## Variational-FEEC discretization for the ideal MHD <br> EAGSTIM Workshop Pisa

Valentin Carlier ${ }^{1}$, Martin Campos Pinto ${ }^{1}$
${ }^{1}$ Max Planck Institute for Plasma Physics

## Outline

## Ideal Magneto-Hydrodydamics and variational formulation

Ideal MHD
The de Rham complex
Invariants of the system

## Discretization

Discretes forms and vector fields
Discrete Lagrangian

## Numerical experiments

## Outline

Ideal Magneto-Hydrodydamics and variational formulation Ideal MHD
The de Rham complex
Invariants of the system

## Discretization

Discretes forms and vector fields
Discrete Lagrangian

## Numerical experiments

## Ideal MHD

Compressible Euler + Maxwell + Ideal Conductor + Massless electrons + Electric quasi-equilibrium $=$

$$
\begin{gather*}
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0  \tag{1a}\\
\rho \partial_{t} \mathbf{u}+\rho(\mathbf{u} \cdot \nabla \mathbf{u})+\nabla p+\mathbf{B} \times \operatorname{curl} \mathbf{B}=0  \tag{1b}\\
\partial_{t} s+\operatorname{div}(s \mathbf{u})=0  \tag{1c}\\
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})=0 \tag{1d}
\end{gather*}
$$

Have an equivalent hyperbolic form (usually used for discretizations), using variable $\mathbf{m}$ and E.

Only valid in smooth regime (conservation instead of dissipation of entropy).
No dimensionality (removed all physical constant).
We will not consider boundary conditions here.

## A few applications of MDH



## Least action principle

Consider the following Lagrangian and action ${ }^{12}$

$$
\begin{gather*}
I(\mathbf{u}, \rho, s, \mathbf{B})=\int_{\Omega} \frac{1}{2} \rho|u|^{2}-\rho e(\rho, s)-\frac{1}{2}|\mathbf{B}|^{2} d V  \tag{2a}\\
\Sigma(\mathbf{u}, \rho, s, \mathbf{B})=\int_{0}^{T} I(\mathbf{u}, \rho, s, \mathbf{B}) d t \tag{2b}
\end{gather*}
$$

solution of ideal MHD $\Longleftrightarrow \delta \Sigma=0$ under variation $\delta \mathbf{u}=\partial_{t} \mathbf{v}+[\mathbf{u}, \mathbf{v}], \delta \rho=-\operatorname{div}(\rho \mathbf{v})$, $\delta s=-\operatorname{div}(s \mathbf{v})$ and $\delta \mathbf{B}=\operatorname{curl}(\mathbf{B} \times \mathbf{v})$ with a curve in $X(\Omega)$ null at both end-points and advection equations:
$\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0, \partial_{t} s+\operatorname{div}(s \mathbf{u})=0, \partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})=0$.

[^0]
## The de Rham complex

$$
\begin{equation*}
H^{1} \xrightarrow{\text { grad }} H(\text { curl }) \xrightarrow{\text { curl }} H(\text { div }) \xrightarrow{\text { div }} L^{2} \tag{3}
\end{equation*}
$$

Take smooth subspace and use general notation :

$$
\begin{equation*}
V^{0} \xrightarrow{d^{0}} V^{1} \xrightarrow{d^{1}} V^{2} \xrightarrow{d^{2}} V^{3} \tag{4}
\end{equation*}
$$

Interior product to go the other way around (for a given vector field $\mathbf{u}$ )

Mix everything: Lie derivative $\mathcal{L}_{\mathbf{u}}^{i}=d^{i-1} i_{\mathbf{u}}^{i}+i_{\mathbf{u}}^{i+1} d^{i}$

