Detecting the numerical ill posedness in delay (and ordinary) differential equations

Speaker: Miryam Gnazzo (GSSI)
Joint work with: Nicola Guglielmi (GSSI)
4 April 2024

Distance to singularity

Consider a matrix-valued function in the form:

$$
\mathcal{D}(\lambda)=f_{0}(\lambda) A_{0}+f_{1}(\lambda) A_{1}+\ldots+f_{d}(\lambda) A_{d}
$$

where $A_{i} \in \mathbb{C}^{n \times n}$ and analytic functions $f_{i}: \mathbb{C} \mapsto \mathbb{C}, i=0, \ldots, d$. $\mathcal{D}(\lambda)$ is regular if $\operatorname{det}(\mathcal{D}(\lambda)) \not \equiv 0$, otherwise it is singular.

Distance to singularity

Given a regular function $\mathcal{D}(\lambda)$, we look for the distance to singularity:

$$
\begin{aligned}
& d(\mathcal{D})=\min \left\{\left\|\left[\Delta A_{0}, \ldots, \Delta A_{d}\right]\right\|\right. \text { such that } \\
& \left.\qquad \widetilde{\mathcal{D}}(\lambda)=\sum_{i=0}^{d} f_{i}(\lambda)\left(A_{i}+\Delta A_{i}\right) \text { is singular }\right\} .
\end{aligned}
$$

Motivating example

Consider a system

$$
\begin{aligned}
E \dot{y}(t) & =A y(t)+B y(t-\tau) \\
y(t) & =\binom{\cos (\pi t)}{2-4 t^{2}}, \text { for } t \leq 0
\end{aligned}
$$

where

$$
E=\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), A=\left(\begin{array}{cc}
-1+\delta & \frac{1}{2} \\
0 & -1
\end{array}\right), B=\left(\begin{array}{cc}
1+\delta & -\frac{1}{2} \\
0 & \frac{1}{2}
\end{array}\right) .
$$

We consider:

- $\delta=0$ and $\delta=2 \times 10^{-6}$;
- $\tau=1$ and $\tau=10^{-5}$.

Motivating example

Case: $\tau=1$.
$y(t)$: solution of the system with $\delta=0$;
$\tilde{y}(t)$: solution of the system with $\delta=2 \times 10^{-6}$;
$\operatorname{err}(t):=\|\tilde{y}(t)-y(t)\|:$ error.

Motivating example

Case: $\tau=10^{-5}$.
$y(t)$: solution of the system with $\delta=0$;
$\tilde{y}(t)$: solution of the system with $\delta=2 \times 10^{-6}$.

Motivating example

The pencil $\lambda E-A$ is robustly regular, that is

$$
\exists \lambda \in \mathbb{C}: \operatorname{det}(\lambda E-A) \neq 0
$$

But we have that:

$$
F(\lambda ; \tau)=\operatorname{det}\left(\lambda E-A-B e^{-\lambda \tau}\right) \approx 0
$$

For λ such that $|\lambda \tau| \ll 1$, we have

$$
A+B e^{-\lambda \tau} \approx A+B=\left(\begin{array}{cc}
0 & 0 \\
0 & -\frac{1}{2}
\end{array}\right)
$$

Examples

Matrix-valued function:

$$
\mathcal{D}(\lambda)=f_{0}(\lambda) A_{0}+f_{1}(\lambda) A_{1}+\ldots+f_{d}(\lambda) A_{d}, \quad A_{i} \in \mathbb{C}^{n \times n}
$$

Few examples:

- Matrix polynomials $\mathcal{D}(\lambda)=A_{0}+\lambda A_{1}+\ldots+\lambda^{d} A_{d}$ \Rightarrow Differential Algebraic Equations;
- Matrix-valued quasi-polynomials $\mathcal{D}(\lambda)=\lambda A_{2}+e^{-\lambda} A_{1}+A_{0}$ \Rightarrow Delay Differential Equations.

