Detecting the numerical ill posedness in delay (and ordinary) differential equations

SPEAKER: Miryam Gnazzo (GSSI) JOINT WORK WITH: Nicola Guglielmi (GSSI) 4 April 2024

Consider a matrix-valued function in the form:

$$\mathcal{D}(\lambda) = f_0(\lambda) A_0 + f_1(\lambda) A_1 + \ldots + f_d(\lambda) A_d,$$

where $A_i \in \mathbb{C}^{n \times n}$ and analytic functions $f_i : \mathbb{C} \mapsto \mathbb{C}, i = 0, \dots, d$. $\mathcal{D}(\lambda)$ is regular if det $(\mathcal{D}(\lambda)) \neq 0$, otherwise it is singular.

Distance to singularity

Given a regular function $\mathcal{D}(\lambda)$, we look for the **distance to singularity**:

$$d(\mathcal{D}) = \min \{ \| [\Delta A_0, \dots, \Delta A_d] \| \text{ such that}$$
$$\widetilde{\mathcal{D}}(\lambda) = \sum_{i=0}^d f_i(\lambda) (A_i + \Delta A_i) \text{ is singular } \}.$$

Consider a system

$$E\dot{y}(t) = Ay(t) + By(t - \tau)$$
$$y(t) = \begin{pmatrix} \cos(\pi t) \\ 2 - 4t^2 \end{pmatrix}, \text{ for } t \le 0,$$

where

$$E = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \ A = \begin{pmatrix} -1+\delta & \frac{1}{2} \\ 0 & -1 \end{pmatrix}, \ B = \begin{pmatrix} 1+\delta & -\frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}.$$

We consider:

- $\delta = 0$ and $\delta = 2 \times 10^{-6}$;
- $\tau = 1$ and $\tau = 10^{-5}$.

Case: $\tau = 1$. y(t): solution of the system with $\delta = 0$; $\tilde{y}(t)$: solution of the system with $\delta = 2 \times 10^{-6}$; $\operatorname{err}(t) := \|\tilde{y}(t) - y(t)\|$: error.

Case: $\tau = 10^{-5}$. y(t): solution of the system with $\delta = 0$; $\tilde{y}(t)$: solution of the system with $\delta = 2 \times 10^{-6}$.

The pencil $\lambda E - A$ is robustly regular, that is

 $\exists \lambda \in \mathbb{C} : \det \left(\lambda E - A \right) \neq 0.$

But we have that:

$$F(\lambda;\tau) = \det\left(\lambda E - A - Be^{-\lambda\tau}\right) \approx 0$$

For λ such that $|\lambda \tau| \ll 1$, we have

$$A + Be^{-\lambda\tau} \approx A + B = \left(\begin{array}{cc} 0 & 0\\ 0 & -\frac{1}{2} \end{array}\right)$$

Examples

Matrix-valued function:

 $\mathcal{D}(\lambda) = f_0(\lambda) A_0 + f_1(\lambda) A_1 + \ldots + f_d(\lambda) A_d, \quad A_i \in \mathbb{C}^{n \times n}$

Few examples:

- Matrix polynomials $\mathcal{D}(\lambda) = A_0 + \lambda A_1 + \ldots + \lambda^d A_d$ \Rightarrow Differential Algebraic Equations;
- Matrix-valued quasi-polynomials D(λ) = λA₂ + e^{-λ}A₁ + A₀ ⇒ Delay Differential Equations.

We are interested in

 $\det\left(\mathcal{D}(\lambda)\right)\approx 0.$

- R. Byers, C. He, V. Mehrmann, (1998), Where is the nearest non-regular pencil?, Linear Algebra and its Applications.
- N. Guglielmi, C. Lubich, V. Mehrmann, (2017) On the nearest singular matrix pencil, SIAM Journal on Matrix Analysis and Applications.
- F. Dopico, V. Noferini, L. Nyman, (2023) A Riemannian optimization method to compute the nearest singular pencil, arXiv.
- B. Das, S. Bora, (2023) Nearest rank deficient matrix polynomials, Linear Algebra and its Applications.

