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Nonlinear parametric approximation of evolution

High-dimensional ODE or PDE

ẏ = f (y), y(0) = y0

to be approximated via nonlinear parametrization

y(t) ≈ u(t) = Φ(q(t))

with unknown time-dependent parameters q(t) ∈ Q

Our case of interest here is an irregular parametrization:
Φ′(q) has arbitrarily small singular values and possibly varying rank.

Loss of geometric structure



Motivation from applications

Parametrization by
I Multiple Gaussians
I Tensor networks
I Deep neural networks

Φ′(q) typically has numerous very small singular values.



Dynamical parametric approximation

How to choose the time-dependent parameters q(t)?

Minimum defect condition: Given q(t) and u(t) = Φ(q(t)),
determine q̇(t) and u̇(t) = Φ′(q(t)) q̇(t) such that

‖u̇(t)− f (u(t))‖ = min!

Widely used in quantum physics / chemistry:
Dirac–Frenkel time-dependent variational principle (Dirac 1930)
rich geometry



Tangent space projection

ẏ = f (y)

is approximated by

u̇ = Puf (u)

2008

in quantum physics/chemistry:
Dirac–Frenkel time-dependent variational principle



Dynamical parametric approximation

The least-squares problem for q̇

‖u̇ − f (u)‖ = ‖Φ′(q) q̇ − f (Φ(q))‖ = min!

is ill-posed when Φ′(q) has small singular values.

What can be done when the geometry breaks down?



Regularized dynamical parametric approximation

Given q(t) and u(t) = Φ(q(t)),
determine q̇(t) and u̇(t) = Φ′(q(t)) q̇(t) from the
regularized linear least-squares problem

δ(t)2 := ‖u̇(t)− f (u(t))‖2 + ε2‖q̇(t)‖2
Q = min!

ε > 0 small regularization parameter (possibly state-dependent)

This gives a differential equation for the parameters q(t), which is
solved numerically by standard time integrators.

Cf. Ritcheson et al. (2015) for multi-Gaussians in quantum dynamics.
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Ill-posedness of the regularized problem

Consider the sensitivity to initial values:
Let q(t), q̃(t) be the solutions to initial values q(0), q̃(0),
and u(t) = Φ(q(t)), ũ(t) = Φ(q̃(t))

Perturbation bound:

‖u(t)− ũ(t)‖+ ε‖q(t)− q̃(t)‖Q
≤ eωt(‖u(0)− ũ(0)‖+ ε‖q(0)− q̃(0)‖Q

)
with

ω = L + 5
2
β

ε

δ̄

ε
∼ β

ε
when β 6= 0,

where β is an upper bound of Φ′′,
L is a local Lipschitz constant of f ,
δ̄ is an upper bound of the defect size

Severely ill-posed for nonlinear parametrizations



A basic principle of numerical analysis

Avoid solving ill-posed subproblems when you aim for a
stable algorithm for a well-posed problem.



A basic principle of numerical analysis

Avoid solving ill-posed subproblems when you aim for a
stable algorithm for a well-posed problem.

We ignore this good advice.



Well-posedness up to the defect size

δ(t)2 := ‖u̇(t)− f (u(t))‖2 + ε2‖q̇(t)‖2
Q = min!

u(t) = Φ(q(t)), ũ(t) = Φ(q̃(t))

Perturbation bound:

‖u(t)− ũ(t)‖ ≤ e`t‖u(0)− ũ(0)‖+
∫ t

0
e`(t−s) (δ(s) + δ̃(s)

)
ds

with the one-sided (local) Lipschitz constant ` :

〈y − ỹ , f (y)− f (ỹ)〉 ≤ ` ‖y − ỹ‖2 ∀y , ỹ



Proof

u̇ = f (u) + d with ‖d‖ ≤ δ
˙̃u = f (ũ) + d̃ with ‖d̃‖ ≤ δ̃

Subtract, take inner product with u − ũ.
On the left:

1
2

d
dt ‖u − ũ‖2 = ‖u − ũ‖ · d

dt ‖u − ũ‖

On the right: use the one-sided Lipschitz condition and Cauchy–Schwarz
to bound by

≤ ‖u − ũ‖
(
`‖u − ũ‖+ ‖d − d̃‖

)
Use the rough bound

‖d − d̃‖ ≤ δ + δ̃,

divide both sides by ‖u − ũ‖ and use Gronwall’s inequality.

simple, uses standard arguments
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‖u(t)− ũ(t)‖ ≤ e`t‖u(0)− ũ(0)‖+
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A posteriori error bound

I ẏ = f (y), y(0) = u(0) = Φ(q(0))
I Regularized parametric approximation u(t) = Φ(q(t)) with

δ(t)2 = ‖u̇(t)− f (u(t))‖2 + ε2‖q̇(t)‖2
Q minimal

Error bound:

‖u(t)− y(t)‖ ≤
∫ t

0
e`(t−s) δ(s) ds

simple proof as before



A priori error bound

We want to bound the error of the algorithm in terms of
approximability of the solution (cf. Céa’s Lemma).

