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Distance to singularity

Consider a matrix-valued function in the form:

D (λ) = f0 (λ)A0 + f1 (λ)A1 + . . .+ fd (λ)Ad,

where Ai ∈ Cn×n and analytic functions fi : C 7→ C, i = 0, . . . , d.

D(λ) is regular if det (D(λ)) 6≡ 0, otherwise it is singular.

Distance to singularity

Given a regular function D (λ), we look for the distance to

singularity:

d (D) = min {‖ [∆A0, . . . ,∆Ad] ‖ such that

D̃ (λ) =

d∑
i=0

fi (λ) (Ai + ∆Ai) is singular } .
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Motivating example

Consider a system

Eẏ(t) = Ay(t) +By(t− τ)

y(t) =

(
cos(πt)

2− 4t2

)
, for t ≤ 0,

where

E =

(
0 0

1 1

)
, A =

(
−1 + δ 1

2

0 −1

)
, B =

(
1 + δ −1

2

0 1
2

)
.

We consider:

� δ = 0 and δ = 2× 10−6;

� τ = 1 and τ = 10−5.
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Motivating example

Case: τ = 1.

y(t): solution of the system with δ = 0;

ỹ(t): solution of the system with δ = 2× 10−6;

err(t) := ‖ỹ(t)− y(t)‖ : error.
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Motivating example

Case: τ = 10−5.

y(t): solution of the system with δ = 0;

ỹ(t): solution of the system with δ = 2× 10−6.
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Motivating example

The pencil λE −A is robustly regular, that is

∃λ ∈ C : det (λE −A) 6= 0.

But we have that:

F (λ; τ) = det
(
λE −A−Be−λτ

)
≈ 0

For λ such that |λτ | � 1, we have

A+Be−λτ ≈ A+B =

(
0 0

0 −1
2

)
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Examples

Matrix-valued function:

D(λ) = f0 (λ)A0 + f1 (λ)A1 + . . .+ fd (λ)Ad, Ai ∈ Cn×n

Few examples:

� Matrix polynomials D(λ) = A0 + λA1 + . . .+ λdAd

⇒ Di�erential Algebraic Equations;

� Matrix-valued quasi-polynomials D(λ) = λA2 + e−λA1 +A0

⇒ Delay Di�erential Equations.

We are interested in

det (D(λ)) ≈ 0.
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Robust non-singularity of the problem

We consider the following measure of non-singularity

dist := min
∆Ai∈Cn×n

‖ [∆A0, . . . ,∆Ad] ‖F

subj.to det

(
k∑
i=0

(Ai + ∆Ai)fi(λ)

)
≡ 0.

Two interesting cases:

� D̃(λ) =
∑d

i=0 λ
i (Ai + ∆Ai), matrix polynomial

⇒ Analysis tool: Fundamental Theorem of the Algebra;

� D̃(λ) =
∑d

i=0 fi(λ) (Ai + ∆Ai), with fi entire

⇒ Analysis tool: Maximum Modulus Theorem.
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Numerically singular

Consider a (suitably normalized) matrix A ∈ Cn×n and a

certain threshold δ > 0, larger or equal than machine precision.

Let σ1 ≥ σ2 ≥ . . . ≥ σn the singular values computed in �nite

arithmetic. We say that r is the numerical rank of the matrix A

if

σ1 ≥ σ2 ≥ . . . ≥ σr > δ ≥ σr+1 ≥ . . . ≥ σn.

Consequently, we de�ne the matrix A numerically singular if the

numerical rank r < n.
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Fundamental theorem of the algebra

The scalar polynomial det (P(λ) + ∆P(λ)) ≡ 0 if

det (P(µj) + ∆P(µj)) = 0,

with distinct points µj , j = 1, . . . ,m and m ≥ dn+ 1.

Optimization problem (discrete version):

dist = min
∆Ai∈Cn×n

‖ [∆A0, . . . ,∆Ad] ‖F

subj. to σmin (P(µj) + ∆P(µj)) = 0,

for j = 1, . . . ,m.
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Fundamental theorem of the algebra

An intuitive generalization: consider the delay function

D(λ) = λE −A− e−τλB

≈ λE −A−

(
k∑
i=0

(−τλ)i

i!

)
B.

A few possible issues

� It may be not clear which k we should use;

� It may be not immediate to bound the approximation error;

� A large value of k may lead to a large amount of support

points µi.
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Maximum Modulus Theorem

Choose a bounded subset Ω with boundary ∂Ω and impose

max
λ∈∂Ω

∣∣∣det
(
D̃(λ)

)∣∣∣ = 0,

where D̃(λ) =
∑k

i=0(Ai + ∆Ai)fi(λ). Then we get that

max
λ∈Ω̄

det
(
D̃(λ)

)
= 0.

Idea: consider a suitable bounded subset Ω ⊆ C:

dist = min
∆Ai∈Cn×n

‖ [∆A0, . . . ,∆Ad] ‖F

subj.to
∣∣∣det

(
D̃(λ)

)∣∣∣ ≡ 0 for λ ∈ ∂Ω.
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Outline of the method

� Choose

f(λ) = det
(
D̃(λ)

)
;

� Choose as Ω a complex

disk;
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Choice of the points

Theorem (Trefethen et al. 2014): Let f be analytic in

ΩR = {z ∈ C : |z| ≤ R} for some R > 1. Consider p(z)

polynomial interpolant of degree m− 1 at the points

zk = e
2πi

m
j , j = 1, . . . ,m.

