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Consider the affine rank minimization problem [6] defined as
\begin{equation}
\begin{aligned}
\min & \quad \text{rank}(X) \\
\textrm{s.t.} & \quad \mathcal{C}_\mathcal{A} (X) = b,
\end{aligned}
\tag{1}
\end{equation}
whereX ∈ Rn1×n2 is a matrix, and linear map CA : Rn1×n2 → Rm and vector b ∈ Rm are given.
This problem appears in diverse fields including system identification and control, Euclidean embedding, col-
laborative filtering, and image reconstruction.

Given two sets A and B with A ∩B ̸=
varnothing, a feasibility problem consists in
\begin{equation}
\textrm{find} \ x \in A \cap B.
\tag{2}
\end{equation}

Problem (1) is a nonconvex optimization problem due to rank function, and it can be reformulated as (2)
considering:
\begin{align}
A &= \{ X \ | \ \mathcal{C}_\mathcal{A} (X) = b \} \\
B &= \{ X \ | \ \text{rank}(X) \le r \},
\end{align}
where the rank r is known in advance.

In the 50s, the Alternating Projection Method (APM) was proposed by von Neumann [4] for solving (2) when
A,B are linear subspaces. It consists in the simple idea of projecting alternately onto A and B until the
generated sequence converges to a point in the intersection. Formally, given y0 ∈ B, we can define APM’s
iteration as follows:
\begin{equation}
\begin{cases}
x^k &\in P_A (y^{k-1}) \\
y^k &\in P_B (x^{k})
\end{cases}
\quad k = 1, \dots
\tag{3}
\end{equation}
where PA, PB are projection operators onto A and B, respectively.

The method converges when A,B are convex [1]. When one of the sets is nonconvex, APM converges only
locally and further hypothesis on the sets and their intersection are required [5]. The difficulty comes from
the projection onto the nonconvex set, which usually is unknown in closed form. To overcome this issue,
inexact AP methods have been also proposed [2].

Many works in this field of literature, including those cited above, agree in considering the particular case
of rank set an “easy” problem, despite the nonconvexity of Cr . Indeed, from the Eckart-Young theorem, the
projection of a matrix X onto Cr is the SVD of X truncated to the first r singular values. Then, PCr is
considered to be known in exact and closed form [2].

From a numerical perspective, however, it is well known that the SVD of a matrix, as well as its truncated
version, is computed through iterative procedures that can be computationally expensive, especially when
dealing with large matrices and that unavoidably truncation errors that, to the best of our knowledge, have
not been considered in previous studies of methods dealing with the rank set, where the projection is assumed
to be exact.



Additionally, in a more general setting, methods employing inexact projections adopt criteria that often in-
volve the geometry of the sets without providing a thorough analysis of their implementation and efficiency
from a numerical standpoint.

In this work, we introduce the inexact Regularized APM (iRAPM) that accounts for the inaccuracy of the nu-
merical approximation of the truncated SVD and which is based on inexactness criteria that can be efficiently
implemented.

Our inexactness criteria rely on a (problem dependent) subprocedure to replace projection onto the “hard” set.
In the particular case of (2) with the rank set, we show that the procedure can be defined starting from the
Lanczos algorithm for truncated SVD. Indeed, we show that the new criteria can be checked using byproduct
quantities of the Lanczos method with negligible additional cost.

For our experiments, we used Lanczos implementation in PROPACK by [3] andwe tested iRAPMon theMatrix
Completion problem. Results show that iRAPM can be faster that classical APM retaining same reconstruction
error.
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