# Math PhD days - Many-body Quantum Systems in Mathematical Physics

**Chiara Boccato** Università di Pisa January 21st 2025

# Many-body Quantum Systems in Mathematical Physics



**Quantum mechanics**: central theory in physics, describing elementary particles, superconductors, quantum computers, ....

**Challenging mathematical problems** in functional analysis, partial differential equations, operator theory, statistical mechanics, ... Very active current research topic.

**Mathematical Physics**: rigorous mathematical analysis of physically motivated problems. - Connections to the presentation of *C. Bonanno, P. Giulietti.* Connections to Mathematical Analysis: *L. Forcella, J. Bellazzini, V. Georgiev.* 

## Many-Body Systems:

*Small scale*: we describe the world through **microscopic building blocks** (atoms, electrons, data, ....)

*Large scale*: we observe the **emergence of macroscopic patterns**, collective behavior (materials, superconductors, artificial intelligence, ...)



Giorgio Parisi, Nobel prize 2021: "if you know how a single neuron behaves, that doesn't mean you understand how the brain behaves"

Small scale  $\rightarrow$  Large scale: new mathematics needed!

## Many-body quantum mechanics

System of a large number of particles described microscopically by the Schrödinger equation.

Macroscopically we observe emergent phenomena, such as **phase transitions**, **universality**, **nonlinear effects**.

disorder

order

*Curse of dimensionality:* no exact analysis possible. The emergent behaviour is *deeply affected by the interaction* among particles.

#### The challenge

Derive **effective theories** from first principles of quantum mechanics, describing the emergent physics in terms of *few degrees of freedom*.

Research Line: Interacting Systems of Bosonic Particles

## The Bose gas and its condensation phase

**Emergence of Bose-Einstein condensation** in gas of bosonic particles at very low temperatures.

1995: First experimental observation, awarded with the Nobel Prize in 2001<sup>1</sup>



**Macroscopic manifestation of a quantum phenomenon**, testing ground for entanglement and quantum correlations: a door to the quantum world. Connected to superfluidity, superconductivity, symmetry breaking.

Mathematical challenge: curse of dimensionality, perturbation theory fails

Objects of study: proof of Bose-Einstein condensation, study the **time** evolution and show the validity of effective theories, ...

<sup>&</sup>lt;sup>1</sup>Anderson, Ensher, Matthews, Wieman, Cornell, *Science* **269** (1995) Davis, Mewes, Andrews, van Druten, Durfee, Kurn, Ketterle. *Phys. Rev. Lett.* **75** (1995)

We consider one particle in  $\mathbb{R}^3$ .

We describe the state of the system through a wave function  $\psi \in L^2(\mathbb{R}^3)$ .

- $|\psi(\cdot)|^2$ : probability density for the particle's position. Normalization:  $||\psi||_2^2 = \int_{\mathbb{R}^3} |\psi(x)|^2 dx = 1.$
- In Fourier representation:  $\widehat{\psi}(p) = \frac{1}{(2\pi)^{3/2}} \int_{\mathbb{R}^3} e^{-ip \cdot x} \psi(x) dx$

 $|\widehat{\psi}(\cdot)|^2$ : probability density for the particle's momentum.

**Observable quantities** are represented as self-adjoint operators A on  $L^2(\mathbb{R}^3)$ 

The energy is described by the operator, called Hamiltonian,

$$H = -\Delta + v$$

where  $\Delta$  is the laplacian and  $v: \mathbb{R}^3 \to \mathbb{R}$  is a multiplication operator.

The **expectation value** of an observable A for a system in the state  $\psi$  is the inner product

$$\langle \psi, A\psi \rangle = \int \bar{\psi}(x) (A\psi)(x) dx$$

We are interested in

■ The ground state energy is

$$E = \inf_{\substack{\psi \in L^2(\mathbb{R}^3), \\ \|\psi\|_2 = 1}} \langle \psi, H\psi \rangle$$

The ground state vector solves the eigenvalue problem (time independent Schrödinger equation)

$$H\psi = E\psi$$

- **The spectrum**  $\sigma(H)$ : excitation energies
- The **dynamics**: given the initial state  $\psi_0$ , the time evolution  $\psi_t$  is described by the time dependent Schrödinger equation

$$i\partial_t\psi_t = H\psi_t$$

Example: Harmonic Oscillator.

$$H=-\Delta+rac{\omega^2}{2}x^2$$
 acting on  $L^2(\mathbb{R})$ 

The ground state energy is

$$E = \frac{\omega}{2}$$

The ground state vector is

$$\psi(x) = \frac{\omega^2}{4\pi^2} e^{-\frac{\omega}{4}x}$$

The spectrum is  $\sigma(H) = \{E_n\}$ , where

$${\sf E}_n=\left(n+rac{1}{2}
ight)\omega, \quad {
m with} \,\, n\in \mathbb{N}$$



# Many-body Quantum Mechanics

Consider *N* noninteracting particles in  $\mathbb{R}^3$  described by

$$H_N = \sum_{i=1}^N \left( -\Delta_{x_i} + v_{ext}(x_i) \right)$$

acting on 
$$\psi \in \underbrace{L^2(\mathbb{R}^3) \otimes L^2(\mathbb{R}^3) \otimes \cdots \otimes L^2(\mathbb{R}^3)}_{\mathbb{R}^3} \cong L^2(\mathbb{R}^{3N}).$$

