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Many-body Quantum Systems in Mathematical Physics

Quantum mechanics: central theory in physics, describing elementary

particles, superconductors, quantum computers, ....

Challenging mathematical problems in functional analysis, partial differential

equations, operator theory, statistical mechanics, ...

Very active current research topic.

Mathematical Physics: rigorous mathematical analysis of physically motivated

problems. - Connections to the presentation of C. Bonanno, P. Giulietti.

Connections to Mathematical Analysis: L. Forcella, J. Bellazzini, V. Georgiev.
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Many-Body Systems: Emergent Phenomena

Many-Body Systems:

Small scale: we describe the world through microscopic building blocks

(atoms, electrons, data, ....)

Large scale: we observe the emergence of macroscopic patterns, collective

behavior (materials, superconductors, artificial intelligence, ...)

Giorgio Parisi, Nobel prize 2021:

“if you know how a single neuron behaves, that doesn’t

mean you understand how the brain behaves”

Small scale → Large scale: new mathematics needed!
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Our Research: Mathematical Physics of Many-Body Interacting System

Many-body quantum mechanics

System of a large number of particles described microscopically by the

Schrödinger equation.

Macroscopically we observe emergent phenomena,

such as phase transitions, universality, nonlinear

effects.

disorder order

Curse of dimensionality: no exact analysis possible.

The emergent behaviour is deeply affected by the interaction among particles.

The challenge

Derive effective theories from first principles of quantum mechanics,

describing the emergent physics in terms of few degrees of freedom.
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Research Line:

Interacting Systems of Bosonic Particles



The Bose gas and its condensation phase

Emergence of Bose-Einstein con-

densation in gas of bosonic particles

at very low temperatures.

1995: First experimental observation,

awarded with the Nobel Prize in 20011

Macroscopic manifestation of a quantum phenomenon, testing ground for

entanglement and quantum correlations: a door to the quantum world.

Connected to superfluidity, superconductivity, symmetry breaking.

Mathematical challenge: curse of dimensionality, perturbation theory fails

Objects of study: proof of Bose-Einstein condensation, study the time

evolution and show the validity of effective theories, ...

1Anderson, Ensher, Matthews, Wieman, Cornell, Science 269 (1995)

Davis, Mewes, Andrews, van Druten, Durfee, Kurn, Ketterle. Phys. Rev. Lett. 75 (1995)
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One-Body Quantum Mechanics

We consider one particle in R3.

We describe the state of the system through a wave function ψ ∈ L2(R3).

|ψ(·)|2: probability density for the particle’s position.

Normalization: ‖ψ‖2
2 =

∫
R3 |ψ(x)|2dx = 1.

In Fourier representation: ψ̂(p) = 1

(2π)3/2

∫
R3 e
−ip·xψ(x)dx

|ψ̂(·)|2: probability density for the particle’s momentum.

Observable quantities are represented as self-adjoint operators A on L2(R3)

The energy is described by the operator, called Hamiltonian,

H = −∆ + v

where ∆ is the laplacian and v : R3 → R is a multiplication operator.

The expectation value of an observable A for a system in the state ψ is the

inner product

〈ψ,Aψ〉 =

∫
ψ̄(x)(Aψ)(x)dx
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One-Body Quantum Mechanics

We are interested in

The ground state energy is

E = inf
ψ∈L2(R3),
‖ψ‖2=1

〈ψ,Hψ〉

The ground state vector solves the eigenvalue problem (time independent

Schrödinger equation)

Hψ = Eψ

The spectrum σ(H): excitation energies

The dynamics: given the initial state ψ0, the time evolution ψt is

described by the time dependent Schrödinger equation

i∂tψt = Hψt
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Example: Harmonic Oscillator.

H = −∆ +
ω2

2
x2 acting on L2(R)

The ground state energy is

E =
ω

2

The ground state vector is

ψ(x) =
ω2

4π2
e−

ω
4
x2

The spectrum is σ(H) = {En}, where

En =

(
n +

1

2

)
ω, with n ∈ N
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Many-body Quantum Mechanics

Consider N noninteracting particles in R3 described by

HN =
N∑
i=1

(
−∆xi + vext(xi )

)
acting on ψ ∈ L2(R3)⊗ L2(R3)⊗ · · · ⊗ L2(R3)︸ ︷︷ ︸

N times

∼= L2(R3N).

Indistinguishable particles: bosons and fermions

bosons have permutation-symmetric wavefunctions: ψ ∈ L2
s (R3N)

ψ(x1, . . . , xi , . . . , xj , . . . , xN) = (+1)︸ ︷︷ ︸
bosons

ψ(x1, . . . , xj , . . . , xi , . . . , xN)

fermions have permutation-antisymmetric wavefunctions: ψ ∈ L2
a(R3N)

ψ(x1, . . . , xi , . . . , xj , . . . , xN) = (−1)︸ ︷︷ ︸
fermions

ψ(x1, . . . , xj , . . . , xi , . . . , xN)
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Many-body Quantum Mechanics

If we neglect interactions, wave functions are symmetrized or

antisymmetrized products of functions

ψ = P±
(
ϕk1 ⊗ ϕk2 ⊗ · · · ⊗ ϕkN

)
with ϕk ∈ L2(R3) appearing nk times.

