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Valued fields
Let K be a field and G a totally ordered abelian group. A valuation
over K is a surjective map

v : K −→ G ∪ {∞}

satisfying the following conditions:
v(a) = ∞ ⇐⇒ a = 0;
v(ab) = v(a) + v(b);
v(a + b) ≥ min{v(a), v(b)}.

O = {x ∈ K | v(x) ≥ 0} is the valuation ring. It is a local ring with
unique maximal ideal M = {x ∈ K | v(x) > 0}. The quotient O/M = k
is the residue field of the valuation v .

Cases:
1. char K = char k = 0;
2. char K = 0, char k = p;
3. char K = char k = p.
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Examples

1. Let p be a prime. The field of p-adic numbers

Qp =

a =
∞∑

i≥k

aipi | k ∈ Z ,ai ∈ {0, . . . ,p − 1}


with the valuation vp(a) = min{i |ai ̸= 0} (the p-adic valuation) with
values in Z and residue field Fp.

2. Let k be a field and G an ordered abelian group. The valued field
of generalized power series (or Hahn field)

k((G)) =

a =
∑
g∈G

ag tg |ag ∈ k , for all g ∈ G and supp(a) is well ordered


with the valuation vt(a) = min{g |ag ̸= 0} (the t-adic valuation) with
values in G and residue field k .
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Valued fields

Definition
A valued field is henselian if its valuation extends uniquely to every
algebraic extension.

Remark. (Qp, vp) is henselian.

Theorem (Hensel’s Lemma)

Suppose K is a pseudo-complete valued field, then it is henselian.

Definition
Let K be a valued field. We say that K is finitely ramified if
char(k) = p and |{v(x) : 0 < v(x) ≤ v(p)}| = e < ∞. In particular, if
e = 1 the field is unramified. The element with minimal positive
valuation is called uniformizer.
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Model completeness for hens vf (0,p) valued in a Z-group
Model completeness for hens vf (0,p) valued in an oag with finite spines
Model completeness for hens vf (0,p) valued in an oag with spine of order type ω∗ and no colors

AKE - equicharacteristic zero

Consider Lrings = {+, ·,0,1}, Loags = {+,0,≤}, and
Lvf = (LRings,Loags,Lrings, v , res).

Theorem (Ax-Kochen-Ershov principle)

Let (K1, v1), (K2, v2) be two henselian valued field whose residue
fields k1, k2 have characteristic 0 and let G1,G2 be their value groups.
Then

K1 ≡vf K2 iff k1 ≡rings k2 and G1 ≡oag G2

Theorem (Ax-Kochen-Ershov principle (⪯-version))

Let (K1, v1), (K2, v2) be two henselian valued field whose residue
fields k1, k2 have characteristic 0 and let G1,G2 be their value groups.
Then

K1 ⪯vf K2 iff k1 ⪯rings k2 and G1 ⪯oag G2
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AKE - mixed characteristic

Theorem (Bélair)

Let (K1, v1), (K2, v2) be two unramified henselian valued field with
perfect residue fields k1, k2 and let G1,G2 be their value groups. Then

K1 ⪯vf K2 iff k1 ⪯rings k2 and G1 ⪯oag G2

Theorem (Anscombe-Jahnke)

Let (K1, v1), (K2, v2) be two unramified henselian valued field with
arbitrary residue fields k1, k2 and let G1,G2 be their value groups.
Then

K1 ⪯vf K2 iff k1 ⪯rings k2 and G1 ⪯oag G2

Question: Does the transfer hold for valued fields with (finite)
ramification? Answer: In general, no.
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Z-groups

Definition
An ordered abelian group is called a Z-group if it is elementarily
equivalent to Z as an ordered abelian group.

Proposition

The theory of Z as an ordered abelian group has quantifier elimination
in the Presburger language Lpres = {+,0,1,≤,≡m}m∈N, where 1 is a
constant for the minimal positive element and a ≡m b iff a − b ∈ mZ.
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Theorem (Derakhshan-Macintyre)

Let K be a Henselian valued field of mixed characteristic (0,p) with
finite ramification e ≥ 1. Suppose the value group of K is a Z-group. If
the theory of the residue field k is model complete in the language of
rings, then the theory of K is model complete in the language of rings.
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Some observations

(i) let k be a field. If Th(k) is model complete in Lrings, then k is
perfect.

(ii) let G be a Z-group, then G/Z is a divisible ordered abelian group.
(iii) Let K be an henselian valued field of mixed characteristic (0,p)

and ramification index e, and let n > e be an integer coprime with
p. Then the valuation ring is existentially definable by the formula

∃y(1 + pxn = yn),

and the maximal ideal is existentially definable by the formula

∃y(1 +
1
p

xn = yn).
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Sketch of the proof

Let (K1, v1), (K2, v2) |= Th(K , v) such that K1 ⊆ K2. Claim:
(K1, v1) ⪯ (K2, v2) in Lrings.

