

GIORNATA ORIENTAMENTO DOTTORATO 20-JAN-2025

compensation in partial differential equations

Adolfo Arroyo Rabasa — adolfo.rabasa@unipi.it — www.arroyorabasa.com

Università di Pisa

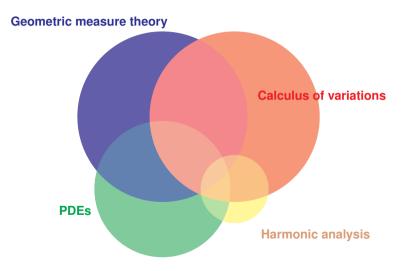
European Research Council Established by the European Commission

UNIVERSITÀ DI PISA

2x PhD Positions (Q3-2025) ~> ERC group (other postdocs, PhDs)

- regularity and rigidity of non-linear PDEs
- geometry of measures satisfying a PDE
- variational phenomena associated with PDE-constrains

AREAS OF STUDY



differential inclusions

UNIVERSITÀ DI PISA

DIFFERENTIAL INCLUSIONS

- $\Omega \subset \mathbb{R}^n$ open and bounded (Lipschitz domain)
- $M \subset \mathbb{R}^{m \times n}$ smooth compact manifold

DIFFERENTIAL INCLUSIONS

- $\Omega \subset \mathbb{R}^n$ open and bounded (Lipschitz domain)
- $M \subset \mathbb{R}^{m \times n}$ smooth compact manifold
- $u: \Omega \to \mathbb{R}^m$ satisfying the differential inclusion

 $Du(x) \in M$

DIFFERENTIAL INCLUSIONS

- $\Omega \subset \mathbb{R}^n$ open and bounded (Lipschitz domain)
- $M \subset \mathbb{R}^{m \times n}$ smooth compact manifold
- $u: \Omega \to \mathbb{R}^m$ satisfying the differential inclusion

 $Du(x) \in M$

Can *M*...

- Q. improve the *regularity* of *M*?
- Q. affect the structure of Du?

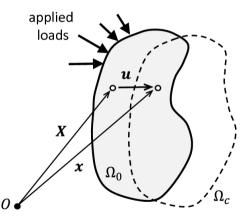
MOTIVATION (NONLINEAR ELASTICITY THEORY)

Displacement

 $u: \Omega_0 \subset \mathbb{R}^3 \to \Omega_c$

Strain Displacement

$$Du: \Omega_0 \to \mathbb{R}^{3 imes 3}$$



MODEL

Bodies minimize the elastic energy

$$\mathcal{E}[u] = \int_{\Omega_0} W(Du), \qquad u(\partial \Omega_0) = \partial \Omega_c$$

where $\mathit{W}: \mathbb{R}^{3 imes 3}
ightarrow \mathbb{R}$ satisfies

$$W(AQB) = W(Q) \qquad \forall A, B \in SO(3)$$

MODEL

Bodies minimize the elastic energy

$$\mathcal{E}[u] = \int_{\Omega_0} W(Du), \qquad u(\partial \Omega_0) = \partial \Omega_c$$

where $\mathit{W}: \mathbb{R}^{3 imes 3}
ightarrow \mathbb{R}$ satisfies

$$W(AQB) = W(Q) \quad \forall A, B \in SO(3)$$

Example

 $W(F) = \operatorname{dist}(F, \operatorname{SO}(3))^p$

MODEL

Bodies minimize the elastic energy

$$\mathcal{E}[u] = \int_{\Omega_0} W(Du), \qquad u(\partial \Omega_0) = \partial \Omega_c$$

where $\mathit{W}: \mathbb{R}^{3 imes 3}
ightarrow \mathbb{R}$ satisfies

$$W(AQB) = W(Q) \quad \forall A, B \in SO(3)$$

Example

 $W(F) = \operatorname{dist}(F, \operatorname{SO}(3))^p$

RIGIDITY RESULTS

Theorem (Liouville's theorem - Exact rigidity)