We are interested in

$$
\operatorname{det}(\mathcal{D}(\lambda)) \approx 0
$$

A few references

- R. Byers, C. He, V. Mehrmann, (1998), Where is the nearest non-regular pencil?, Linear Algebra and its Applications.
- N. Guglielmi, C. Lubich, V. Mehrmann, (2017) On the nearest singular matrix pencil, SIAM Journal on Matrix Analysis and Applications.
- F. Dopico, V. Noferini, L. Nyman, (2023) A Riemannian optimization method to compute the nearest singular pencil, arXiv.
- B. Das, S. Bora, (2023) Nearest rank deficient matrix polynomials, Linear Algebra and its Applications.

Robust non-singularity of the problem

We consider the following measure of non-singularity

$$
\begin{aligned}
\text { dist }:= & \min _{\Delta A_{i} \in \mathbb{C}^{n \times n}}\left\|\left[\Delta A_{0}, \ldots, \Delta A_{d}\right]\right\|_{F} \\
& \text { subj.to } \operatorname{det}\left(\sum_{i=0}^{k}\left(A_{i}+\Delta A_{i}\right) f_{i}(\lambda)\right) \equiv 0 .
\end{aligned}
$$

Robust non-singularity of the problem

We consider the following measure of non-singularity

$$
\begin{aligned}
\text { dist }:= & \min _{\Delta A_{i} \in \mathbb{C}^{n \times n}}\left\|\left[\Delta A_{0}, \ldots, \Delta A_{d}\right]\right\|_{F} \\
& \text { subj.to } \operatorname{det}\left(\sum_{i=0}^{k}\left(A_{i}+\Delta A_{i}\right) f_{i}(\lambda)\right) \equiv 0 .
\end{aligned}
$$

Two interesting cases:

- $\widetilde{\mathcal{D}}(\lambda)=\sum_{i=0}^{d} \lambda^{i}\left(A_{i}+\Delta A_{i}\right)$, matrix polynomial \Rightarrow Analysis tool: Fundamental Theorem of the Algebra;
- $\widetilde{\mathcal{D}}(\lambda)=\sum_{i=0}^{d} f_{i}(\lambda)\left(A_{i}+\Delta A_{i}\right)$, with f_{i} entire \Rightarrow Analysis tool: Maximum Modulus Theorem.

Numerically singular

Consider a (suitably normalized) matrix $A \in \mathbb{C}^{n \times n}$ and a certain threshold $\delta>0$, larger or equal than machine precision. Let $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n}$ the singular values computed in finite arithmetic. We say that r is the numerical rank of the matrix A if

$$
\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{r}>\delta \geq \sigma_{r+1} \geq \ldots \geq \sigma_{n}
$$

Consequently, we define the matrix A numerically singular if the numerical rank $r<n$.

Fundamental theorem of the algebra

The scalar polynomial $\operatorname{det}(\mathcal{P}(\lambda)+\Delta \mathcal{P}(\lambda)) \equiv 0$ if

$$
\operatorname{det}\left(\mathcal{P}\left(\mu_{j}\right)+\Delta \mathcal{P}\left(\mu_{j}\right)\right)=0
$$

with distinct points $\mu_{j}, j=1, \ldots, m$ and $m \geq d n+1$.

Fundamental theorem of the algebra

The scalar polynomial $\operatorname{det}(\mathcal{P}(\lambda)+\Delta \mathcal{P}(\lambda)) \equiv 0$ if

$$
\operatorname{det}\left(\mathcal{P}\left(\mu_{j}\right)+\Delta \mathcal{P}\left(\mu_{j}\right)\right)=0
$$

with distinct points $\mu_{j}, j=1, \ldots, m$ and $m \geq d n+1$.

Optimization problem (discrete version):

$$
\begin{aligned}
\text { dist }= & \min _{\Delta A_{i} \in \mathbb{C}^{n \times n}}\left\|\left[\Delta A_{0}, \ldots, \Delta A_{d}\right]\right\|_{F} \\
& \text { subj. to } \sigma_{\min }\left(\mathcal{P}\left(\mu_{j}\right)+\Delta \mathcal{P}\left(\mu_{j}\right)\right)=0 \\
& \text { for } j=1, \ldots, m
\end{aligned}
$$