## Theorem

$\mathcal{L}_{\mathbf{u}}$ commutes with d
General advection equations :

$$
\begin{gather*}
\partial_{t} \omega^{i}+\mathcal{L}_{\mathbf{u}}^{i} \omega^{i}=0,  \tag{6a}\\
\partial_{t} f+\mathbf{u} \cdot \operatorname{grad} f=0 .  \tag{6b}\\
\partial_{t} \mathbf{A}+\operatorname{grad}(\mathbf{A} \cdot \mathbf{u})+\operatorname{curl}(\mathbf{A}) \times \mathbf{u},  \tag{6c}\\
\partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})+\operatorname{div}(\mathbf{B}) \mathbf{u}=0 .  \tag{6d}\\
\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0, \tag{6e}
\end{gather*}
$$

## Reformulation of the variational principle

For $\mathbf{u} \in X, \rho, s \in V^{3}$ and $\mathbf{B} \in V^{2}$,

$$
\begin{gather*}
I(\mathbf{u}, \rho, s, \mathbf{B})=\int_{\Omega} \frac{1}{2} \rho|u|^{2}-\rho e(\rho, s)-\frac{1}{2}|\mathbf{B}|^{2} d V  \tag{7a}\\
\Sigma(\mathbf{u}, \rho, s, \mathbf{B})=\int_{0}^{T} I(\mathbf{u}, \rho, s, \mathbf{B}) d t \tag{7b}
\end{gather*}
$$

$\delta \Sigma=0$ under variations

$$
\begin{gather*}
\delta \mathbf{u}=\partial_{t} \mathbf{v}+[\mathbf{u}, \mathbf{v}]  \tag{8a}\\
\delta \rho=-\mathcal{L}_{\mathbf{v}} \rho  \tag{8b}\\
\delta s=-\mathcal{L}_{\mathbf{v}} s  \tag{8c}\\
\delta \mathbf{B}=-\mathcal{L}_{\mathbf{v}} \mathbf{B}
\end{gather*}
$$

$$
\begin{gather*}
\partial_{t} s+\mathcal{L}_{\mathbf{u}} s=0  \tag{9b}\\
\partial_{t} \mathbf{B}+\mathcal{L}_{\mathbf{u}} \mathbf{B}=0 \tag{9c}
\end{gather*}
$$

## Invariants of the system (1/2)

Total mass and entropy:

$$
\begin{align*}
& \partial_{t} \int_{\Omega} \rho=0,  \tag{10a}\\
& \partial_{t} \int_{\Omega} s=0, \tag{10b}
\end{align*}
$$

comes from $\int_{\Omega} \mathcal{L}_{u} \omega^{3}=0$
$\mathbf{B}$ is solenoidal (if $\operatorname{div} \mathbf{B}(t=0)=0$ ):

$$
\begin{equation*}
\operatorname{div} \mathbf{B}=0 \tag{11}
\end{equation*}
$$

comes from the commutativity of $d$ and $\mathcal{L}_{\mathbf{u}}$

## Invariants of the system (2/2)

Total Energy:

$$
\begin{equation*}
\partial_{t} \int_{\Omega} \frac{1}{2} \rho|u|^{2}+\rho e(\rho, s)+\frac{1}{2}|B|^{2} d V=0 \tag{12}
\end{equation*}
$$

Comes from the duality between the constrained variations and the advection equation for $\rho, s$ and $\mathbf{B}$.
(Write the extrema condition, integrate by part to remove the $\partial_{t} \mathbf{v}$ and choose $\mathbf{v}=\mathbf{u}$ )

## Outline

## Ideal Magneto-Hydrodydamics and variational formulation

Ideal MHD
The de Rham complex
Invariants of the system

## Discretization

Discretes forms and vector fields
Discrete Lagrangian

## Numerical experiments

## Discretization based on this variational principle

## Why ?

- Invariant/Structure preservation, ${ }^{34}$
- Long time stability,
- Easily adaptable to other models,
- No dissipation at all. ${ }^{5}$

How?