For fermions, nk ∈ {0, 1}

For bosons, nk ∈ {0, 1, 2, . . . ,N}

Bosons at low temperature exhibit perfect Bose-Einstein condensation2:

ψ(x1, . . . , xN) = ϕ0(x1)ϕ0(x2) . . . ϕ0(xN)

2Bose. Z. Phys. 26 (1924)

Einstein. Sitzungsber. Preuss. Akad. Wiss. (1924)
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The interacting Bose gas

N interacting bosonic particles in R3

HN =
N∑
i=1

(
−∆xi + vext(xi )

)
+

N∑
i<j

V (xi − xj)

acting on ψ ∈ L2
s (R3N): symmetric tensor product

(
L2(R3)⊗ · · · ⊗ L2(R3)︸ ︷︷ ︸

N

)
sym

ψ is not factorized anymore!

ψ(x1, . . . , xN) 6= ϕ0(x1)ϕ0(x2) . . . ϕ0(xN)

Correlations

Interactions introduce correlations:

the many-body wave function ψ is far from a product (it is a linear

combination of elementary tensors).

We need an efficient way to understand this.
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We are interested in the following questions:

Can we study the dynamics of a many-body system?

How do nonlinear effects originate?

Can we resolve the spectrum σ(HN) and the eigenfunctions?

Can we prove condensation?

Can we take the large volume limit (thermodynamic limit)?

i.e. prove estimates that are uniform in the volume: this is crucial in

statistical mechanics to understand phase transitions

Can we include temperature effects?

Can we compute the critical temperature in the interacting case?
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The time-dependent Schrödinger equation

Cauchy problem: initial data ψN ∈ L2(R3N) ,

Schrödinger equation i∂tψN,t = HNψN,t .

Assume the initial data is a product state

ψN(x1, x2, . . . , xN) =
N∏
j=1

ϕ(xi ) with ϕ ∈ L2(R3)

Can we obtain its evolution ψN,t = e−iHN tψN?

Due to the V (xi − xj)-terms in HN the solution ψN,t is not a product for any

t > 0!

ψN,t(x1, x2, . . . , xN) 6=
N∏
j=1

ϕt(xi ) with ϕt ∈ L2(R3)
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Nonlinear effective time evolution

We can however define an effective dynamics

nonlinear Schrödinger equation: i∂tϕt = −∆ϕt + 8πa|ϕt |2ϕt

ϕ0 = ϕ ∈ L2(R3)

so that

lim
N→∞

∣∣∣∣∣
∣∣∣∣∣ψN,t −

N∑
k=0

ϕt
⊗(N−k) ⊗s uk(t)

∣∣∣∣∣
∣∣∣∣∣
L2(R3N )

= 0

for suitable functions uk(t) ∈ L2(R3k) easy to calculate.

The parameter a is universal, i.e., independent on the microscopic shape of V .

The proof combines techiques from analysis of PDEs, functional analysis,

quantum mechanics.

Emergent nonlinear behavior, while the original many-body problem is linear.

→ blow-up, turbulence, solitons (stable travelling waves - impossible for the free

Schrödinger equation because of dispersivity), . . .
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The spectrum of HN

N bosons in a box Λ = [−L/2, L/2]3

HN = −
N∑
i=1

∆xi +
N∑
i<j

N2V
(
N(xi − xj)

)
acting on ψ ∈ L2

s (ΛN).

(We have translation invariance and a conserved momentum.)

The spectrum of HN − EN is given by∑
p∈Λ∗

+

np
√
|p|4 + 16πap2 +O(N−1/4)

with np ∈ N and np 6= 0 for finitely many p ∈ Λ∗+ only (np is the number of

excited states with momentum p).
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The excitation spectrum

The dispersion relation of excitations

D(p) =
√
|p|4 + 16πap2 =

√
16πa|p|

(
1 +O(p2)

)
.

is linear for small momenta −→ signature of superfluidity (frictionless flow)

Effect due to interactions.

D(p)

|p|

|p|2 for free particles

qualitative change here

This is in agreement with the predictions of Bogoliubov and Landau

but its proof requires a new description of correlations, to justify universality

of the spectrum depending only on a.
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Related Projects

Correlations in Bosonic Systems

Temperature effect in the Bose gas:

→ find minimizers of a free energy functional

Many-body time evolution of bosonic systems:

→ prove a norm approximation for the dynamics of excitations

Quantum Systems with Disorder

Localization of ground states, non-ergodic behavior

Effective Description of Quantum Hall States

Dynamics of many-body fermionic systems in a magnetic field

Ising Model

Quasi-periodic disorder, universality of critical exponents
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Grants and Collaborations

PRIN 2022 Grant “Interacting Quantum Systems: Topological

Phenomena and Effective Theories”

Network of Collaborators: U Zurich, IST Austria (Vienna), VirginiaTech,

U Bonn, SISSA Trieste, U La Sapienza, U Hagen, GSSI L’Aquila, U Milano, ...
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