Fundamental theorem of the algebra

An intuitive generalization: consider the delay function

$$
\begin{aligned}
\mathcal{D}(\lambda) & =\lambda E-A-e^{-\tau \lambda} B \\
& \approx \lambda E-A-\left(\sum_{i=0}^{k} \frac{(-\tau \lambda)^{i}}{i!}\right) B .
\end{aligned}
$$

Fundamental theorem of the algebra

An intuitive generalization: consider the delay function

$$
\begin{aligned}
\mathcal{D}(\lambda) & =\lambda E-A-e^{-\tau \lambda} B \\
& \approx \lambda E-A-\left(\sum_{i=0}^{k} \frac{(-\tau \lambda)^{i}}{i!}\right) B .
\end{aligned}
$$

A few possible issues

- It may be not clear which k we should use;
- It may be not immediate to bound the approximation error;
- A large value of k may lead to a large amount of support points μ_{i}.

Maximum Modulus Theorem

Choose a bounded subset Ω with boundary $\partial \Omega$ and impose

$$
\max _{\lambda \in \partial \Omega}|\operatorname{det}(\widetilde{\mathcal{D}}(\lambda))|=0
$$

where $\tilde{D}(\lambda)=\sum_{i=0}^{k}\left(A_{i}+\Delta A_{i}\right) f_{i}(\lambda)$. Then we get that

$$
\max _{\lambda \in \bar{\Omega}} \operatorname{det}(\widetilde{\mathcal{D}}(\lambda))=0
$$

Maximum Modulus Theorem

Choose a bounded subset Ω with boundary $\partial \Omega$ and impose

$$
\max _{\lambda \in \partial \Omega}|\operatorname{det}(\widetilde{\mathcal{D}}(\lambda))|=0
$$

where $\tilde{D}(\lambda)=\sum_{i=0}^{k}\left(A_{i}+\Delta A_{i}\right) f_{i}(\lambda)$. Then we get that

$$
\max _{\lambda \in \bar{\Omega}} \operatorname{det}(\widetilde{\mathcal{D}}(\lambda))=0
$$

Idea: consider a suitable bounded subset $\Omega \subseteq \mathbb{C}$:

$$
\begin{aligned}
\text { dist }= & \min _{\Delta A_{i} \in \mathbb{C}^{n \times n}}\left\|\left[\Delta A_{0}, \ldots, \Delta A_{d}\right]\right\|_{F} \\
& \text { subj.to }|\operatorname{det}(\widetilde{\mathcal{D}}(\lambda))| \equiv 0 \text { for } \lambda \in \partial \Omega .
\end{aligned}
$$

Outline of the method

- Choose
$f(\lambda)=\operatorname{det}(\widetilde{\mathcal{D}}(\lambda)) ;$
- Choose as Ω a complex disk;

Choice of the points

Theorem (Trefethen et al. 2014): Let f be analytic in $\Omega_{R}=\{z \in \mathbb{C}:|z| \leq R\}$ for some $R>1$. Consider $p(z)$ polynomial interpolant of degree $m-1$ at the points

$$
z_{k}=e^{\frac{2 \pi \mathbf{i}}{m} j}, \quad j=1, \ldots, m
$$

Then for any ρ with $1<\rho<R$, the polynomial approximation has accuracy

$$
|p(z)-f(z)|=\left\{\begin{aligned}
O\left(\rho^{-m}\right), & |z| \leq 1 \\
O\left(|z|^{m} \rho^{-m}\right), & 1 \leq|z|<\rho
\end{aligned}\right.
$$

Where:

$$
|p(z)-f(z)| \approx\left|\frac{1}{2 \pi \mathbf{i}} \int_{\zeta \in \partial \Omega_{R}} \zeta^{-m-1} f(\zeta) d \zeta\right|
$$

Outline of the method

- Choose

$$
f(\lambda)=\operatorname{det}(\widetilde{\mathcal{D}}(\lambda))
$$

- Choose as Ω the unit disk;
- Choose a set of points $\left\{e^{2 \pi \mathbf{i} \frac{j}{m}}\right\}, j=1, \ldots, m$.
- Choose number m of points according to:

$$
\left|\frac{1}{2 \pi \mathbf{i}} \int_{|\zeta|=1} \zeta^{-m-1} \operatorname{det}(\zeta) d \zeta\right| \leq \text { tol. }
$$