- Discrete de Rham sequence,
- Discrete interior product,
- Discrete Lagrangian and variational principle.
${ }^{3}$ A variational finite element discretization of compressible flow,
Evan S. Gawlik and Francois Gay-Balmaz, 2021.
${ }^{4}$ Structure-preserving discretization of incompressible fluids, Dmitry Pavlov et AI, 2011.
${ }^{5}$ JOREK3D : An extension of the JOREK nonlinear MHD code to stellarators,
Nikita Nikulsin et AI, 2022.


## Discrete De Rham sequence and vector fields

Forms : discrete De Rham sequence (FEEC! ${ }^{6}$ )

$$
\begin{gather*}
V^{0} \xrightarrow{\text { grad }} V^{1} \xrightarrow{\text { curl }} V^{2} \xrightarrow{\text { div }} V^{3}  \tag{14}\\
\Pi_{0} \downarrow \\
\downarrow \\
\Pi_{1} \downarrow \\
V_{h}^{0} \xrightarrow[\text { grad }]{ } \\
\Pi_{h} \downarrow \\
{ }_{\text {curl }}^{1}
\end{gather*}
$$

Consider $X_{h}$ a discrete space of Vector field and $\mathbf{u}_{h} \in X_{h}$.
Discrete interior product: $i_{h, \mathbf{u}_{h}}^{i} \omega^{i}=\Pi_{i}\left(i_{\mathbf{u}_{h}}^{i} \omega^{i}\right)$.
Discrete Lie derivative $\mathcal{L}_{h, \mathbf{u}_{h}}^{i}=d^{i-1} i_{h, \mathbf{u}_{h}}^{i}+i_{\mathbf{u}_{h}}^{i+1} d^{i}$.
Discrete Lie derivative also commutes with exterior derivative.

[^1]
## Discrete Lagrangian

For $\mathbf{u}_{h} \in X_{h}, \rho_{h}, s_{h} \in V_{h}^{3}$ and $\mathbf{B}_{h} \in V_{h}^{2}$,

$$
\begin{gather*}
I_{h}\left(\mathbf{u}_{h}, \rho_{h}, s_{h}, \mathbf{B}_{h}\right)=\int_{\Omega} \frac{1}{2} \rho_{h}\left|\mathbf{u}_{h}\right|^{2}-\rho_{h} e\left(\rho_{h}, s_{h}\right)-\frac{1}{2}\left|\mathbf{B}_{h}\right|^{2} d V,  \tag{15a}\\
\Sigma_{h}\left(\mathbf{u}_{h}, \rho_{h}, s_{h}, \mathbf{B}_{h}\right)=\int_{0}^{T} I_{h}\left(\mathbf{u}_{h}, \rho_{h}, s_{h}, \mathbf{B}_{h}\right) d t, \tag{15b}
\end{gather*}
$$

$\delta \Sigma_{h}=0$ under variations
Advection equations :

$$
\begin{gather*}
\delta \mathbf{u}_{h}=\partial_{t} \mathbf{v}_{h}+\left[\widehat{\mathbf{u}_{h}, \mathbf{v}_{h}}\right],  \tag{16a}\\
\delta \rho_{h}=-\mathcal{L}_{\mathbf{v}_{h}} \rho_{h},  \tag{16b}\\
\delta s_{h}=-\mathcal{L}_{\mathbf{v}_{h}} s_{h},  \tag{16c}\\
\delta \mathbf{B}_{h}=-\mathcal{L}_{\mathbf{v}_{h}} \mathbf{B}_{h} . \tag{16d}
\end{gather*}
$$

$$
\begin{gather*}
\partial_{t} \rho_{h}+\mathcal{L}_{\mathbf{u}_{h}} \rho_{h}=0  \tag{17a}\\
\partial_{t} s_{h}+\mathcal{L}_{\mathbf{u}_{h}} s_{h}=0  \tag{17b}\\
\partial_{t} \mathbf{B}_{h}+\mathcal{L}_{\mathbf{u}_{h}} \mathbf{B}_{h}=0 . \tag{17c}
\end{gather*}
$$

for $\mathbf{v}_{h} \in X_{h}$.

