Parallel time-dependent variational principle algorithm for tensor trains

Sergey Dolgov

joint work with Paul Secular, Nikita Gourianov, Michael Lubasch, Stephen R. Clark and Dieter Jaksch

UNIVERSITY OF
 BATH

Exploiting Algebraic and Geometric Structure in Time-Integration Methods Pisa, April 32024

High-dimensional time-dependent problems

- Fokker-Planck/Chemical master equations
- Stochastic mechanics
- Gene regulation
- Virus replication

- Schroedinger equation
- Condensed matter physics
- Computational chemistry
- Magnetic resonance

Why tensors?

- Motivation: a multivariate function $u\left(x^{1}, \ldots, x^{d}\right)$
... discretized independently in each variable.

Central object: an array of discrete values \equiv tensor:

$$
u\left(i_{1}, i_{2}, \ldots, i_{d}\right) . \quad \begin{array}{ll}
i_{k}=1, \ldots, n_{k} \\
& k=1, \ldots, d
\end{array}
$$

- For example $u\left(i_{1}, \ldots, i_{d}\right)=u\left(x_{i_{1}}^{1}, \ldots, x_{i_{d}}^{d}\right)$.

Curse of dimensionality: mem $=n^{d}$. (think of $10^{80} \ldots$)

Large but structured

Our problem of interest is

$$
\begin{aligned}
\frac{d \vec{u}}{d t} & =A \vec{u} \\
\vec{u}(0) & =\vec{u}_{0}
\end{aligned}
$$

- $\lambda(A) \in \mathbb{C}_{-}$. in our app $A=-A^{*}$
- $\vec{u}(t) \in \mathbb{C}^{N}$ with $N=n^{d} \sim 10^{80}$.
- However, $\vec{u}(t)$ can be indexed by i_{1}, \ldots, i_{d} as $u\left(i_{1}, \ldots, i_{d}, t\right)$.

2 variables: low-rank matrices

- Low-rank matrix decomposition:

$$
u(i, j)=\sum_{\alpha=1}^{r} V_{\alpha}(i) W_{\alpha}(j)+\mathcal{O}(\varepsilon)
$$

- Rank $r \ll n$
- $\operatorname{mem}(V)+\operatorname{mem}(W)=2 n r \ll n^{2}=\operatorname{mem}(u)$
- Singular Value Decomposition: optimal $\varepsilon(r)$ dependence
- Riemannian manifold \mathcal{M}_{r}

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

Can solve instead

$$
\begin{aligned}
& \left\|\frac{d \vec{u}}{d t}-A(u)\right\| \rightarrow \text { min } \quad \text { over } u(t) \in \mathcal{M}_{r} \\
& \vec{u}(0)=\vec{u}_{0}
\end{aligned}
$$

- Equivalently $\frac{d \vec{u}}{d t}=P_{u} \cdot A(u)$, where
- P_{u} is an orthogonal projector on
- $T_{u} \mathcal{M}_{r}$, the tangent space of the manifold of rank- r matrices.

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

Can solve instead

$$
\begin{aligned}
& \left\|\frac{d \vec{u}}{d t}-A(u)\right\| \rightarrow \min \quad \text { over } u(t) \in \mathcal{M}_{r} \\
& \vec{u}(0)=\vec{u}_{0}
\end{aligned}
$$

Dynamical low-rank approximation: ${ }^{1}$

- Let $u=V S W^{*}$
- Split the projector

$$
P_{u}=\left(W W^{\dagger}\right) \otimes I-\left(W W^{\dagger}\right) \otimes\left(V V^{\dagger}\right)+I \otimes\left(V V^{\dagger}\right)
$$

${ }^{1}$ [Koch, Lubich '07], [Lubich, Oseledets '14]

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear "KSL" scheme:

- Let $u(0)=V_{0} S_{0} W_{0}^{*}$ with V_{0}, W_{0} orthogonal.

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear "KSL" scheme:

- Let $u(0)=V_{0} S_{0} W_{0}^{*}$ with V_{0}, W_{0} orthogonal.
- Solve $\frac{d K}{d t}=A\left(K W_{0}^{*}\right) W_{0}$ starting from $K(0)=V_{0} S_{0}$.

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear "KSL" scheme:

- Let $u(0)=V_{0} S_{0} W_{0}^{*}$ with V_{0}, W_{0} orthogonal.
- Solve $\frac{d K}{d t}=A\left(K W_{0}^{*}\right) W_{0}$ starting from $K(0)=V_{0} S_{0}$.
- Factorise $V_{1} S_{1}=\operatorname{qr}(K(t))$.

