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● The dynamical systems view to deep learning, preservation of
structure
● Adversarial attacks - robust NNs
● Contractivity of ODEs and of numerical integrators on

Riemannian manifolds
● Optimisation on infinite dimensional Lie groups: invariance

under reparametrization
● Learning ODEs from data.
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Deep neural networks - from the point of view of numerical analysis
Let V input space, W output space

φ ∶ V → W.

DNNs - approximation theory:
φ ≈ φθ

by a composition of L simpler maps (layers)

φθ = φL ○ φL−1 ○ ⋯ ○ φ1, φℓ = φθℓ φθℓ ∶ Vℓ−1 → Vℓ
V0 = V and VL = W, each φℓ depends on a finite number of parameters θℓ.

Residual networks - numerical ODEs: Vℓ−1 = Vℓ = V a compact subdomain of RN

and
φθℓ = id + hXθℓ , Xθℓ ∶ x ↦ σ(Aℓx + bℓ), θℓ ∶= (Aℓ,bℓ)

can be seen as the forward Euler discretization of the flow map of the ODE

ẏ = σ(A(t)y(t) + b(t)), y(0) = x , t ∈ [0,h]
(Haber and Ruthotto 2017, and E 2017).
Learning - variational methods: optimising a cost function (distance) with respect to
all the parameters

min
φ=φθL

○⋯○φθ1
E(φ) = min

{θℓ}
L
ℓ=1

E(φθL ○ ⋯ ○ φθ1)

is the discretization of the optimal control problem:

inf
A(t),b(t)

E(y(T)), subject to ẏ = σ(Ay + b), y(0) = x , t ∈ [0,T ].
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Transitions in Runge–Kutta methods – Data Spiral

Figure: Snap shots of the transition from initial to final state through the network
with the Spiral data set. Top, ResNet/Euler, and bottom, Runge-Kutta(4).

Benning, EC, Ehrhardt, Owren, Schönlieb, Deep learning as optimal control problems: models and

numerical methods, JCD, 2019
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Deep neural networks - structure preservation - dynamical systems

Let V input space, W output space. Neural networks inherit structure that is
preserved under composition

φ ≈ φθ = φθL ○ φθL−1 ○ ⋯ ○ φθ1 , φθℓ ∶ Vℓ−1 → Vℓ, V0 = V, VL = W,

by imposing structure on the layers φθℓ (e.g. volume preservation), φθ inherits
the same structural properties.

Dynamical systems can be classified according to the group of diffeomorphisms
(G, ○) to which they belong.

Learning restricted to a finite dimensional space Gθ contained in G

Gθ ∶= {φθ ∈ G ∣φθ = φθL ○ ⋯ ○ φθ1}, L fixed

and
min

φθ∈Gθ

E(φ) = min
{θℓ}

L
ℓ=1

E(φθL ○ ⋯ ○ φθ1).
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Dynamical systems based neural networks

Strategy for constructing NNs: choose vector fields in the
correct Lie algebra use exact flows or numerical methods preserving
the structure to obtain layers φθℓ in the correct group.

● We can design: 1-Lipschitz networks, invertible networks,
volume preserving networks, symplectic networks, mass
preserving networks.
● We can compose vector fields in different classes to enhance

expressivity (prove universal approximation results).
● We can construct 1-Lipschitz networks which are expressive

and robust against adversarial attacks.
Advantage: it can be easier to impose structure on the vector fields
than on the corresponding flows.

EC, Murari, Owren, Schönlieb and Sherry, Dynamical systems based neural networks, 2023, SISC
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(In)stability – adversarial attacks

https://ai.googleblog.com/2018/09/
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Stability of the neural network - contractivity of the underlying ODE
Residual networks:

φ ≈ φθ = φθL ○ φθL−1 ○ ⋯ ○ φθ1 , φθℓ ∶ V → V,

V a compact subdomain of RN and

φθℓ = id + hXθℓ , Xθℓ ∶ x ↦ Bℓσ(Aℓx + bℓ), θℓ ∶= (Bℓ,Aℓ,bℓ)

forward Euler numerical integration of the ODE

ẏ = B(t)σ(A(t)y(t) + b(t)), y(0) = x , t ∈ [0,h].