Outline of the method

Optimization problem (discrete version):

$$
\begin{aligned}
\text { dist }= & \min _{\Delta A_{i} \in \mathbb{C}^{n \times n}}\left\|\left[\Delta A_{0}, \ldots, \Delta A_{d}\right]\right\|_{F} \\
& \text { subj. to } \sigma_{\min }\left(\widetilde{\mathcal{D}}\left(\mu_{j}\right)\right)=0, \\
& \text { for } \mu_{j}=e^{2 \pi i \frac{j}{m}}, j=1, \ldots, m .
\end{aligned}
$$

Consider $\left[\Delta A_{0}, \ldots, \Delta A_{d}\right]=\varepsilon\left[\Delta_{0}, \ldots, \Delta_{d}\right]$, of norm ε and the functional

$$
G_{\varepsilon}\left(\Delta_{0}, \ldots, \Delta_{d}\right)=\frac{1}{2} \sum_{i=1}^{m} \sigma_{\min }^{2}\left(\widetilde{\mathcal{D}}\left(\mu_{j}\right)\right)
$$

A two step method

- Inner iteration: fix the norm ε and solve the problem $G(\varepsilon)=\min _{\Delta_{0}, \ldots, \Delta_{d}} G_{\varepsilon}\left(\Delta_{0}, \ldots, \Delta_{d}\right) ;$
- Outer iteration: tune the value ε in order to find the smallest zero ε^{*} of $G(\varepsilon)$.

Inner iteration

Lemma: Let $\Delta_{0}(t), \ldots, \Delta_{d}(t) \in \mathbb{C}^{n \times n}$ be a smooth path of matrices, with derivatives $\dot{\Delta}_{0}(t), \ldots, \dot{\Delta}_{d}(t)$. Then $G_{\varepsilon}\left(\Delta_{0}(t), \ldots, \Delta_{d}(t)\right)$ is differentiable and

$$
\frac{d}{d t} G_{\varepsilon}\left(\Delta_{0}, \ldots, \Delta_{d}\right)=\varepsilon \operatorname{Re}\left\langle\left[M_{0}, \ldots, M_{d}\right],\left[\dot{\Delta}_{0}, \ldots, \dot{\Delta}_{d}\right]\right\rangle
$$

where for $i=0, \ldots, d$

$$
M_{i}=\sum_{j=1}^{m} \sigma_{j} \bar{f}_{i}\left(\mu_{j}\right) u_{j} v_{j}^{H}
$$

where $\sigma_{j}=\sigma_{\min }\left(\widetilde{\mathcal{D}}\left(\mu_{j}\right)\right)$ and u_{j}, v_{j} are the left and right singular vectors associated with σ_{j}.

Here we denote: $\langle X, Y\rangle=\operatorname{trace}\left(X^{H} Y\right)$.

Inner iteration

The (local) minimizers of the functional are the stationary points of the constrained gradient system for the functional G_{ε} :

$$
\dot{\Delta}_{i}=-M_{i}+\eta \Delta_{i}, \quad i=0, \ldots, d,
$$

where η is chosen such that

$$
\operatorname{Re}\left\langle\left[\dot{\Delta}_{0}, \ldots, \dot{\Delta}_{d}\right],\left[\Delta_{0}, \ldots, \Delta_{d}\right]\right\rangle=0
$$

Remark

If $m \ll n$, we have a low-rank property on M_{i}.

Choice of the number of support points

The number of points $m(\varepsilon)$ may change at each iteration

$$
\left|\frac{1}{2 \pi \mathbf{i}} \int_{|\zeta|=1} \zeta^{-m(\varepsilon)-1} \operatorname{det}(\zeta, \varepsilon) d \zeta\right| \leq \text { tol. }
$$

Structured distance to singularity

Consider a subset \mathcal{S} in $\mathbb{C}^{(d+1) n \times n}$ of matrices and $\mathcal{F}(\lambda)$ with coefficients $\left[A_{d}, \ldots, A_{0}\right] \in \mathcal{S}$.

