~1L" scheme!

@ In the TT decomposition:

u(in, -, ig) = UY(i) Sy U (i) - - S2 U9 ().

All ||U|| = ||u|| (“centers’) — parallelisation makes sense.

Stability of inverting 5,777
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Inverse gauge = parallel TT algorithms

Problem: cond(Sx) = Ui However. . .
Tk

o ...if we use SVD: [ Vsw* = (vS)s i (sw”)
S, = diag(1/sx). Numbers are perfectly conditioned!

This gives an abstract® algorithm:
@ Solve over overlapping subset of TT cores in parallel:
Process 0
UMi) - Syt JU™(im) St U (iman )l -+ U9(ia)

Process 1

e Synchronisation: solution/SVD on the overlap U™S, U™+,

®instantiated in par-DMRG [Stoudenmire, White '13], HT-ALS [Etter '16],
TT-Cross [D.,Savostyanov '19], and pTDVP discussed
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Parallel time-dependent variational principle

Assuming perfect load balance (d — 1) = Pm

o Computational cost: perfect scaling

d-1
oo~ 22 o+ ot )

P
Solve 92 and SVD  projections of A

o Communication volume:

O r +  nr?
( ar, )
projections of A U™,Sp,,Um+1
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Parallel time-dependent variational principle

Assuming perfect load balance (d — 1) = Pm

o Computational cost: perfect scaling

d-1
oo~ 22 o+ ot )

P
Solve 92 and SVD  projections of A

o Communication volume:

O r +  nr?
( ar, )
projections of A U™,Sp,,Um+1

@ What about S, that are not updated in last step?

@ Limit the time step t to “small enough”
even the stable KSL may diverge if we step too far off the manifold
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Numerical examples

Long-range Ising model

o Let 0%, 07,07 € C?*2 be the elementary Pauli matrices.

oletof =/® - ®I®c"®I®- ® I be operators of their
action on the kth particle (1 € {x,y, z}).

@ A Hamiltonian of the Ising chain subject to a magnetic field:
d

d
Z 1 . Z
A= —1 mO’iO’;’—lB O';((

k<m k=1

@ «a: (non)locality parameter, tunable in trapped ion experiments
@ a = oo: nearest-neighbour model, solvable by (parallel) TEBD.
e « < 3: TEBD splitting too inaccurate. Here begins the fun. ..
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Numerical examples

Time step and stability of parallel TDVP

e =23, B=0.27
e d =641, r = 100

10_5 T T
1= [[u(e)]l]
At =0.002
10710+
« sequential renormalisation
10_15 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20
Time ¢
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Numerical examples

Error scaling

@ Compare sequential solution with p = 2,16, 32 processes.

@ wWiotal = cumulative norm of discarded singular values.

5 104

»

[«)

) 10—6 R/

S ’ p = 32

2 108 —p=16

><' p=2

§ L0-10 ' Wtotal
0 2 4 6 &8 10

Time ¢
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Numerical examples

Strong time scaling

100%
>
g 90%
[«5)
.&E)
< 80%
=
E
s 70%
¥
60%
1 8 16 24 32 1 8 16 24 32
Compute nodes (processes) Compute nodes (processes)
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Numerical examples

Conclusion

Inverse gauge allows parallelisation of various TT algorithms

Including TDVP where time step is naturally tunable

communications
computations

— 0 as n,r,d — oo (weak scaling)

Reference: Phys. Rev. B 101 or arXiv:1912.06127

See also:
Ceruti, Kusch, Lubich: parallel DLRA arXiv:2304.05660
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Numerical examples

Conclusion

Inverse gauge allows parallelisation of various TT algorithms

Including TDVP where time step is naturally tunable

communications
computations

— 0 as n,r,d — oo (weak scaling)

Reference: Phys. Rev. B 101 or arXiv:1912.06127

See also:
Ceruti, Kusch, Lubich: parallel DLRA arXiv:2304.05660

Thank you for your attention!
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