Step 1. Assume K1,K2 ℵ1-saturated;

Step 2. By (iii), (K1, v1) ⊆ (K2, v2);

Step 3. Coarsening and reduction to the equicharacteristic 0 case: by
AKE and (ii) if K̊1 ⪯ K̊2, then K̇1 ⪯ K̇2;

Step 4. By Bèlair’s theorem, if k1 ⪯ k2 then W (k1) ⪯ W (k2), where
W (ki) is the Witt ring of ki , i = 1,2.

Step 5. For i = 1,2 and an uniformizer π ∈ K1 ⊆ K2, interpret
K̊i := W (ki)(π) into W (ki). Thus K1 ⪯ K2 as fields. By (iii), K1 ⪯ K2 as

valued fields in Lrings.
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Oags with finite spines

Let G be an OAG. For each positive integer n we recall the definition
of the spine Sn:

Definition

For n ∈ N and a ∈ G \ nG, let Ha be the largest convex subgroup of G
such that a /∈ Ha + nG; set Ha = 0 if a ∈ nG. Define Sn := G/ ∼, with
a ∼ a

′
iff Ha = Ha′ . and let sn : G −→ Sn be the canonical projection.

For α = sn(a) ∈ Sn, define Hα := Ha. Since the system of convex
subgroups of an ordered abelian group are linearly ordered, Sn is an
interpretable set linearly ordered by α ≤ α′ if Hα ⊆ Hα′ . The structure
(Sn, <) is called the n-spine of G.
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Oags with finite spines

Definition

If G is an OAG such that for each n ∈ N, |Sn| is finite, G is said to
have finite spines.

Remark. All the Hα are definable in Loag and, moreover, if G is a
group with finite spines, then

{
Hα|α ∈ Sn, n ∈ N

}
are all the

definable convex subgroups of G.
=⇒ G has only finitely or countably many definable convex subgroups
that we denote with (Hi)i∈I , where I is a finite or countable set of
indexes.
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QE

Proposition (Halevi-Hasson/Farré)

Let G be an ordered abelian group with finite spines and let {Hi}i∈I
be its definable convex subgroups for some I finite or countable. Then
G has quantifier elimination in the the language:

L = Loag ∪ {(x =Hi y + jG/Hi )i∈I,j∈N, (x ≡Hi
m y + jG/Hi )i∈I,j∈Z,m∈N}

where jG/Hi is j times the minimal positive element of the quotient
G/Hi , if it exists, 0 otherwise.
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Model completeness

Proposition (D.M.)

Let G be an ordered abelian group with finite spines and let {Hi}i∈I
be its definable convex subgroups. Then G is model complete in the
language:

L = {0,+,−,≤, (jci + Hi)j=0,1;i∈I},

where ci is a representative for the minimal element of the quotient
G/Hi if it is discrete, 0 otherwise.
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Model completeness with value group with finite
spines

Theorem (D.M.)

Let K be an Henselian valued field of mixed characteristic (0,p), finite
ramification e ≥ 1, and value group G with finite spines. If the theory
of the residue field k is model complete in the language of rings, then
the theory of K is model complete in the language
L = {0,+, ·,1,Ai,j}j=0,1;i∈I where Ai,j is a predicate such that

AK
i,j = {a ∈ K |v(a) = jcG

i mod Hi},

where the (Hi)i∈I are the definable convex subgroups of G and ci is a
representative for the minimal element of the quotient G/Hi if it is
discrete, 0 otherwise.
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Proof

Assume K1,K2 ℵ1-saturated. Note that:
G1 ⪯ G2 implies G1/⟨1G1⟩conv ⪯ G2/⟨1G2⟩conv ;
AKE in the equicharacteristic 0 case obtained by coarsening
holds resplendently considering an expansion of the language of
groups;
the valuation is still ∃ and ∀-definable by the same formula;
if (Hi)i∈I is an enumeration of the definable convex subgroups of
G, it suffices to add predicates Ai,j for j = 0,1 to Lring to have
model completeness in a one sorted language.
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Example. Hahn series in one variable
Consider the field of Hahn series Qp((tZ)) and the valuation

val : Qp((tZ)) −→ Z× Z

such that

Oval = {x |val(x) ≥ 0} = {x |vt(x) > 0 or vt(x) = 0 ∧ vp(act(x)) ≥ 0} .

By the Theorem, Th((Qp((tZ)), val)) is model complete in the
language of rings together with two predicates A0,A1 such that

AQp((tZ))
0 = {x | val(x) ∈ {0}+ Z}

=
{

x | x =
∑

i≥0 ai t i ,a0 ̸= 0
}
= Qp + (t)>0.