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear "KSL" scheme:

- Let $u(0)=V_{0} S_{0} W_{0}^{*}$ with V_{0}, W_{0} orthogonal.
- Solve $\frac{d K}{d t}=A\left(K W_{0}^{*}\right) W_{0}$ starting from $K(0)=V_{0} S_{0}$. " K "
- Factorise $V_{1} S_{1}=\mathrm{qr}(K(t))$.
- Solve $\frac{d S}{d t}=-V_{1}^{*} A\left(V_{1} S W_{0}^{*}\right) W_{0}$ starting from $S(0)=S_{1}$.

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear "KSL" scheme:

- Let $u(0)=V_{0} S_{0} W_{0}^{*}$ with V_{0}, W_{0} orthogonal.
- Solve $\frac{d K}{d t}=A\left(K W_{0}^{*}\right) W_{0}$ starting from $K(0)=V_{0} S_{0}$. " K "
- Factorise $V_{1} S_{1}=\operatorname{qr}(K(t))$.
- Solve $\frac{d S}{d t}=-V_{1}^{*} A\left(V_{1} S W_{0}^{*}\right) W_{0}$ starting from $S(0)=S_{1}$. " S "
- Solve $\frac{d L^{*}}{d t}=V_{1}^{*} A\left(V_{1} L^{*}\right)$ starting from $L^{*}(0)=S(t) W_{0}^{*}$. "L"

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear "KSL" scheme:

- Let $u(0)=V_{0} S_{0} W_{0}^{*}$ with V_{0}, W_{0} orthogonal.
- Solve $\frac{d K}{d t}=A\left(K W_{0}^{*}\right) W_{0}$ starting from $K(0)=V_{0} S_{0}$. " K "
- Factorise $V_{1} S_{1}=\mathrm{qr}(K(t))$.
- Solve $\frac{d S}{d t}=-V_{1}^{*} A\left(V_{1} S W_{0}^{*}\right) W_{0}$ starting from $S(0)=S_{1}$. " S "
- Solve $\frac{d L^{*}}{d t}=V_{1}^{*} A\left(V_{1} L^{*}\right)$ starting from $L^{*}(0)=S(t) W_{0}^{*}$. "L"
- Factorise $W_{1} S_{2}^{*}=\operatorname{qr}(L(t))$.

Dirac-Frenkel Time-Dependent Variational Principle (TDVP)

This gives a convenient linear "KSL" scheme:

- Let $u(0)=V_{0} S_{0} W_{0}^{*}$ with V_{0}, W_{0} orthogonal.
- Solve $\frac{d K}{d t}=A\left(K W_{0}^{*}\right) W_{0}$ starting from $K(0)=V_{0} S_{0}$. " K "
- Factorise $V_{1} S_{1}=\operatorname{qr}(K(t))$.
- Solve $\frac{d S}{d t}=-V_{1}^{*} A\left(V_{1} S W_{0}^{*}\right) W_{0}$ starting from $S(0)=S_{1}$. " S "
- Solve $\frac{d L^{*}}{d t}=V_{1}^{*} A\left(V_{1} L^{*}\right)$ starting from $L^{*}(0)=S(t) W_{0}^{*}$ " " \mathbf{L} "
- Factorise $W_{1} S_{2}^{*}=\operatorname{qr}(L(t))$.
- $u(t)=V_{1} S_{2} W_{1}^{*}$.

Total error is linear in step size, truncation and projection errors, and independent of singular values.
[Kieri, Lubich, Walach '16]

Many variables: low-rank tensors

- Matrix Product States/Tensor Train ${ }^{2}$:

$$
u\left(i_{1}, \ldots, i_{d}\right)=\sum_{\substack{\alpha_{k}=1 \\ 0<k<d}}^{r_{k}} U_{\alpha_{1}}^{1}\left(i_{1}\right) U_{\alpha_{1}, \alpha_{2}}^{2}\left(i_{2}\right) \cdots U_{\alpha_{d-1}}^{d}\left(i_{d}\right)
$$

- Or simply

$$
u\left(i_{1}, \ldots, i_{d}\right)=U^{1}\left(i_{1}\right) \cdots U^{d}\left(i_{d}\right)
$$

- Other tensor networks possible (HT, TTN, PEPS, MERA, ...)
${ }^{2}$ Wilson '75, White '93, Verstraete '04, Oseledets '09

Tensor Train and Kronecker products

..r_{k-1}

Another way of writing:

$$
\vec{u}=\sum_{\substack{\alpha_{k}=1 \\ 0<k \leq d}}^{r_{k}} U_{\alpha_{1}}^{1} \otimes U_{\alpha_{1}, \alpha_{2}}^{2} \otimes \cdots \otimes U_{\alpha_{d-1}}^{d} .
$$

- TT-ranks $\left(r_{1}, \ldots, r_{d-1}\right) \leq(r, \ldots, r)$.
- $\operatorname{mem}\left(U^{1}\right)+\cdots+\operatorname{mem}\left(U^{d}\right)=\mathcal{O}\left(d n r^{2}\right) \ll n^{d}=\operatorname{mem}(u)$.