## FEM equations

The semi-discrete scheme reads: find $\mathbf{u}_{h} \in X_{h}, \rho_{h}, s_{h} \in V_{h}^{n}$ and $\mathbf{B}_{h} \in V_{h}^{n-1}$ such that

$$
\begin{array}{r}
\int_{\Omega} \partial_{t}\left(\rho_{h} \mathbf{u}_{h}\right) \cdot \mathbf{v}_{h}-\left(\rho_{h} \mathbf{u}_{h}\right) \cdot\left(\mathbf{v} \cdot \operatorname{grad} \widehat{u_{i}-\mathbf{u}} \cdot \operatorname{grad} v_{i}\right) \\
+\left(\frac{1}{2}\left|\mathbf{u}_{h}\right|^{2}-e\left(\rho_{h}, s_{h}\right)-\rho_{h} \partial_{\rho_{h}} e\left(\rho_{h}, s_{h}\right)\right) \operatorname{div} \Pi^{2}\left(\rho_{h} \mathbf{v}_{h}\right) \tag{18}
\end{array}
$$

$$
-\rho_{h} \partial_{s_{h}} e\left(\rho_{h}, s_{h}\right) \operatorname{div} \Pi^{2}\left(s_{h} \mathbf{v}_{h}\right)-\mathbf{B}_{h} \cdot \operatorname{curl} \Pi^{1}\left(\mathbf{B}_{h} \times \mathbf{v}_{h}\right)=0 \forall \mathbf{v}_{h} \in X_{h} .
$$

With the following advection equations :

$$
\begin{align*}
\partial_{t} \rho_{h}+\operatorname{div} \Pi^{2}\left(\rho_{h} \mathbf{u}_{h}\right) & =0, \\
\partial_{t} s_{h}+\operatorname{div} \Pi^{2}\left(s_{h} \mathbf{u}_{h}\right) & =0,  \tag{19}\\
\partial_{t} \mathbf{B}_{h}+\operatorname{curl} \Pi^{1}\left(\mathbf{B}_{h} \times \mathbf{u}_{h}\right) & =0 .
\end{align*}
$$

Preservation at the semi-discrete level of all the previously mentioned invariants.

## Energy preserving time discretization

$$
\begin{align*}
& \left.\int_{\Omega} \frac{\rho_{h}^{n+1} \mathbf{u}_{h}^{n+1}-\rho_{h}^{n} \mathbf{u}_{h}^{n}}{\Delta t} \cdot \mathbf{v}_{h}-\sum_{i=1}^{n} \rho_{h}^{n+\frac{1}{2}} \mathbf{u}_{h}^{n+\frac{1}{2}, i} \cdot\left(\mathbf{u}_{h}^{n+\frac{1}{2}} \cdot \nabla \mathbf{v}_{h}^{i}-\mathbf{v}_{h} \cdot \nabla \mathbf{u}_{h}^{n+\frac{1}{2}, i}\right)\right) \\
& +\left(\frac{\mathbf{u}_{h}^{n} \cdot \mathbf{u}_{h}^{n+1}}{2}-\frac{1}{2}\left(\frac{\rho_{h}^{n+1} e\left(\rho_{h}^{n+1}, s_{h}^{n+1}\right)-\rho_{h}^{n} e\left(\rho_{h}^{n}, s_{h}^{n+1}\right)}{\rho_{h}^{n+1}-\rho_{h}^{n}}+\frac{\rho_{h}^{n+1} e\left(\rho_{h}^{n+1}, s_{h}^{n}\right)-\rho_{h}^{n} e\left(\rho_{h}^{n}, s_{h}^{n}\right)}{\rho_{h}^{n+1}-\rho_{h}^{n}}\right)\right) \operatorname{div} \Pi\left(\rho_{h}^{n+\frac{1}{2}} \mathbf{v}_{h}\right) \\
& -\frac{1}{2}\left(\frac{\rho_{h}^{n+1} e\left(\rho_{h}^{n+1}, s_{h}^{n+1}\right)-\rho_{h}^{n+1} e\left(\rho_{h}^{n+1}, s_{h}^{n}\right)}{s_{h}^{n+1}-s_{h}^{n}}+\frac{\rho_{h}^{n} e\left(\rho_{h}^{n}, s_{h}^{n+1}\right)-\rho_{h}^{n} e\left(\rho_{h}^{n}, s_{h}^{n}\right)}{s_{h}^{n+1}-s_{h}^{n}}\right) \operatorname{div} \Pi\left(s_{h}^{n+\frac{1}{2}} \mathbf{v}_{h}\right) \\
&  \tag{20}\\
& -B_{h}^{n+\frac{1}{2}} \cdot \operatorname{curl} \Pi\left(B_{h}^{n+\frac{1}{2}} \times \mathbf{v}_{h}\right) \forall \mathbf{v}_{h} \in\left(V_{h}^{0}\right)^{m},
\end{align*}
$$

