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We are interested in the numerical solution of the multiterm tensor least squares problem
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tensors with d dimensions (or modes), while Aé-i) € R"*™i foreveryi = 1,...,£and j = 1,...,d. The
symbol x; with j = 1,...,d denotes the j-mode product of a tensor times a matrix. We are interested in
the Tucker and Tensor-Train formats. Least squares tensor (and matrix) formulations have emerged in recent
literature from different applications, including the numerical solution of PDEs, data science problems such
as dictionary learning [1,2], control systems. The problem is challenging for the absence of direct methods
that can efficiently handle multiple addends in tensorial form. In particular, the problem is extremely memory
demanding even for modest values of each mode size, for large /.

In our presentation we will propose an implementation of Truncated Tensor-oriented LSQR, first introduced in
vector form in [3] and studied in the matrix version in [6], and illustrate the potential of these new approaches
on problems stemming from the

discretization of multidimensional PDEs and from tensor Dictionary Learning.
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