Tensor Train: algebraic operations

- Any data can be decomposed: TT-SVD theorem

$$
\varepsilon^{2}\left(r_{1}, \ldots, r_{d-1}\right) \leq \sum_{k=1}^{d-1} \varepsilon_{k}^{2}\left(r_{k}\right)
$$

- Decomposition of matrices

$$
A=\sum_{\beta} A_{\beta_{1}}^{1} \otimes A_{\beta_{1}, \beta_{2}}^{2} \otimes \cdots \otimes A_{\beta_{d-1}}^{d}
$$

- ... and hence

Tensor Train: distributivity

- ... factorised products

$$
\begin{aligned}
A(u)= & \sum_{\boldsymbol{\beta}} A_{\beta_{1}}^{1} \\
& \cdot \sum_{\boldsymbol{\alpha}} U_{\alpha_{1}}^{1} \otimes \otimes A_{\beta_{1}, \beta_{2}}^{2} \otimes \cdots \otimes A_{\beta_{d-1}}^{d} \\
U_{\alpha_{1}, \alpha_{2}}^{2} & \otimes \cdots \otimes \sum_{\boldsymbol{\alpha}, \boldsymbol{\beta}}^{d}\left(A_{\beta_{1}}^{1} U_{\alpha_{1}}^{1}\right) \otimes \cdots \otimes\left(A_{\beta_{d-1}}^{d} U_{\alpha_{d-1}}^{d}\right) .
\end{aligned}
$$

- Take $A=w^{\top} \quad \rightarrow \quad$ fast quadratures with $\mathcal{O}\left(d n r^{2}\right)$ cost.

Dynamical Tensor Train approximation

TT decomposition is a recursive matrix decomposition: let

$$
\begin{array}{cc}
\vec{u}=\sum_{\alpha} U_{\alpha_{1}}^{1} \otimes \underbrace{U_{\alpha_{1}, \alpha_{2}}^{2} \otimes \cdots \otimes U_{\alpha_{d-1}}^{d}}_{U_{\alpha_{1}}^{1}} \\
V S & W^{*}
\end{array}
$$

- " K " and " S " steps are implemented on (small) U^{1} directly.
- $L^{*}(0)=S W_{0}^{*}$ reduces to $L^{2}\left(i_{2}\right)=S U^{2}\left(i_{2}\right)$.
- Integrate $\frac{d L^{2}}{d t}$ only
$\mathcal{O}\left(n r^{2}\right)$ DoFs
- $\quad U^{3}, \ldots, U^{d}$ are still fixed.

Dynamical Tensor Train approximation

General step ${ }^{3}$:

$$
u\left(i_{1}, \ldots, i_{d}\right)=\underbrace{U^{1}\left(i_{1}\right) \cdots U^{k-1}\left(i_{k-1}\right)}_{U<k\left(i_{<k}\right)} \underbrace{U^{k}\left(i_{k}\right)}_{K_{i_{k}}} \underbrace{U^{k+1}\left(i_{k+1}\right)}_{W_{i_{k+1}^{*}}^{*}} \underbrace{U^{k+2}\left(i_{k+2}\right) \cdots U^{d}\left(i_{d}\right)}_{U>k+1\left(i_{>k+1}\right)} .
$$

- Assume A is also in $\mathrm{TT} \Rightarrow A(u)$ is a factorised product
${ }^{3}$ [Lubich, Oseledets, Vandereycken '15]

Dynamical Tensor Train approximation

General step ${ }^{3}$:

$$
\begin{gathered}
u\left(i_{1}, \ldots, i_{d}\right)=\underbrace{U^{1}\left(i_{1}\right) \cdots U^{k-1}\left(i_{k-1}\right)}_{U^{<k}\left(i_{<k}\right)} \underbrace{U^{k}\left(i_{k}\right)}_{K_{i_{k}}} \underbrace{U^{k+1}\left(i_{k+1}\right)}_{W_{i_{k+1}^{*}}^{*}} \underbrace{U^{k+2}\left(i_{k+2}\right) \cdots U^{d}\left(i_{d}\right)}_{U>k+1\left(i_{>k+1}\right)} . \\
A=\sum_{\beta} \quad A_{\beta_{k-1}}^{<k} \otimes \quad A_{\beta_{k-1}, \beta_{k}}^{k} \otimes A_{\beta_{k}, \beta_{k+1}}^{k+1} \quad \otimes A_{\beta_{k+1}}^{>k+1}
\end{gathered}
$$