If a smooth map $u : \Omega \to \mathbb{R}^n$ satisfies $Du \in SO(n)$,

u(x) = Rx + b, $R \in SO(n)$, $b \in \mathbb{R}^n$

RIGIDITY RESULTS

Theorem (Liouville's theorem - Exact rigidity)

If a smooth map $u: \Omega \to \mathbb{R}^n$ satisfies $Du \in SO(n)$,

u(x) = Rx + b, $R \in SO(n)$, $b \in \mathbb{R}^n$

Theorem (Friesecke–James–Müller - Quantitative rigidity)

If $u \in W^{1,p}(\Omega, \mathbb{R}^n)$, then

$$\min_{R\in \mathsf{SO}(n)} \int_{\Omega} |Du - R|^{p} \leqslant C(\Omega) \int_{\Omega} \operatorname{dist}(Du, \mathsf{SO}(n))^{p}$$

PHD PROJECT I

Generalize Friesecke–James–Müller to other manifolds (or Lie Groups):

Characterize (geometrically) those manifolds *M* satisfying

- A Liouville property (a priori regularity)
- Quantitative estability (regularity and rigidity)

Tools

- Sobolev Spaces and Partidal Differential Operators
- Regularity Theory
- (Basic) Riemannian Geometry
- Singular Integrals (Harmonic Analysis)

structure of gradient concentrations

Università di Pisa

GRADIENT CONCENTRATIONS

Failure of L^1 convergence:

- fine oscillations
- concentrations of mass

GRADIENT CONCENTRATIONS

Failure of L^1 convergence:

- fine oscillations
- concentrations of mass

• $(Du_j): \Omega \to \mathbb{R}^{m \times n}$ sequence converging weakly in the sense of measures:

$$\int_{\Omega} \phi \cdot Du_{j} \to \int_{\Omega} \phi \cdot d\mu \qquad \forall \phi \in C_{0}(\Omega; \mathbb{R}^{m \times n})$$

Question. Can we describe how mass is concentrated along the sequence?

MOTIVATION (LINEAR GROWTH FUNCTIONALS)

Models in

- Geometry (Area functional)
- Materials Science (Plasticity)
- Conservation Laws (Fluids)

involve the understanding of gradient concentrations

Example

Minimization principle

$$\min_{u} \int_{\Omega} F(Du), \qquad F(A) \lesssim 1 + |A|$$

THE RANK-ONE THEOREM

Concentrations may generate measure singularities

Framework: Functions of bounded variation

 $BV(\Omega)^m = \{u : \Omega \to \mathbb{R}^m : Du \text{ is a measure}\}$

THE RANK-ONE THEOREM

Concentrations may generate measure singularities

Framework: Functions of bounded variation

 $BV(\Omega)^m = \{u : \Omega \to \mathbb{R}^m : Du \text{ is a measure}\}$

Theorem (Rank-one theorem - Alberti)

Let $E \subset \Omega$ be a negligible set. If $u \in BV(\Omega)^m$ is written in polar form as

Du = g|Du|

then

rank g(x) = 1 |Du| almost everywhere on E

Conjecture: Gradient concentrations are the superposition of concentrations with rank-one averages

Tools:

- Compensated Compactness (PDEs)
- Young Measures (Geometric Measure Theory)
- BV spaces and Theory of Differential Operators
- Singular Integrals (Harmonic Analysis)

Bibliography

• G. Friesecke, R. D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, *Comm. Pure Appl. Math.* **55** (2002)

• G. Alberti, Rank one property for derivatives of functions with bounded variation, *Proc. Roy. Soc. Edinburgh Sect. A*

• A. Arroyo-Rabasa, Characterization of generalized young measures generated by A-free measures, *Arch. Ration. Mech. Anal.*

Università di Pisa

European Research Council Established by the European Commission