$$
\begin{gather*}
\frac{\rho_{h}^{n+1}-\rho_{h}^{n}}{\Delta t}+\operatorname{div} \Pi\left(\rho_{h}^{n+\frac{1}{2}} \mathbf{u}_{h}^{n+\frac{1}{2}}\right)=0,  \tag{21}\\
\frac{s_{h}^{n+1}-s_{h}^{n}}{\Delta t}+\operatorname{div} \Pi\left(s_{h}^{n+\frac{1}{2}} \mathbf{u}_{h}^{n+\frac{1}{2}}\right)=0,  \tag{22}\\
\frac{B_{h}^{n+1}-B_{h}^{n}}{\text { PRIL ST } \Delta t^{2}}+\operatorname{curl} \Pi\left(B_{h}^{n+\frac{1}{2}} \times \mathbf{u}_{h}^{n+\frac{1}{2}}\right)=0, \tag{23}
\end{gather*}
$$

## Outline

## Ideal Magneto-Hydrodydamics and variational formulation

Ideal MHD
The de Rham complex
Invariants of the system

## Discretization

Discretes forms and vector fields
Discrete Lagrangian

Numerical experiments

## Implementation details

Tensor product splines spaces.

$$
S_{p+1} \otimes S_{p+1} \otimes S_{p+1} \xrightarrow{\text { grad }}\left(\begin{array}{c}
S_{p} \otimes S_{p+1} \otimes S_{p+1} \\
S_{p+1} \otimes S_{p} \otimes S_{p+1} \\
S_{p+1} \otimes S_{p+1} \otimes S_{p}
\end{array}\right) \xrightarrow{\text { curl }}\left(\begin{array}{c}
S_{p+1} \otimes S_{p} \otimes S_{p} \\
S_{p} \bigotimes S_{p+1} \otimes S_{p} \\
S_{p} \otimes S_{p} \otimes S_{p+1}
\end{array}\right) \xrightarrow{\text { div }} S_{p} \otimes S_{p} \otimes S_{p}
$$

$X_{h}=\left(V_{h}^{0}\right)^{3}$
Projectors are interpolation/histopolation projections.
Implemented using the psydac library ${ }^{7}$

[^2]
## Taylor-Green Vortex

Barotropic Euler, $e(\rho)=\frac{1}{2} \rho$.
$\Omega=[0, \Pi]^{2}$ periodic boundary conditions.



Figure: $p=3, n_{c}=128$

## Taylor-Green Vortex

Barotropic Euler, $e(\rho)=\frac{1}{2} \rho$.
$\Omega=[0, \Pi]^{2}$ periodic boundary conditions.



Figure: $p=3, n_{c}=128$

## Taylor-Green Vortex

Barotropic Euler, $e(\rho)=\frac{1}{2} \rho$.
$\Omega=[0, \Pi]^{2}$ periodic boundary conditions.