- Assume A is also in TT $\Rightarrow A(u)$ is a factorised product
- \Rightarrow we can multiply $A^{<k} U^{<k}$ and $A^{>k} U^{>k}$ at $\mathcal{O}\left(d n r^{4}\right)$ cost.
${ }^{3}$ [Lubich, Oseledets, Vandereycken '15]

Dynamical Tensor Train approximation

General step ${ }^{3}$:

$\Theta\left(i_{k}, i_{k+1}\right)=$

$$
\underbrace{U^{k}\left(i_{k}\right)}_{K_{i_{k}}} \underbrace{U^{k+1}\left(i_{k+1}\right)}_{W_{i_{k+1}}^{*}}
$$

- Assume A is also in $\mathrm{TT} \Rightarrow A(u)$ is a factorised product
- \Rightarrow we can multiply $A^{<k} U^{<k}$ and $A^{>k} U^{>k}$ at $\mathcal{O}\left(d n r^{4}\right)$ cost.
- This projects $A(u)$ into $A^{k: k+1}(\Theta) \Rightarrow$ matrix "KSL".*
${ }^{3}$ [Lubich, Oseledets, Vandereycken '15]
*cf. DMRG [White '93]

Rank-adaptive dynamical approximation

- Let $P_{<k}=U^{<k}\left(U^{<k}\right)^{*}, P_{>k}=U^{>k}\left(U^{>k}\right)^{*}$.

This TT-KSL scheme is a splitting scheme for $\frac{d \vec{u}}{d t}=P_{u} \cdot A(u)$ with

$$
P_{u}=\sum_{k=1}^{d} P_{<k} \otimes I \otimes P_{>k}-\sum_{k=1}^{d-1} P_{<k+1} \otimes P_{>k}
$$

the orthogonal projector onto the T-space of the TT manifold.

- However, we can define a 2-core projector:

$$
\mathcal{P}_{u}=\sum_{k=1}^{d-1} P_{<k} \otimes I \otimes I \otimes P_{>k+1}-\sum_{k=1}^{d-2} P_{<k+1} \otimes I \otimes P_{>k+1}
$$

Rank-adaptive dynamical approximation

This gives an adaptive integrator similar to DMRG: ${ }^{4}$

- Solve $\frac{d \Theta}{d t}=A^{k: k+1}(\Theta)$ starting from $\Theta_{0}=U^{k} U^{k+1}$.
- Factorise $\Theta(t) \approx V S W^{*}$ using truncated SVD. (new r_{k})
- Solve $\frac{d L}{d t}=-V^{*} A^{k: k+1}(V L)$ starting from $L_{0}=S W^{*}$.
- $\quad U^{k}=V, U^{k+1}=L(t)$.
- Iterate $k \leftarrow(k-1)$ or $(k+1)$
${ }^{4}$ [Haegeman, Lubich, Oseledets, Vandereycken, Verstraete '16]

Rank-adaptive dynamical approximation

This gives an adaptive integrator similar to DMRG: ${ }^{4}$

- Solve $\frac{d \Theta}{d t}=A^{k: k+1}(\Theta)$ starting from $\Theta_{0}=U^{k} U^{k+1}$.
- Factorise $\Theta(t) \approx V S W^{*}$ using truncated SVD. (new r_{k})
- Solve $\frac{d L}{d t}=-V^{*} A^{k: k+1}(V L)$ starting from $L_{0}=S W^{*}$.
- $\quad U^{k}=V, U^{k+1}=L(t)$.
- Iterate $k \leftarrow(k-1)$ or $(k+1)$?
${ }^{4}$ [Haegeman, Lubich, Oseledets, Vandereycken, Verstraete '16]

Parallelising over TT cores

Can we run steps for different k simultaneously?

- Problem: V and W are orthogonal, while L and K are not \rightarrow different scales of TT cores.

Solution: inverse gauge conditions

- $V S W^{*}=(V S) S^{-1}\left(S W^{*}\right)=$ the " $K S^{-1} L^{\prime}$ " scheme!
- In the TT decomposition:

$$
u\left(i_{1}, \ldots, i_{d}\right)=U^{1}\left(i_{1}\right) S_{1}^{-1} U^{2}\left(i_{2}\right) \cdots S_{d-1}^{-1} U^{d}\left(i_{d}\right)
$$

- All $\left\|U^{k}\right\|=\|u\|$ ("centers") \rightarrow parallelisation makes sense.
- Stability of inverting S_{k} ???