● We want to be able to guarantee that the layer φℓ is a contractive
map (when necessary), i.e.

∥φℓ(y2) − φℓ(y1)∥ < ∥y2 − y1∥,

so that we can compose contractive and non-contractive layers to
construct a neural network with Lipschitz constant equal to 1.

● Then we can use known theory of numerical stability of contractive
ODEs.
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Contractivity of the underlying ODE

A vector field X (t, y) is contractive in L2-norm if there is ν < 0 such
that for all y1, y2 and t ∈ [0,T ]:

⟨X (t, y2) −X (t, y1), y2 − y1⟩ ≤ ν∥y2 − y1∥2.

This implies that for any two integral curves y(t) and z(t)

∥y(t) − z(t)∥ ≤ etν∥y(0) − z(0)∥.

The vector field

X (t, y(t)) = −A(t)Tσ(A(t)y(t) + b(t)),

with σ increasing function, A ∈ Rn×k , b ∈ Rn, is contractive.
EC, Ehrhardt, Etmann, McLachlan, Owren, Schönlieb, Sherry, Structure preserving deep learning,

EJAM, 2021.
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Contractivity of explicit Runge-Kutta methods: forward Euler

Theorem (Dahlquist and Jeltsch, 1979)
Suppose X satisfies the monotonicity condition

⟨X(t, y2) −X(t, y1), y2 − y1⟩ ≤ ν̄∥X(t, y2) −X(t, y1)∥2, ν̄ < 0.

Then, if the stepsize h satisfies

h ≤ −2ν̄,

the forward Euler method is contractive.

Proposition
For σ non decreasing and L-Lipschitz, the vector field

X(t, y) = −A(t)Tσ(A(t)y + b),

with A ∈ Rn×k , b ∈ Rn, satisfies the monotonicity condition with ν̄ = − 1
∥A∥2L .

Remark X is a gradient vector field:
ẏ = −∇yV , V (t, y(t)) = ⟨γ(A(t)y(t) + b(t)),1⟩, γ′ = σ.

Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex

Analysis and ODEs, 2024, Physica D, to appear.
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Robust classification of CIFAR10 and CIFAR100

φℓ(x) = x − h1 P
Tσ(Px + p) contractive

ψℓ(x) = x + h2 Q
Tσ(Qx + q) expansive

σ(x) =max{x , x
2
} , PTP = I , QTQ = I .

Using orthogonal convolutional NNs. by Wang et al., 2020. Adversarial examples
using Foolbox.
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Contractivity of numerical integrators on Riemannian manifolds
● (M,g) a Riemannian manifold, g(u, v) = ⟨u, v⟩
● ∇ is the Levi-Civita connection induced by g

● X and Y vector fields on M: ∇XY denotes the covariant derivative on
M

● γ(t) = expp(t vp) Riemannian exponential
● d(p,q) = infγp→q ℓ (γp→q), ℓ(γ) = ∫

b

a ∥γ̇(t)∥dt

Monotonicity condition: for U ⊂M a vector field X satisfies the monotonicity
condition on U iff ∀x ∈ U vx ∈ TxM then

⟨∇vxX , vx⟩ ≤ ν∥vx∥2.

Then one can prove that for U geodesically convex, with y(t) = exp(tX)y0,
z(t) = exp(tX)z0 in U ∀t ∈ [0,T ] it holds

d(y(t), z(t)) ≤ etνd(y0, z0), ∀t ∈ [0,T ].
Non-expansiveness when X is forward complete, U is forward X -invariant and
ν ≤ 0.

● M. Kunzinger and H. Schichl and R. Steinbauer and J. A. Vickers, 2006, Revista Matemática
Complutense

● J. W. Simpson-Porco and F. Bullo, Contraction theory on Riemannian manifolds, Systems &
Control Letters, 2014
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B-stability of integrators on Riemannian manifolds

Definition: Suppose
● X is contractive on U ⊂M,
● ϕh,X ∶ M →M is a numerical method approximating exp(tX)p and is

well defined for all h ≥ 0,
● U is forward ϕh,X -invariant for all h ≥ 0 and forward X -invariant

then the method is said to be B-stable iff

d(ϕh,X (y0), ϕh,X (z0)) ≤ d(y0, z0), ∀h ≥ 0.