Pointwise approximability of the solution y(t) is not sufficient here.

Error bounds require approximability of the solution derivative ẏ(t)
in the tangent spaces at all u = Φ(q) close to y(t).

(No details in this talk, see our paper.)
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Regularized Euler time-stepping

qn+1 = qn + hq̇n, un+1 = Φ(qn),

where q̇n solves the regularized linear least-squares problem

δ2
n := ‖Φ′(qn)q̇n − f (un)‖2 + ε2

n ‖q̇n‖2 = min!

and h > 0 is the stepsize.



Local error bound

Under the stepsize restriction

hδ0 ≤ cε2
0

the error after one step starting from y0 = u0 = Φ(q0)
is bounded by

‖u1 − y(t1)‖ ≤ c1hδ0 + c2h2

with c1 = 1 + cβ and c2 = 1
2 maxt0≤t≤t1 ‖ÿ(t)‖2,

where β is a bound of Φ′′.

The stepsize restriction yields ‖Φ′′(q)[q1− q0, q1− q0]‖2
Q ≤ cβ hδ0.



Global error bound

Under the stepsize restriction hnδn ≤ cε2
n, the error is bounded by

‖un − y(tn)‖ = O(δ + h), 0 ≤ tn ≤ t̄.

This is obtained from the local error bound via
Lady Windermere’s fan with error propagation by the exact flow:
(see numerical ODE book by Hairer, Nørsett & Wanner 1987)



Regularized Runge-Kutta time discretization

Explicit Runge-Kutta method of order p applied to the differential
equation for the parameters q:
Compute internal stages (for i = 1, . . . , s)

qn,i = qn + h
i−1∑
j=1

aij q̇n,j , un,i = Φ(qn,i ),

and q̇n,i solving the regularized linear least squares problem

δ2
n,i := ‖Φ′(qn,i )q̇n,i − f (un,i )‖2 + ε2

n‖q̇n,i‖2
Q = min!

Finally, the new value is computed as

qn+1 = qn + h
s∑

j=1
bj q̇n,j , un+1 = Φ(qn+1).



Global error of Runge-Kutta method of order p

Under the same stepsize restriction as for the Euler method,

‖un − y(tn)‖ = O(δ + hp), 0 ≤ tn ≤ t̄,

obtained from the local error bound via Lady Windermere’s fan
with error propagation by the exact flow
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Choice of the regularization parameter ε

For all ε > 0, let q̇n(ε) be such that

δn(ε)2 := ‖Φ′(qn)q̇n(ε)− f (un)‖2 + ε2 ‖q̇n(ε)‖2
Q = min!

We know that δn(·) grows monotonically: dδ2
n

dε2 = ‖q̇n‖2
Q

For a tiny ε? � εn−1, compute δn(ε?).
With a given threshold δtol > 0, set δopt

n = max(17 δn(ε?), δtol).

We aim at choosing εn such that

δn(εn) ≈ δopt
n

and use 1 or 2 Newton iterations

(
εk+1

n
)2 =

(
εk

n
)2 −

δn(εk
n)2 −

(
δopt

n
)2

‖q̇n(εk
n)‖2
Q

.



Choice of the stepsize

We aim at
‖Φ′′(qn)[hnq̇n, hnq̇n]‖ ≈ hnδn

which is satisfied for the choice

hn = h0
nδn

‖(Φ′(qn + h0
nq̇n)− Φ′(qn))q̇n‖

.

This is combined with a standard Runge–Kutta stepsize selection.

Compute qn+1 and un+1 = Φ(qn+1) by a regularized Runge–Kutta step with the proposed regularization

parameter εn and the proposed stepsize hn . The local error estimate from an embedded pair of Runge–Kutta

methods should not substantially exceed hnδn ; else the step is rejected and repeated with a reduced stepsize.
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Further topics

in our paper, but here not addressed in detail:

I Schrödinger equation (PDE: not Lipschitz)

I Enforcing conserved quantities
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Approximating the flow map of an ODE system

Consider the Lotka-Volterra predator-prey model

ẋ = x − xy , ẏ = xy − y

with initial values in D = [0.5, 2.5]2.

The flow map ϕt : D → R2 at time t is considered as an element
of the Hilbert space H = L2(D)2. It satisfies the differential
equation on H

d
dtϕt = f (ϕt), ϕ0 = Id.

The flow map ϕt is approximated by a neural network with three
hidden layers, each with a depth of four neurons. The activation
function on each layer is the sigmoid function σ(x) = ex/(1 + ex ) .



Numerical experiment
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