Figure: $p=3, n_{c}=128$

## Taylor-Green Vortex

Barotropic Euler, $e(\rho)=\frac{1}{2} \rho$.
$\Omega=[0, \Pi]^{2}$ periodic boundary conditions.



Figure: $p=3, n_{c}=128$





Figure: Numerical evolution of the claimed invariant for a coarse and a finer discretization

## Barotropic Kelvin-Helmholtz instability



Fully compressible $\left(e(\rho, s)=\rho^{\gamma-1} \exp (s / \rho)\right)$ Kelvin-Helmholtz instability
Reversibility test


Fully compressible $\left(e(\rho, s)=\rho^{\gamma-1} \exp (s / \rho)\right)$ Kelvin-Helmholtz instability
Reversibility test


Fully compressible $\left(e(\rho, s)=\rho^{\gamma-1} \exp (s / \rho)\right)$ Kelvin-Helmholtz instability
Reversibility test


Fully compressible $\left(e(\rho, s)=\rho^{\gamma-1} \exp (s / \rho)\right)$ Kelvin-Helmholtz instability
Reversibility test


Fully compressible $\left(e(\rho, s)=\rho^{\gamma-1} \exp (s / \rho)\right)$ Kelvin-Helmholtz instability
Reversibility test


## Rayleigh-Taylor Instability



## Rayleigh-Taylor Instability



## Rayleigh-Taylor Instability



## Rayleigh-Taylor Instability



## Rayleigh-Taylor Instability


| VALENTIN CARLIER, MARTIN CAMPOS PINTO I APRIL 5TH, 2024

## Alven Wave



Figure: Plot of $B_{z}$ and $B_{\perp}=\cos \alpha B_{y}-\sin \alpha B_{x}$ at $t=75$ (after 75 periods of the wave), cuts at $y=0$ with a coarse discretization $(N=16)$. The squares are the reference at $t=0$ and the crosses are the result at $t=75$

## Orszag-Tang Vortex



## Orszag-Tang Vortex



## Orszag-Tang Vortex



## Conclusion and perspectives

-Alternative method with nice theoretical properties.
-Good results on academic tests cases.
-In implementation in an HPC code (struphy) to test on real physically relevant configuration (Tokamaks/Stelerators).
-To be coupled with kinetic solver for more physics.
-Small dissipation to be added because real life is not ideal.
-arXiv:2402.02905

## Supplementary slides

## Lagrangian POV for MHD

$\Omega \subset \mathbf{R}^{n}, D(\Omega)$ : set of diffeomorphisms (smooth bijection) of $\Omega$, $X(\Omega)$ : set of vector fields of $\Omega$.
Evolution of a plasma in $\Omega$ : curve $\left(\phi_{t}\right)$ in $D(\Omega)$

- $\phi_{t}(x)$ : position at time $t$ of the fluid particle that was located at $x$ at $t=0$.
- $\partial_{t} \phi_{t}(x)$ : velocity at time $t$ of the particle that was in $x$ at $t=0$.
- Classic (eulerian) velocity field $\mathbf{u}(x, t)=\left(\partial_{t} \phi_{t}\right) \circ \phi_{t}^{-1}$.

The other fields are then transported (not as functions but as differential forms) : $\rho\left(t, \phi_{t}(x)\right)=\rho(0, x) / \operatorname{det}\left(D \phi_{t}(x)\right)$
$s\left(t, \phi_{t}(x)\right)=s(0, x) / \operatorname{det}\left(D \phi_{t}(x)\right)$
$\mathbf{B}\left(t, \phi_{t}(x)\right)=D \phi_{t}(x) \mathbf{B}(0, x) / \operatorname{det}\left(D \phi_{t}(x)\right)$