Geodesic Implicit Euler

yn = expyn+1(−hX(yn+1)).

Theorem If M is a Riemannian manifold with non-positive sectional curvature
then the geodesic implicit Euler method is B-stable.
Example Space of n × n symmetric positive definite matrices.
Arnold, EC, Cokaj, Owren, Tumiotto, Contractivity of numerical integrators on Riemannian manifolds,

2024, JCD.

Elena Celledoni Deep NNs and dynamical systems



B-stability of integrators on Riemannian manifolds

Definition: Suppose
● X is contractive on U ⊂M,
● ϕh,X ∶ M →M is a numerical method approximating exp(tX)p and is

well defined for all h ≥ 0,
● U is forward ϕh,X -invariant for all h ≥ 0 and forward X -invariant

then the method is said to be B-stable iff

d(ϕh,X (y0), ϕh,X (z0)) ≤ d(y0, z0), ∀h ≥ 0.

Geodesic Implicit Euler

yn = expyn+1(−hX(yn+1)).

Theorem If M is a Riemannian manifold with non-positive sectional curvature
then the geodesic implicit Euler method is B-stable.
Example Space of n × n symmetric positive definite matrices.
Arnold, EC, Cokaj, Owren, Tumiotto, Contractivity of numerical integrators on Riemannian manifolds,

2024, JCD.

Elena Celledoni Deep NNs and dynamical systems



B-stability of integrators on Riemannian manifolds

Definition: Suppose
● X is contractive on U ⊂M,
● ϕh,X ∶ M →M is a numerical method approximating exp(tX)p and is

well defined for all h ≥ 0,
● U is forward ϕh,X -invariant for all h ≥ 0 and forward X -invariant

then the method is said to be B-stable iff

d(ϕh,X (y0), ϕh,X (z0)) ≤ d(y0, z0), ∀h ≥ 0.

Geodesic Implicit Euler

yn = expyn+1(−hX(yn+1)).

Theorem If M is a Riemannian manifold with non-positive sectional curvature
then the geodesic implicit Euler method is B-stable.
Example Space of n × n symmetric positive definite matrices.
Arnold, EC, Cokaj, Owren, Tumiotto, Contractivity of numerical integrators on Riemannian manifolds,

2024, JCD.

Elena Celledoni Deep NNs and dynamical systems



Geodesic Implicit Euler is not B-stable on the sphere. Counterexample.
The sphere has positive sectional curvature equal to 1:
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● Non-expansive vector field (on the northern hemisphere)

ẏ = X(y) = a × y , a = [0,0,1].

● (Left) One step of GIE applied with increasing step size h, starting from
two different initial values.

● (Right) Geodesic distance: d(y1, z1) plotted as a function of h, where
y0 = expy1(−hX(y1)), z0 = expz1(−hX(z1).
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Neural networks for regularising inverse problems
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Variational regularization approaches to inverse problems

● Variational regularization in image processing
clean images û are recovered from measurements y by minimising a
trade-off between

1 Ey(u) ∶= d(A(u), y) the data fit and
2 R(u) penalty function encoding prior knowledge

û = argmin
u

Ey(u) + R(u).

● Splitting methods for optimisation: split the objective function in
two or more terms, each easier to optimise.

● Proximal gradient is a sort of gradient descent where the gradient
flow is approximated by an implicit-explicit time-stepping. The
implicit part corresponds to the proximal operator:

Proposition:

proxhRu = argmin
u′
∥u − u′∥2 + hR(u′).
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Proximal gradient descent and Plug-and-play

To solve the optimization problem

û = argmin
u

Ey(u) + R(u)

we use

Proximal gradient descent

Input: measurements y , initial estimate u0

for ℓ = 1, . . . ,N do

u[ℓ+1] = proxhR(u[ℓ] − h∇Ey(u[ℓ]))
end for

Plug-and-Play: replace proxhR with a (non-expansive) neural network
p̂roxh,ℓ, learning the de-noiser form data.
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Convergence

Definition An operator A ∶ Rd → Rd is α-averaged if ∃ a non expansive
operator T ∶ Rd → Rd s.t.