Then for any ρ with 1 < ρ < R, the polynomial approximation

has accuracy

|p(z)− f(z)| =

{
O (ρ−m) , |z| ≤ 1,

O (|z|m ρ−m) , 1 ≤ |z| < ρ.

Where:

|p(z)− f(z)| ≈
∣∣∣∣ 1

2πi

�
ζ∈∂ΩR

ζ−m−1f(ζ) dζ

∣∣∣∣ .
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Outline of the method

� Choose

f(λ) = det
(
D̃(λ)

)
;

� Choose as Ω the unit

disk;

� Choose a set of points{
e2πi

j
m

}
, j = 1, . . . ,m.

� Choose number m of

points according to:
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|ζ|=1

ζ−m−1 det(ζ) dζ

∣∣∣∣∣ ≤ tol.
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Outline of the method

Optimization problem (discrete version):

dist = min
∆Ai∈Cn×n

‖[∆A0, . . . ,∆Ad]‖F

subj. to σmin

(
D̃(µj)

)
= 0,

for µj = e2πi j
m , j = 1, . . . ,m.

Consider [∆A0, . . . ,∆Ad] = ε [∆0, . . . ,∆d], of norm ε and the

functional

Gε (∆0, . . . ,∆d) =
1

2

m∑
i=1

σ2
min

(
D̃(µj)

)
.
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A two step method

� Inner iteration: �x the norm ε and solve the problem

G (ε) = min∆0,...,∆d
Gε (∆0, . . . ,∆d);

� Outer iteration: tune the value ε in order to �nd the

smallest zero ε∗ of G (ε). 17



Inner iteration

Lemma: Let ∆0(t), . . . ,∆d(t) ∈ Cn×n be a smooth path of

matrices, with derivatives ∆̇0(t), . . . , ∆̇d(t). Then

Gε (∆0(t), . . . ,∆d(t)) is di�erentiable and

d

dt
Gε (∆0, . . . ,∆d) = εRe

〈
[M0, . . . ,Md] ,

[
∆̇0, . . . , ∆̇d

]〉
,

where for i = 0, . . . , d

Mi =

m∑
j=1

σj f̄i(µj)ujv
H
j ,

where σj = σmin

(
D̃(µj)

)
and uj , vj are the left and right

singular vectors associated with σj .

Here we denote: 〈X,Y 〉 = trace
(
XHY

)
. 18



Inner iteration

The (local) minimizers of the functional are the stationary

points of the constrained gradient system for the functional Gε:

∆̇i = −Mi + η∆i, i = 0, . . . , d,

where η is chosen such that

Re
〈[

∆̇0, . . . , ∆̇d

]
, [∆0, . . . ,∆d]

〉
= 0.

Remark

If m� n, we have a low-rank property on Mi.
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Choice of the number of support points

The number of points m(ε) may change at each iteration∣∣∣∣∣ 1

2πi

�
|ζ|=1

ζ−m(ε)−1 det(ζ, ε)dζ

∣∣∣∣∣ ≤ tol.
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Figure 1: Function ε 7→ m(ε) for Example ??.
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Structured distance to singularity

Consider a subset S in C(d+1)n×n of matrices and F(λ) with

coe�cients [Ad, . . . , A0] ∈ S.

Structured distance to singularity

The structured distance to singularity for F(λ) is the

dSsing (F(λ)) = min {‖ [∆Ad, . . . ,∆A0] ‖F such that

[∆Ad, . . . ,∆A0] ∈ S and F(λ) + ∆F(λ) is singular} .
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A few interesting examples

Possible structures on the matrix-valued functions:

� Fixed coe�cients: for a set I ⊆ {0, . . . , d} , |I| ≤ d,
we have ∆Ai ≡ 0, i ∈ I;

� Linear structure (e.g. sparsity pattern): ∆Ai ∈ Si ⊆ Cn×n;
� Collective structure: for instance palindromic properties{

[∆Ad, . . . ,∆A0] : ∆Ad−i = ∆AHi , for i = 0, . . . , d
}
.

The (local) minimizers of the functional are the stationary

points of the ODE system:

∆̇i = −ΠSi (Mi) + η∆i,

where ΠS : C(d+1)n×n 7→ S projection onto the structure.
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Delay matrix-valued function

Imposing sparsity pattern on:

D(λ) = λE −A− e−λB

= −λI3 −

 0 0 0

0 0 0

a0 a1 a2

− e−λ

 0 −1 0

0 0 −1

b0 b1 b2
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Case of matrix polynomials

Example: mirror from nlevp package:

� quartic λ4A4 + . . .+ λA1 +A0;

� size 9× 9;

� degree of the determinant is 27;

� impose sparsity pattern.

Max. Mod. Th. Alg deg = 36 Th. Alg. deg = 27

Distance 4.1989× 10−4 4.1492× 10−4 4.1633× 10−4

Num. points 12 37 28

Time 38.89994 1.842× 102 1.4623× 102

Iter. 8 16 16

Max. σmin 7.1749× 10−6 1.1105× 10−5 9.9890× 10−6

T.Betcke, N.J.Higham, V. Mehrmann, C. Schröder, F.Tisseur.
NLEVP: A Collection of Nonlinear Eigenvalue Problems, 2013.
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Conclusions

Conclusions

� We propose a novel approach for matrix-valued functions;

� We are able to treat structured perturbations;

� The method involves a limited amount of support points;

� The method can be also employed to accelerate the

computation for matrix polynomials.

� M.Gnazzo, N.Guglielmi. On the numerical

approximation of the distance to singularity for

matrix-valued functions. arXiv, 2023.

� M.Gnazzo, N.Guglielmi. Computing the closest singular

matrix polynomial. arXiv, 2023.
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