## Variational formulation in Lagragian POV

Consider the following functional (Lagrangian) on $D(\Omega)$, for a given $\rho_{0}, s_{0}, \mathbf{B}_{0}$

$$
\begin{equation*}
L\left(\phi, \partial_{t} \phi\right)=\int_{\Omega} \frac{1}{2} \rho_{0}\left|\partial_{t} \phi\right|^{2}-\rho_{0} e\left(\frac{\rho_{0}}{\operatorname{det}\left(D \phi_{t}(x)\right)}, \frac{s_{0}}{\operatorname{det}\left(D \phi_{t}(x)\right)}\right)-\frac{1}{2 \operatorname{det}\left(D \phi_{t}(x)\right)}\left|D_{\phi} \mathbf{B}_{0}\right|^{2} d V . \tag{24}
\end{equation*}
$$

And its corresponding action :

$$
\begin{equation*}
S\left(\phi, \partial_{t} \phi\right)=\int_{0}^{T} L\left(\phi(t), \partial_{t} \phi(t)\right) d t \tag{25}
\end{equation*}
$$

## Theorem

Solution to the ideal MHD equations correspond to extremizers of $S$.

## Lagrangian reduction

Change of variable :
$\mathbf{u}=\left(\partial_{t} \phi_{t}\right) \circ \phi_{t}^{-1}$,
$\rho=\left(\rho_{0} / \operatorname{det}\left(D \phi_{t}\right)\right) \circ \phi_{t}^{-1}$,
$s=\left(s_{0} / \operatorname{det}\left(D \phi_{t}\right)\right) \circ \phi_{t}^{-1}$,
$\mathbf{B}=\left(D \phi_{t} \mathbf{B}_{0} / \operatorname{det}\left(D \phi_{t}\right)\right) \circ \phi_{t}^{-1}$

$$
\begin{gather*}
I(\mathbf{u}, \rho, s, \mathbf{B})=\int_{\Omega} \frac{1}{2} \rho|u|^{2}-\rho e(\rho, s)-\frac{1}{2}|\mathbf{B}|^{2} d V  \tag{26a}\\
\Sigma(\mathbf{u}, \rho, s, \mathbf{B})=\int_{0}^{T} I(\mathbf{u}, \rho, s, \mathbf{B}) d t \tag{26b}
\end{gather*}
$$

$\delta S=0$ under free variation of $\phi \Longleftrightarrow \delta \Sigma=0$ under variation $\delta \mathbf{u}=\partial_{t} \mathbf{v}+[\mathbf{u}, \mathbf{v}]$, $\delta \rho=-\operatorname{div}(\rho \mathbf{v}), \delta s=-\operatorname{div}(s \mathbf{v})$ and $\delta \mathbf{B}=\operatorname{curl}(\mathbf{B} \times \mathbf{v})$ with $\mathbf{v}=\delta \phi \circ \phi^{-1}$, curve in $X(\Omega)$ null at both end-points. We also recover the advection equations :
$\partial_{t} \rho+\operatorname{div}(\rho \mathbf{u})=0, \partial_{t} s+\operatorname{div}(s \mathbf{u})=0, \partial_{t} \mathbf{B}+\operatorname{curl}(\mathbf{B} \times \mathbf{u})=0$.

## Temporary page!

ATEX was unable to guess the total number of pages correctly. As there was some unprocessed data that should have been added to the final page this extra page has added to receive it.
If you rerun the document (without altering it) this surplus page will go away, beca ATEX now knows how many pages to expect for this document.


[^0]:    ${ }^{1}$ Lagrangian and Hamiltonian methods in magnetohydrodynamics, William A. Newcomb, 1961.
    ${ }^{2}$ Topological methods in hydrodynamics, Vladimir I. Arnold and Boris A. Khesin, 2008.

[^1]:    ${ }^{6}$ Finite element exterior calculus, Douglas N. Arnold, 2018.

[^2]:    ${ }^{7}$ PSYDAC: a high-performance IGA library in Python, Yaman Guclu et AI, 2022.