A = αT + (1 − α)Id , α ∈ (0,1).

Theorem (Hertrich, Neumayer, Steidl)
Let E ∶ Rm → R be convex and differentiable with L-Lipschitz continuous
gradient and let p̂roxh,ℓ ∶ Rm → Rm be averaged. Then, for any 0 < h < 2

L
,

the sequence {u[ℓ]}ℓ generated by

Proximal gradient descent-PnP:
for ℓ = 1, . . . ,N do

u[ℓ+1] = p̂roxh,ℓ(u[ℓ] − h∇Ey(u[ℓ]))
end for

converges.

J Hertrich, S Neumayer, G Steidl, Convolutional Proximal Neural Networks and Plug-and-Play

Algorithms , Lin. Alg. and Appl.
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PnP with ResNet and non-expansive networks

● Using f (t, y) = −ATσ(Ay + b) we can construct residual neural
networks that are provably non-expansive (1-Lipschitz) and
averaged.

● J Hertrich, S Neumayer, G Steidl. Averagedness together with
Ey(u) convex, differentiable and ∇Ey is L-Lipschitz, is sufficient to
prove convergence of PnP algorithms.

Theorem (Sherry)
Let For σ non decreasing and L-Lipschitz, the vector field A ∈ Rn×k , b ∈
Rnσ,A,b be as in and let α ∈ (0,1). A single layer of the proposed
architecture, φ(x) = x − hA⊺σ(Ax + b), is α-averaged if

h∥A∥2 ≤ 2α/L. (1)

Remark Composition of m operators Ai , i = 1, . . . ,m which are αi

averaged is α averaged for a certain α.
Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex

Analysis and ODEs, 2024, Physica D: Nonlinear Phenomena.
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Denoising with PnP (Courtesy of F. Sherry)

Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex

Analysis and ODEs, 2024, Physica D.
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Convergence with PnP (Courtesy of F. Sherry)

Sherry, EC, Ehrhardt, Murari, Owren and Schönlieb, Designing Stable Neural Networks using Convex

Analysis and ODEs, 2024, Physica D.
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Learning optimal parametrizations for shapes
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Binary classification, connections to shape analysis
Example: Spiral – Binary classification – Training and generalization

min
θ

1
N

N

∑
i=1
∥φθ(xi) − ci∥2

Figure: Transformed points (top), prediction (bottom) for ResNet, 15 layers.

● Transformation of the domain via a differential equation (a
diffeomorphism) before comparison, is relevant also in shape
analysis.

● We will see how optimisation on the diffeomorphims group occurs in
shape analysis.
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Shape analysis

● Shape analysis is a framework for treating complex data and
obtain metrics on the data spaces.
Examples are spaces of curves, time-signals, surfaces, images,
probability distributions.
● Shape analysis can be used for data classification or for data

generation (interpolation) or prediction (extrapolation).
In this talk

Shapes are unparametrized curves or surfaces taking values in a
vector space or on a manifold.

Elena Celledoni Deep NNs and dynamical systems



Skeletal animation
Skeleton consisting of bones connected by joints. One rotation for each joint.

Human activity: α ∶ [0,T ] → J , J = SO(3)n, [0,T ] interval of time.
● Data obtained by motion capturing.
● Motion manipulation is the processing of the data.
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Classifying running, walking, jumping animations as shapes

● E. C., P. E. Lystad and N. Tapia, GSI Proceedings, 2019,
● E. C., M. Eslitzbichler and A. Schmeding, JGM, 2016

Structure preserving shape analysis
● Geometry of rotations is preserved.
● Reparametration invariance of the distance between time-curves.
● Costly optimization algorithms, e.g. dynamic programming, to find the optimal

reparametrization.
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Shapes

Definition of shapes via an equivalence relation: let I ⊂ R an
interval, consider