Structured distance to singularity

The structured distance to singularity for $\mathcal{F}(\lambda)$ is the

$$
\begin{aligned}
& d_{\text {sing }}^{\mathcal{S}}(\mathcal{F}(\lambda))=\min \left\{\left\|\left[\Delta A_{d}, \ldots, \Delta A_{0}\right]\right\|_{F}\right. \text { such that } \\
& \left.\quad\left[\Delta A_{d}, \ldots, \Delta A_{0}\right] \in \mathcal{S} \text { and } \mathcal{F}(\lambda)+\Delta \mathcal{F}(\lambda) \text { is singular }\right\} .
\end{aligned}
$$

A few interesting examples

Possible structures on the matrix-valued functions:

- Fixed coefficients: for a set $I \subseteq\{0, \ldots, d\},|I| \leq d$, we have $\Delta A_{i} \equiv 0, i \in I$;
- Linear structure (e.g. sparsity pattern): $\Delta A_{i} \in \mathcal{S}_{i} \subseteq \mathbb{C}^{n \times n}$;
- Collective structure: for instance palindromic properties $\left\{\left[\Delta A_{d}, \ldots, \Delta A_{0}\right]: \Delta A_{d-i}=\Delta A_{i}^{H}\right.$, for $\left.i=0, \ldots, d\right\}$.

A few interesting examples

Possible structures on the matrix-valued functions:

- Fixed coefficients: for a set $I \subseteq\{0, \ldots, d\},|I| \leq d$, we have $\Delta A_{i} \equiv 0, i \in I$;
- Linear structure (e.g. sparsity pattern): $\Delta A_{i} \in \mathcal{S}_{i} \subseteq \mathbb{C}^{n \times n}$;
- Collective structure: for instance palindromic properties $\left\{\left[\Delta A_{d}, \ldots, \Delta A_{0}\right]: \Delta A_{d-i}=\Delta A_{i}^{H}\right.$, for $\left.i=0, \ldots, d\right\}$.

The (local) minimizers of the functional are the stationary points of the ODE system:

$$
\dot{\Delta}_{i}=-\Pi_{\mathcal{S}_{i}}\left(M_{i}\right)+\eta \Delta_{i}
$$

where $\Pi_{\mathcal{S}}: \mathbb{C}^{(d+1) n \times n} \mapsto \mathcal{S}$ projection onto the structure.

Delay matrix-valued function

Imposing sparsity pattern on:

$$
\begin{aligned}
\mathcal{D}(\lambda) & =\lambda E-A-e^{-\lambda} B \\
& =-\lambda I_{3}-\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
a_{0} & a_{1} & a_{2}
\end{array}\right]-e^{-\lambda}\left[\begin{array}{ccc}
0 & -1 & 0 \\
0 & 0 & -1 \\
b_{0} & b_{1} & b_{2}
\end{array}\right]
\end{aligned}
$$

Case of matrix polynomials

Example: mirror from nlevp package:

- quartic $\lambda^{4} A_{4}+\ldots+\lambda A_{1}+A_{0}$;
- size 9×9;
- degree of the determinant is 27 ;
- impose sparsity pattern.

	Max. Mod.	Th. Alg deg $=36$	Th. Alg. deg $=27$
Distance	4.1989×10^{-4}	4.1492×10^{-4}	4.1633×10^{-4}
Num. points	12	37	28
Time	38.89994	1.842×10^{2}	1.4623×10^{2}
Iter.	8	16	16
Max. $\sigma_{\min }$	7.1749×10^{-6}	1.1105×10^{-5}	9.9890×10^{-6}

T. Betcke, N.J. Higham, V. Mehrmann, C. Schröder, F. Tisseur. NLEVP: A Collection of Nonlinear Eigenvalue Problems, 2013.

Conclusions

Conclusions

- We propose a novel approach for matrix-valued functions;
- We are able to treat structured perturbations;
- The method involves a limited amount of support points;
- The method can be also employed to accelerate the computation for matrix polynomials.
- M. Gnazzo, N. Guglielmi. On the numerical approximation of the distance to singularity for matrix-valued functions. arXiv, 2023.
- M. Gnazzo, N. Guglielmi. Computing the closest singular matrix polynomial. arXiv, 2023.

