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Distance to singularity

Consider a matrix-valued function in the form:
D(A) = fo(A) Ao+ f1(N) A1+ ...+ fa (A) Ag,

where A; € C"*™ and analytic functions f; : C— C,7=0,...,d.
D()) is regular if det (D(\)) £ 0, otherwise it is singular.

Given a regular function D (), we look for the

d(D) = min {|| [AAy, ..., AAg || such that

d
D(A) =) fi(A) (4 + A4;) is singular } .
=0



Motivating example

Consider a system

Ey(t) = Ay(t) + By(t — 7)

cos(mt)
y(t) = (2 B 4t2> , for t <0,

where

We consider:
§=0and § =2 x 1075,
7=1and 7 =107°.



Motivating example

Case: 7 = 1.
y(t): solution of the system with § = 0;
4(t): solution of the system with § =2 x 1075;

err(t) := ||g(t) — y(t)|| : error.
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Motivating example

Case: 7= 1077,
y(t): solution of the system with § = 0;
4(t): solution of the system with § =2 x 1076.




Motivating example

The pencil AE — A is robustly regular, that is
INeC: det(A\E— A) #0.
But we have that:

F()7) = det ()\E A Be*AT) ~ 0

For A such that |A\7| < 1, we have

A+ Be M~ A+ B= (8 L )

NO|—=



Matrix-valued function:
D) =fo(N) Ao+ fi(N)Ar+...+ fa(\) Ag, A eCV

Few examples:

Matrix polynomials D(A\) = Ag + AA; + ... + A4,

= Differential Algebraic Equations;

Matrix-valued quasi-polynomials D(A\) = AAg + e *A; + Ag
= Delay Differential Equations.

We are interested in

det (D()\)) =~ 0.
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Robust non-singularity of the problem

We consider the following measure of non-singularity

dist := min H [AA(), PN ,AAd} HF
AAie(Can

/‘v
subj.to det (Z(ﬁ; + AJ,‘),/',()\)) =0.

1=0



Robust non-singularity of the problem

We consider the following measure of non-singularity

dist := min H [AAO, PN ,AAd} HF
AAie(Can

/‘.
subj.to det (Z(Ai + AJ,V),/',-(‘)\)) =0.
i=0

Two interesting cases:

e D(\) = Z?:o M (A; + AA;), matrix polynomial
= Analysis tool: Fundamental Theorem of the Algebra;

o D(A) =% i) (Ai + AA,), with f; entire
= Analysis tool: Maximum Modulus Theorem.



Numerically singular

Consider a (suitably normalized) matrix A € C"*" and a
certain threshold d > 0, larger or equal than machine precision.
Let 01 > 09 > ... > 0, the singular values computed in finite
arithmetic. We say that r is the numerical rank of the matrix A
if

012092 ...20,>0>0,41>...20p.
Consequently, we define the matrix A numerically singular if the

numerical rank r < n.



Fundamental theorem of the algebra

The scalar polynomial det (P(\) + AP(A)) =0 if
det (P(s15) + AP(1;)) =0,

with distinct points pj, 7 =1,...,m and m > dn + 1.
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Fundamental theorem of the algebra

The scalar polynomial det (P(A) + AP(N)) =0 if
det (P(s15) + AP(1;)) =0,
with distinct points pj, 7 =1,...,m and m > dn + 1.
(discrete version):

dist = min H [AAQ,...,AAd] HF
AA;eCnxn
subj. to ,

forj=1,...,m.
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Fundamental theorem of the algebra

: consider the delay function

DA =XE—A—e B
k

~AE— A— (Z (_;A)Z) B.

1=0
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Fundamental theorem of the algebra

: consider the delay function

DA =XE—A—e B

~AE—A— ( (_?) )B.
bl
=0

It may be not clear which k£ we should use;
It may be not immediate to bound the approximation error;

A large value of k may lead to a large amount of support
points ;.
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Maximum Modulus Theorem

Choose a bounded subset €2 with boundary 90 and impose

) 0| S

where D(\) = Zf:o(Ai + AA;) fi(A). Then we get that

I}\lélgz( det (15(/\)> = 0.
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Maximum Modulus Theorem

Choose a bounded subset €2 with boundary 90 and impose

) 0| S

where D(\) = Zf:o(Ai + AA;) fi(A). Then we get that

I}\lélgz( det (15(/\)> = 0.

consider a suitable bounded subset 2 C C:

dist= min | [Ado,...,AAd ||r
AA;ECrxn
subj.to |det @p\))‘ = 0 for A € 9.
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Outline of the method

Choose

FO) = det (DO);
Choose as 2 a complex
disk;
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Choice of the points

Theorem (Trefethen et al. 2014): Let f be analytic in
Qr ={z€C:|z| <R} for some R > 1. Consider p(z)
polynomial interpolant of degree m — 1 at the points

x=em’, j=1,...,m.