P ∶= Imm(I,Rn) = {c ∈ C∞(I,Rn) ∣ ċ(t) ≠ 0},

P is called pre-shape space and is an infinite dimensional
manifold. Let c0, c1 ∈ P then

c0 ∼ c1 ⇐⇒ ∃ φ ∶ c0 = c1 ○ φ

with φ ∈ Diff+(I) a orientation preserving diffeomorphism on I

Shape space:
S ∶= Imm(I,Rn)/Diff+(I)
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Distance function on S

Applications often require a distance function to measure similarities
between shapes. Let dP be a distance function on P
Distance on S:

dS([c0], [c1]) ∶= inf
φ∈Diff+(I)

dP(c0, c1 ○ φ). (2)

Condition guaranteeing that dS is well defined:

If dP is such that

dP(c0, c1) = dP(c0 ○ φ, c1 ○ φ) ∀φ ∈ Diff+(I), (3)

then dS([c0], [c1]) is well defined.
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Distance on P via SRVT and Q-transform
One can proceed first transforming the curve transform c ↦ q = Q(c)
and then computing L2 distances: let P = Imm(I ,Rn),

Q ∶ P → C∞(I ,Rn), c ↦ q, Q(c) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ċ√
∥ċ∥

SRVT

√
∥ċ(⋅)∥ c(⋅) Q − transform

on C∞(I ,Rn) we will use the L2 metric:

dP(c0, c1) = dL2(Q(c0),Q(c1)) = ∥q0 − q1∥L2 .

● Both SRVT and Q-transform are equivariant with respect to
reparametrisations, i.e.

Q(c ○ γ)(t) =
√
γ̇(t) ⋅ (Q(c) ○ γ)(t),

as a consequence dP is reparametrization invariant.
● A. Srivastava, E. Klassen, S.H. Joshi, and I.H. Jermyn. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2011.
● M. Mani, S. Kurtek, C. Barillot, A. Srivastava, IEEE Symposium on Biomedical Imaging, 2010.
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Reformulation of the optimal reparametrization problem

Optimal reparametrization problem: given curves c0 and c1 with
q0 ∶= Q(c0), and q1 ∶= Q(c1),

inf
φ∈Diff+(I)

E(φ), E(φ) ∶= ∥q0 −
√
φ̇ ⋅ (q1 ○ φ)∥2L2

,

dS([c0], [c1]) = inf
φ∈Diff+(I)

E(φ).

Optimisation problem on an infinite dimensional Lie group Diff+(I), with
“Lie algebra" TidDiff+(I), I = [0,1]. We parametrize the diffeomorphisms
with deep neural networks as follows:

Consider a basis v1, v2, . . . of TidDiff+(I) write

φθ = (id + h1Xθ1) ○ ⋯ ○ (id + hLXθL).

Xθℓ =
M

∑
j=1

βℓ
j vj , θℓ = {βℓ

j }ℓ=1,...,Lj=1,..,M

Optimise on these “approximate diffeomorphisms".
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Expressivity results

We can show that finite compositions of diffeomorphisms of the
type

φθℓ = id +Xθℓ , ℓ = 1, . . . ,L

with Xθℓ a 1-Lipschitz vector field can be used to describe the
whole group of
● diffeomorphisms fixing the boundary of a compact set Ω ⊆ Rd ;
● diffeomorphisms on a cube Ω = [0,1]d .
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Expressivity: diffeomorphisms fixing the boundary

● Ω ∈ Rd compact, connected subset with dense interior.
● Diff∂(Ω) diffeomerphisms fixing the boundary.
● TidDiff∂(Ω) = C∞∂ (Ω,Rd) Lie algebra.