Inverse gauge \Rightarrow parallel TT algorithms

Problem: $\operatorname{cond}\left(S_{k}\right)=\frac{1}{\sigma_{r_{k}}}$. However...

- ... if we use SVD:

$$
V S W^{*}=(V S) S^{-1}\left(S W^{*}\right)
$$

$S_{k}^{-1}=\operatorname{diag}\left(1 / s_{k}\right)$. Numbers are perfectly conditioned!
This gives an abstract ${ }^{5}$ algorithm:

- Solve over overlapping subset of TT cores in parallel:

Process 0

$$
U^{1}\left(i_{1}\right) \cdots S_{m-1}^{-1} U^{m}\left(i_{m}\right) \quad S_{m}^{-1} \quad U^{m+1}\left(i_{m+1}\right) S_{m+1}^{-1} \cdots U^{d}\left(i_{d}\right)
$$

Process 1

- Synchronisation: solution/SVD on the overlap $U^{m} S_{m}^{-1} U^{m+1}$.

[^0]Sergey Dolgov 16/22

Parallel time-dependent variational principle

Assuming perfect load balance $(d-1)=P m$:

- Computational cost: perfect scaling

$$
\mathcal{O}(\frac{d-1}{P}(\underbrace{\frac{n^{3} r^{3}}{d t} \text { and SVD }}_{\text {Solve }}+\underbrace{n r^{4}}_{\text {projections of } A}))
$$

- Communication volume:

Parallel time-dependent variational principle

Assuming perfect load balance $(d-1)=P m$:

- Computational cost: perfect scaling

$$
\mathcal{O}(\frac{d-1}{P}(\underbrace{\frac{n^{3} r^{3}}{d t} \text { and SVD }}_{\text {Solve }}+\underbrace{n r^{4}}_{\text {projections of } A}))
$$

- Communication volume:

- What about S_{m} that are not updated in last step?
- Limit the time step t to "small enough"
even the stable KSL may diverge if we step too far off the manifold

Long-range Ising model

- Let $\sigma^{x}, \sigma^{y}, \sigma^{z} \in \mathbb{C}^{2 \times 2}$ be the elementary Pauli matrices.
- Let $\sigma_{k}^{\mu}=I \otimes \cdots \otimes I \otimes \sigma^{\mu} \otimes I \otimes \cdots \otimes I$ be operators of their action on the k th particle $(\mu \in\{x, y, z\})$.
- A Hamiltonian of the Ising chain subject to a magnetic field:

$$
A=-\mathrm{i} \sum_{k<m}^{d} \frac{1}{|k-m|^{\alpha}} \sigma_{k}^{z} \sigma_{m}^{z}-\mathrm{i} B \sum_{k=1}^{d} \sigma_{k}^{x} .
$$

- α : (non)locality parameter, tunable in trapped ion experiments
- $\alpha=\infty$: nearest-neighbour model, solvable by (parallel) TEBD.
- $\alpha<3$: TEBD splitting too inaccurate. Here begins the fun...

Time step and stability of parallel TDVP

- $\alpha=2.3, B=0.27$
- $d=641, r \approx 100$

Error scaling

- Compare sequential solution with $p=2,16,32$ processes.
- $\omega_{\text {total }}=$ cumulative norm of discarded singular values.

Strong time scaling

Conclusion

- Inverse gauge allows parallelisation of various TT algorithms
- Including TDVP where time step is naturally tunable
- communications $\rightarrow 0$ as $n, r, d \rightarrow \infty$ (weak scaling)
- Reference: Phys. Rev. B 101 or arXiv:1912.06127
- See also:

Ceruti, Kusch, Lubich: parallel DLRA arXiv:2304.05660

Conclusion

- Inverse gauge allows parallelisation of various TT algorithms
- Including TDVP where time step is naturally tunable
- communications $\rightarrow 0$ as $n, r, d \rightarrow \infty$ (weak scaling)
- Reference: Phys. Rev. B 101 or arXiv:1912.06127
- See also:

Ceruti, Kusch, Lubich: parallel DLRA arXiv:2304.05660

Thank you for your attention!

[^0]: ${ }^{5}$ instantiated in par-DMRG [Stoudenmire, White '13], HT-ALS [Etter '16], TT-Cross [D.,Savostyanov '19], and pTDVP discussed