)

Then for any p with 1 < p < R, the polynomial approximation

has accuracy

B O@(p™), |z <1,
Ip(2) — f(2)| = o

2"p™™), 1< 2| <p.

Where:

1

)~ SN (g [ O
R 14




Outline of the method

Choose

f() = det (D(Y));
Choose as €2 the unit
disk;

Choose a set of points
{e%ir’:}, j=1,...,m.

Choose number m of
points according to:

1

— < tol.
271 =

/ ¢ det(C) d
[¢]=1
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Outline of the method

(discrete version):
dist = min |[AAo,...,AA||p
AA»L'EC"X”

subj. to ,

.
for p; = e™m, j=1,...,m.

Consider [AAy,...,AAy] =¢e[Ay,...,Ay], of norm ¢ and the

functional
1 _
Ge (Ao, .-, Ad) = 5 > o (D(Mj)) :
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A two step method

: fix the norm ¢ and solve the problem
Ang(AO7---,Ad);
: tune the value € in order to find the

-----

smallest zero e* of G (). 7



Inner iteration

Lemma: Let Ag(t),...,Aq(t) € C™*™ be a smooth path of
matrices, with derivatives Ag(t), ..., Aq(t). Then
Ge (Ap(t), ..., Aq(t)) is differentiable and

d

2Ge (Do, Ag) = eRe ([Mo, ..., Mo, (Ao, Ad]),

where for i =0,...,d
m —
M; =) o filus)uf,
j=1

where 0; = omin (D(uj)) and wuj,v; are the left and right

singular vectors associated with o;.

Here we denote: (X,Y) = trace (XY). 18



Inner iteration

The (local) minimizers of the functional are the
of the constrained gradient system for the functional G.:

Ai:— +nl;, i=0,...,d,
where 7) is chosen such that

Re<[AO,...,Ad} ,[AO,...,Ad]>:O.

If m < n, we have a low-rank property on M;.
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Choice of the number of support points

The number of points may change at each iteration

< tol.

R
/ ¢ det(¢, €)dC

27Ti C|:1
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Structured distance to singularity

Consider a subset S in C@+1)™*™ of matrices and F(\) with
coefficients [Ay, ..., Ag] € S.

The structured distance to singularity for F(A) is the

dging (F(A)) = min {||[AAqg, ..., AAp] | F such that
[AAg,...,AAp] € S and F(X) + AF(N) is singular} .
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A few interesting examples

Possible structures on the matrix-valued functions:
Fixed coefficients: for a set I C {0,...,d}, |I| <d,
we have AA; =0, 7 € [
Linear structure (e.g. sparsity pattern): AA; € §; C C™*";

Collective structure: for instance palindromic properties

{[AAg,...,AAg]: Ady ;= AAH fori=0,...,d}.
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A few interesting examples

Possible structures on the matrix-valued functions:

: foraset I C{0,...,d}, |I| <d,
we have AA; =0, i € [;
(e.g. sparsity pattern): AA; € §; C C™*™,

. for instance palindromic properties
{[AAd,...,AAO] : AAg_; = AAE, fori = 0,...,d}.

The (local) minimizers of the functional are the
of the ODE system:

Ai = — —}—’I’/Al,

where IIg : Cldtnxn S projection onto the structure.

22



Delay matrix-valued function

Imposing sparsity pattern on:

DA =XE—-A—-e B

0 0 0 0 -1 0
=-AM;—| 0 0 0 |—-e*l 0 0 -1
ap a1 a2 bo bl b2
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Case of matrix polynomials

Example: mirror from nlevp package:

quartic A*A4 4+ ...+ AA; + Ay;
size 9 x 9;
degree of the determinant is 27,

impose sparsity pattern.

Max. Mod. | Th. Alg deg =36 | Th. Alg. deg = 27

Distance 4.1989 x 1074 4.1492 x 104 4.1633 x 104
Num. points 12 37 28

Time 38.89994 1.842 x 102 1.4623 x 102
Iter. 8 16 16

Max. omin | 7.1749 x 1076 1.1105 x 107 9.9890 x 1076

T. Betcke, N.J. Higham, V. Mehrmann, C. Schroder, F. Tisseur.
NLEVP: A Collection of Nonlinear Eigenvalue Problems, 2013. o4



Conclusions

We propose a novel approach for matrix-valued functions;
We are able to treat structured perturbations;
The method involves a limited amount of support points;

The method can be also employed to accelerate the

computation for matrix polynomials.

, N. Guglielmi. On the numerical
approximation of the distance to singularity for
matrix-valued functions. arXww, 2023.

, N. Guglielmi. Computing the closest singular
matrix polynomial. arXiv, 2023.
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