Robust non-singularity of the problem

We consider the following measure of non-singularity

dist :=
$$\min_{\Delta A_i \in \mathbb{C}^{n \times n}} \| [\Delta A_0, \dots, \Delta A_d] \|_F$$

subj.to det $\left(\sum_{i=0}^k (A_i + \Delta A_i) f_i(\lambda) \right) \equiv 0.$

We consider the following measure of non-singularity

list :=
$$\min_{\Delta A_i \in \mathbb{C}^{n \times n}} \| [\Delta A_0, \dots, \Delta A_d] \|_F$$

subj.to det $\left(\sum_{i=0}^k (A_i + \Delta A_i) f_i(\lambda) \right) \equiv 0.$

Two interesting cases:

Ċ

D̃(λ) = Σ^d_{i=0} λⁱ (A_i + ΔA_i), matrix polynomial
⇒ Analysis tool: Fundamental Theorem of the Algebra; *D̃*(λ) = Σ^d_{i=0} f_i(λ) (A_i + ΔA_i), with f_i entire

 \Rightarrow Analysis tool: Maximum Modulus Theorem.

Consider a (suitably normalized) matrix $A \in \mathbb{C}^{n \times n}$ and a certain threshold $\delta > 0$, larger or equal than machine precision. Let $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_n$ the singular values computed in finite arithmetic. We say that r is the *numerical rank* of the matrix A if

$$\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > \delta \ge \sigma_{r+1} \ge \ldots \ge \sigma_n.$$

Consequently, we define the matrix A numerically singular if the numerical rank r < n.

The scalar polynomial det $(\mathcal{P}(\lambda) + \Delta \mathcal{P}(\lambda)) \equiv 0$ if

 $\det\left(\mathcal{P}(\mu_j) + \Delta \mathcal{P}(\mu_j)\right) = 0,$

with distinct points μ_j , $j = 1, \ldots, m$ and $m \ge dn + 1$.

The scalar polynomial det $(\mathcal{P}(\lambda) + \Delta \mathcal{P}(\lambda)) \equiv 0$ if

$$\det\left(\mathcal{P}(\mu_j) + \Delta \mathcal{P}(\mu_j)\right) = 0,$$

with distinct points μ_j , $j = 1, \ldots, m$ and $m \ge dn + 1$.

Optimization problem (discrete version):

dist =
$$\min_{\Delta A_i \in \mathbb{C}^{n \times n}} \| [\Delta A_0, \dots, \Delta A_d] \|_F$$

subj. to $\sigma_{\min} (\mathcal{P}(\mu_j) + \Delta \mathcal{P}(\mu_j)) = 0$,
for $j = 1, \dots, m$.

An intuitive generalization: consider the delay function

$$\mathcal{D}(\lambda) = \lambda E - A - e^{-\tau\lambda}B$$
$$\approx \lambda E - A - \left(\sum_{i=0}^{k} \frac{(-\tau\lambda)^{i}}{i!}\right) B.$$

An intuitive generalization: consider the delay function

$$\mathcal{D}(\lambda) = \lambda E - A - e^{-\tau\lambda}B$$
$$\approx \lambda E - A - \left(\sum_{i=0}^{k} \frac{(-\tau\lambda)^{i}}{i!}\right)B.$$

A few possible issues

- It may be not clear which k we should use;
- It may be not immediate to bound the approximation error;
- A large value of k may lead to a large amount of support points μ_i.

Maximum Modulus Theorem

Choose a bounded subset Ω with boundary $\partial \Omega$ and impose

$$\max_{\lambda \in \partial \Omega} \left| \det \left(\widetilde{\mathcal{D}}(\lambda) \right) \right| = 0,$$

where $\tilde{D}(\lambda) = \sum_{i=0}^{k} (A_i + \Delta A_i) f_i(\lambda)$. Then we get that

$$\max_{\lambda \in \bar{\Omega}} \det \left(\widetilde{\mathcal{D}}(\lambda) \right) = 0.$$

Maximum Modulus Theorem

Choose a bounded subset Ω with boundary $\partial \Omega$ and impose

$$\max_{\lambda \in \partial \Omega} \left| \det \left(\widetilde{\mathcal{D}}(\lambda) \right) \right| = 0,$$

where $\tilde{D}(\lambda) = \sum_{i=0}^{k} (A_i + \Delta A_i) f_i(\lambda)$. Then we get that

$$\max_{\lambda \in \bar{\Omega}} \det \left(\widetilde{\mathcal{D}}(\lambda) \right) = 0.$$

Idea: consider a suitable bounded subset $\Omega \subseteq \mathbb{C}$:

dist =
$$\min_{\Delta A_i \in \mathbb{C}^{n \times n}} \| [\Delta A_0, \dots, \Delta A_d] \|_F$$

subj.to $\left| \det \left(\widetilde{\mathcal{D}}(\lambda) \right) \right| \equiv 0 \text{ for } \lambda \in \partial \Omega$