Global chart given by

κ∶Diff∂(Ω) → C∞∂ (Ω,Rd), ϕ↦ ϕ − idΩ. (4)

For vector fields f ∈ κ(Diff∂(Ω)), the inverse κ−1(f ) = f + idΩ ∈ Diff∂(Ω) and
we can generate all elements in Diff∂(Ω) this way.
Every diffeomorphism fixing the boundary can be expressed as a vector field
(vanishing on the boundary) plus the identity.
However there are practical problems:

1 The image of the global chart κ(Diff∂(Ω)) is difficult to describe.

2 What can we approximate by restricting to a finite-dimensional subspace
of the Lie algebra.

3 Not all diffeomorphisms of interest fix the boundary.
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Example: 1D Let Ω = [a,b]. Then a vector field f in C∞∂ ([a,b],R) is in the
image of κ if f ′(x) > −1 for all x ∈ [a,b] since then id[a,b]+f will be monotonically
increasing.

More complicated to describe κ(Diff∂(Ω)) in several dimensions, we use
1-Lipschitz vector fields:

U1 ∶= {f ∈ C∞∂ (Ω,Rd)∶Lip(f ) < 1}
is an open 0-neighbourhood in TidDiff∂(Ω).
A sufficient criterion:

Lemma
The map κ−1(f ) = idΩ + f is an element of Diff∂(Ω) for all f ∈ U1:

κ−1(U1) ⊆ Diff∂(Ω).

From the lemma it follows that

⋃
L∈N

κ−1(U1) ○ ⋯ ○ κ−1(U1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L

= Diff∂,0(Ω)

where Diff∂,0(Ω) is the connected component of the identity which is open in
the whole group Diff∂(Ω).Elena Celledoni Deep NNs and dynamical systems



Recovering the (optimal) parametrization
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● (Left) The curve c to be reparametrized on top, and the target curve c ○φ below
● (Top right) The true reparametrization φ (dotted black) compared to the

reparametrization ψ found by the algorithm.
● (Bottom right): The value of the loss function plotted against the iteration

number of the weight updates, given relative to the initial error. Each iteration
corresponds to one iteration of the BFGS algorithm including line-search.
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Example, cylinder

f (x , y) = [sin(2π), sin(4πx), y]T , f ○ φ

φ = [0.9x2 + 0.1x , log(20y+1)
2 log(21) +

1+tanh(29(y−0.5))
4 tanh(10) ]
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Convergence
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Data generation, optimal deformation

MNIST, matching of images, handwritten digits

Top λ(f1, f2, τ) ∶= τ f1 + (1 − τ)f2

Bottom γ(f1, f2, τ) ∶= τ f1 + (1 − τ)f2 ○φ
∗, φ∗ optimal reparametrization.
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Learning ODEs from data
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Learning vector fields of differential equations

For learning the vector field of a Hamiltonian system
ẏ = XH(y) = J ∇H(y) we learn the Hamiltonian

H ≈ HΘ

Assuming
{ỹ0

i , . . . , ỹ
M
i }i=1,...,N

are the N observed time trajectories of the flow of the vector field
XH that we want to learn.
Loss

L(Θ) = 1
2n

1
NM

N

∑
i=1

M

∑
j=1
∥y ji (Θ) − ỹ

j
i ∥

2,

where
y ji (Θ) = Φ

h
XHΘ
(y j−1i )

Architecture of the network: a recurrent neural network.
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Structure preservation when learning Hamiltonian vector fields

Mechanical systems with constraints

Comparison between 100 test trajectories obtained with the true Hamiltonian H and

the predicted one HΘ. To train HΘ, a Lie group method is used. This gives

E1 = 2.65 ⋅ 10−6 and a final training loss of 1.6 ⋅ 10−9.
● EC, Leone, Murari and Owren, Learning Hamiltonians of constrained mechanical systems, J

CAM, 2022
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Efficient prediction of beam deformation aided by neural networks

● EC, Cokaj, Leone, Leyendecker, Murari, Owren, Sato, Stavole Neural networks for the
approximation of Euler’s elastica, 2023 arXiv
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Learning Hamiltonians from noisy data: mean inverse integrator

● MII uses the group property of the (numerical) flow to produce and average over
different approximations of the same value y(tn), reducing noise.

● MII is best combined with MIRK (inverse explicit).

● Noren, Eidnes, EC, Learning Dynamical Systems from Noisy Data with Inverse-Explicit
Integrators, 2023. Elena Celledoni Deep NNs and dynamical systems
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