AQp((tZ))
1 = {x | val(x) = (1,0) mod ({0}+ Z)}

=
{

x | x =
∑

i≥1 ai t i ,a1 ̸= 0
}
= (t)>0.
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Example. Hahn series with many variables
We can consider the valuation

valn : Qp((tZ1 )) . . . ((t
Z
n )) −→

n+1⊕
i=1

Z

such that

Ovaln =
n⋃

i=0

O i ,

where

On = {x | vtn(x) > 0}
On−1 = {x | vtn(x) = 0 ∧ vtn−1(actn(x)) > 0}

...
O0 = {x | vtn(x) = 0 ∧ vtn−1(actn(x)) = 0 ∧ . . .

∧vt1(act2(. . . (actn(x)))) = 0 ∧ vp(act1(. . . (actn(x))..)) > 0}
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Example. Hahn series with many variables

By the Theorem, the theory of the valued field
K = (Qp((tZ1 )) . . . ((t

Z
n )), valn) is model complete in the language of

rings together with predicates Ai,j , i = 1, . . . ,n, j = 0,1, such that

AK
i,0 = {x ∈ K | valn(x) ∈ Hi}

= {x ∈ K | x ∈ O i ∧ vti (acti+1(. . . (actn(x))..)) = 0}.

AK
i,1 = {x ∈ K | valn(x) = cG

i mod Hi}
= {x ∈ K | x ∈ O i ∧ vti (acti+1(. . . (actn(x))..)) = 1}.
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The theory of the lexicographic sum of Z

Example. Assume that (Gγ)γ∈Γ is a family of non-trivial archimedean
ordered abelian groups, where (Γ, <) is an ordered set. Consider the
Hahn product

H = {f ∈
∏
γ∈Γ

Gγ : f has well ordered support}.

Then the induced structure on the spine of H is (Γ, <,Cϕ)ϕ∈Loag ,
where Cϕ are unary predicates.
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QE

Let L be the language consisting of
the main sort G with +,−,0, <,≡m (m ∈ N);
an auxiliary sort Γ with <,0,∞, s : Γ −→ Γ;
valn : G −→ Γ (n ∈ N,n ̸= 1),
an unary predicate =• k• on G for each k ∈ Z \ {0},
an unary predicate ≡•

m k• on G for each
m ≥ 2 and k ∈ {1, . . . ,m − 1}.
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QE

Fact
Let G be an oag with spine of order type ω∗ and no colors. Then the
theory of G has quantifier elimination in L, where

Γ = ω∗ ∪ {∞},
s(n) = n + 1,
for every a ∈ G, valn(a) := minsupp(a mod nG) if a /∈ nG,
valn(a) := ∞ otherwise (or equivalently valn(a) is the index i of
the largest convex subgroup Hi such that a /∈ Hi + nG),
for every a ∈ G, a =• k• if a + Hi is k times the minimal element
of G/Hi for some i ∈ G,
for every a ∈ G, a ≡•

m k• if a + Hi is congruent modulo m to k
times the minimal element of G/Hi for some convex subgroup Hi .
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Model completeness

Proposition (D.M.)

Let G be an oag with spine of order type ω∗ and no colors. Then the
theory of G is model complete in the one sorted language L
consisting of

+,−,0, <,
for every n,m ∈ N a relation symbol |n,m,
for every n,m ∈ N a binary predicate sn,m,
an unary predicate =• 1•

where
x |n,my ⇐⇒ valn(x) ≤ valm(y),
sn,m(x , y) ⇐⇒ valm(y) = s(valn(x),
for every a ∈ G, a =• 1• if a + Hi is the minimal element of G/Hi
for some convex subgroup Hi .
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Model completeness with value group an oag with
spine of order type ω∗ and no colors

Theorem (D.M.)

Let K be an Henselian valued field with the same properties and
value group an oag G with spine of order type ω∗ and no colors. If
Th(k) is m.c. in Lrings, then Th(K ) is m.c. in Lrings together with

for every n,m ∈ N a relation symbol ||n,m,
for every n,m ∈ N a binary predicate $n,m,
an unary predicate A,

where
for every x , y ∈ K , x ||n,my ⇐⇒ valn(v(x)) ≤ valm(v(y)),
for every x , y ∈ K , $(x , y) ⇐⇒ valm(v(y)) = s(valn(v(x))),
AK = {x ∈ K | v(x) =• 1•}.
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Example infinite many variables

This language gives model completeness for the following valued
field. Consider the field of Hahn series over Qp in infinitely many
indeterminates

K =
⋃
n∈N

Qp((tZ1 )) . . . ((t
Z
n )).

We can define, from the valuations valn over Qp((tZ1 )) . . . ((t
Z
n )), a

valuation val∞ over K with values in
⊕

i<ω∗ Z, such that

Oval∞ =
⋃
n∈N

Ovaln .
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