Outline of the method

• Choose

$$f(\lambda) = \det\left(\widetilde{\mathcal{D}}(\lambda)\right);$$

• Choose as Ω a complex disk;

Choice of the points

Theorem (Trefethen et al. 2014): Let f be analytic in $\Omega_R = \{z \in \mathbb{C} : |z| \leq R\}$ for some R > 1. Consider p(z)polynomial interpolant of degree m - 1 at the points

$$z_k = e^{\frac{2\pi \mathbf{i}}{m}j}, \quad j = 1, \dots, m.$$

Then for any ρ with $1 < \rho < R$, the polynomial approximation has accuracy

$$|p(z) - f(z)| = \left\{ egin{array}{c} O\left(
ho^{-m}
ight), & |z| \leq 1, \ O\left(|z|^m \,
ho^{-m}
ight), & 1 \leq |z| <
ho. \end{array}
ight.$$

Where:

$$|p(z) - f(z)| \approx \left| \frac{1}{2\pi \mathbf{i}} \int_{\zeta \in \partial \Omega_R} \zeta^{-\mathbf{m}-1} f(\zeta) \, d\zeta \right|.$$

Outline of the method

- Choose $f(\lambda) = \det\left(\widetilde{\mathcal{D}}(\lambda)\right);$
- Choose as Ω the unit disk;
- Choose a set of points $\left\{e^{2\pi \mathbf{i}\frac{j}{m}}\right\}, \ j=1,\ldots,m.$
- Choose number *m* of points according to:

$$\left|\frac{1}{2\pi \mathbf{i}} \int_{|\zeta|=1} \zeta^{-\mathbf{m}-1} \det(\zeta) \, d\zeta\right| \le \mathrm{tol}.$$

Outline of the method

Optimization problem (discrete version):

dist =
$$\min_{\Delta A_i \in \mathbb{C}^{n \times n}} \| [\Delta A_0, \dots, \Delta A_d] \|_F$$

subj. to $\sigma_{\min} \left(\widetilde{\mathcal{D}}(\mu_j) \right) = 0$,
for $\mu_j = e^{2\pi i \frac{j}{m}}, \ j = 1, \dots, m$.

Consider $[\Delta A_0, \ldots, \Delta A_d] = \varepsilon [\Delta_0, \ldots, \Delta_d]$, of norm ε and the functional

$$G_{\varepsilon}(\Delta_0,\ldots,\Delta_d) = \frac{1}{2} \sum_{i=1}^m \sigma_{\min}^2\left(\widetilde{\mathcal{D}}(\mu_j)\right).$$

A two step method

- Inner iteration: fix the norm ε and solve the problem $G(\varepsilon) = \min_{\Delta_0,...,\Delta_d} G_{\varepsilon}(\Delta_0,...,\Delta_d);$
- Outer iteration: tune the value ε in order to find the smallest zero ε^* of $G(\varepsilon)$.

Inner iteration

Lemma: Let $\Delta_0(t), \ldots, \Delta_d(t) \in \mathbb{C}^{n \times n}$ be a smooth path of matrices, with derivatives $\dot{\Delta}_0(t), \ldots, \dot{\Delta}_d(t)$. Then $G_{\varepsilon}(\Delta_0(t), \ldots, \Delta_d(t))$ is differentiable and

$$\frac{d}{dt}G_{\varepsilon}\left(\Delta_{0},\ldots,\Delta_{d}\right)=\varepsilon\operatorname{Re}\left\langle \left[M_{0},\ldots,M_{d}\right],\left[\dot{\Delta}_{0},\ldots,\dot{\Delta}_{d}\right]\right\rangle,$$

where for $i = 0, \ldots, d$

$$M_i = \sum_{j=1}^m \sigma_j \bar{f}_i(\mu_j) u_j v_j^H,$$

where $\sigma_j = \sigma_{\min} \left(\widetilde{\mathcal{D}}(\mu_j) \right)$ and u_j, v_j are the left and right singular vectors associated with σ_j .

Here we denote: $\langle X, Y \rangle = \operatorname{trace} \left(X^H Y \right).$ 18

The (local) minimizers of the functional are the stationary points of the constrained gradient system for the functional G_{ε} :

$$\dot{\Delta}_i = -\underline{M}_i + \eta \Delta_i, \quad i = 0, \dots, d,$$

where η is chosen such that

$$\operatorname{Re}\left\langle \left[\dot{\Delta}_{0},\ldots,\dot{\Delta}_{d}\right],\left[\Delta_{0},\ldots,\Delta_{d}\right]\right\rangle =0.$$

Remark

If $m \ll n$, we have a low-rank property on M_i .

Choice of the number of support points

The number of points $m(\varepsilon)$ may change at each iteration

$$\left|\frac{1}{2\pi \mathbf{i}}\int_{|\zeta|=1}\zeta^{-\boldsymbol{m}(\boldsymbol{\varepsilon})-1}\det(\zeta,\boldsymbol{\varepsilon})d\zeta\right|\leq \mathrm{tol}.$$

Consider a subset S in $\mathbb{C}^{(d+1)n \times n}$ of matrices and $\mathcal{F}(\lambda)$ with coefficients $[A_d, \ldots, A_0] \in S$.

Structured distance to singularity

The structured distance to singularity for $\mathcal{F}(\lambda)$ is the

$$d_{\operatorname{sing}}^{\mathcal{S}}\left(\mathcal{F}(\lambda)\right) = \min\left\{ \| \left[\Delta A_d, \dots, \Delta A_0\right] \|_F \text{ such that} \\ \left[\Delta A_d, \dots, \Delta A_0\right] \in \mathcal{S} \text{ and } \mathcal{F}(\lambda) + \Delta \mathcal{F}(\lambda) \text{ is singular} \right\}.$$

A few interesting examples

Possible structures on the matrix-valued functions:

- Fixed coefficients: for a set $I \subseteq \{0, \ldots, d\}$, $|I| \le d$, we have $\Delta A_i \equiv 0, i \in I$;
- Linear structure (e.g. sparsity pattern): $\Delta A_i \in \mathcal{S}_i \subseteq \mathbb{C}^{n \times n}$;
- Collective structure: for instance palindromic properties $\{[\Delta A_d, \dots, \Delta A_0] : \Delta A_{d-i} = \Delta A_i^H, \text{ for } i = 0, \dots, d\}.$

A few interesting examples

Possible structures on the matrix-valued functions:

- Fixed coefficients: for a set $I \subseteq \{0, \ldots, d\}$, $|I| \le d$, we have $\Delta A_i \equiv 0, i \in I$;
- Linear structure (e.g. sparsity pattern): $\Delta A_i \in \mathcal{S}_i \subseteq \mathbb{C}^{n \times n}$;
- Collective structure: for instance palindromic properties $\{[\Delta A_d, \dots, \Delta A_0] : \Delta A_{d-i} = \Delta A_i^H, \text{ for } i = 0, \dots, d\}.$

The (local) minimizers of the functional are the stationary points of the ODE system:

$$\dot{\Delta}_i = -\Pi_{\mathcal{S}_i} \left(M_i \right) + \eta \Delta_i,$$

where $\Pi_{\mathcal{S}} : \mathbb{C}^{(d+1)n \times n} \mapsto \mathcal{S}$ projection onto the structure.

Delay matrix-valued function

Imposing sparsity pattern on:

$$\mathcal{D}(\lambda) = \lambda E - A - e^{-\lambda} B$$

= $-\lambda I_3 - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ a_0 & a_1 & a_2 \end{bmatrix} - e^{-\lambda} \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ b_0 & b_1 & b_2 \end{bmatrix}$

Case of matrix polynomials

Example: mirror from nlevp package:

- quartic $\lambda^4 A_4 + \ldots + \lambda A_1 + A_0;$
- size 9×9 ;
- degree of the determinant is 27;
- impose sparsity pattern.

	Max. Mod.	Th. Alg deg $= 36$	Th. Alg. deg $= 27$
Distance	4.1989×10^{-4}	4.1492×10^{-4}	4.1633×10^{-4}
Num. points	12	37	28
Time	38.89994	1.842×10^2	1.4623×10^2
Iter.	8	16	16
Max. σ_{\min}	7.1749×10^{-6}	1.1105×10^{-5}	9.9890×10^{-6}

T. Betcke, N.J. Higham, V. Mehrmann, C. Schröder, F. Tisseur. *NLEVP: A Collection of Nonlinear Eigenvalue Problems*, 2013.

Conclusions

Conclusions

- We propose a novel approach for matrix-valued functions;
- We are able to treat structured perturbations;
- The method involves a limited amount of support points;
- The method can be also employed to accelerate the computation for matrix polynomials.
- M. Gnazzo, N. Guglielmi. On the numerical approximation of the distance to singularity for matrix-valued functions. *arXiv*, 2023.
- M. Gnazzo, N. Guglielmi. Computing the closest singular matrix polynomial. *arXiv*, 2023.