N times

#### Indistinguishable particles: bosons and fermions

• bosons have permutation-symmetric wavefunctions:  $\psi \in L^2_s(\mathbb{R}^{3N})$ 

$$\psi(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_N) = \underbrace{(+1)}_{\text{bosons}} \psi(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_N)$$

• fermions have permutation-antisymmetric wavefunctions:  $\psi \in L^2_a(\mathbb{R}^{3N})$ 

$$\psi(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_N) = \underbrace{(-1)}_{\text{fermions}} \psi(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_N)$$

If we neglect interactions, wave functions are symmetrized or antisymmetrized products of functions

 $\psi = P_{\pm}(\varphi_{k_1} \otimes \varphi_{k_2} \otimes \cdots \otimes \varphi_{k_N})$ with  $\varphi_k \in L^2(\mathbb{R}^3)$  appearing  $n_k$  times. For fermions,  $n_k \in \{0, 1\}$ For bosons,  $n_k \in \{0, 1, 2, \dots, N\}$ 

Bosons at low temperature exhibit perfect Bose-Einstein condensation<sup>2</sup>:

$$\psi(x_1,\ldots,x_N)=\varphi_0(x_1)\varphi_0(x_2)\ldots\varphi_0(x_N)$$

<sup>2</sup>Bose. Z. Phys. **26** (1924) Einstein. Sitzungsber. Preuss. Akad. Wiss. (1924)

# The interacting Bose gas

*N* interacting bosonic particles in  $\mathbb{R}^3$ 

$$H_{N} = \sum_{i=1}^{N} \left( -\Delta_{x_{i}} + v_{ext}(x_{i}) \right) + \sum_{i < j}^{N} V(x_{i} - x_{j})$$
  
ing on  $\psi \in L_{s}^{2}(\mathbb{R}^{3N})$ : symmetric tensor product  $\left( \underbrace{L^{2}(\mathbb{R}^{3}) \otimes \cdots \otimes L^{2}(\mathbb{R}^{3})}_{N} \right)_{sym}$ 

 $\psi$  is not factorized anymore!

$$\psi(x_1,\ldots,x_N)\neq\varphi_0(x_1)\varphi_0(x_2)\ldots\varphi_0(x_N)$$

## Correlations

act

Interactions introduce correlations:

the many-body wave function  $\psi$  is far from a product (it is a linear combination of elementary tensors).

We need an efficient way to understand this.

We are interested in the following questions:

- Can we study the dynamics of a many-body system? How do nonlinear effects originate?
- Can we resolve the **spectrum**  $\sigma(H_N)$  and the eigenfunctions? Can we prove condensation?
- Can we take the large volume limit (thermodynamic limit)? i.e. prove estimates that are uniform in the volume: this is crucial in statistical mechanics to understand phase transitions
- Can we include temperature effects?
   Can we compute the critical temperature in the interacting case?

**Cauchy problem**: initial data  $\psi_N \in L^2(\mathbb{R}^{3N})$ ,

Schrödinger equation  $i\partial_t\psi_{N,t} = H_N\psi_{N,t}$  .

Assume the initial data is a product state

$$\psi_N(x_1, x_2, \dots, x_N) = \prod_{j=1}^N \varphi(x_j)$$
 with  $\varphi \in L^2(\mathbb{R}^3)$ 

Can we obtain its evolution  $\psi_{N,t} = e^{-iH_N t} \psi_N$ ?

Due to the  $V(x_i - x_j)$ -terms in  $H_N$  the solution  $\psi_{N,t}$  is not a product for any t > 0!

$$\psi_{N,t}(x_1, x_2, \dots, x_N) \neq \prod_{j=1}^N \varphi_t(x_j)$$
 with  $\varphi_t \in L^2(\mathbb{R}^3)$ 

We can however define an effective dynamics

nonlinear Schrödinger equation: 
$$i\partial_t \varphi_t = -\Delta \varphi_t + 8\pi a |\varphi_t|^2 \varphi_t$$
  
 $\varphi_0 = \varphi \in L^2(\mathbb{R}^3)$ 

so that

$$\lim_{N\to\infty}\left\|\psi_{N,t}-\sum_{k=0}^{N}\varphi_t^{\otimes (N-k)}\otimes_s u_k(t)\right\|_{L^2(\mathbb{R}^{3N})}=0$$

for suitable functions  $u_k(t) \in L^2(\mathbb{R}^{3k})$  easy to calculate.

The parameter  $\mathfrak{a}$  is universal, i.e., independent on the microscopic shape of V.

The proof combines techiques from analysis of PDEs, functional analysis, quantum mechanics.

**Emergent nonlinear behavior**, while the original many-body problem is linear.  $\rightarrow$  blow-up, turbulence, solitons (stable travelling waves - impossible for the free Schrödinger equation because of dispersivity), ...

N bosons in a box  $\Lambda = [-L/2, L/2]^3$ 

$$H_N = -\sum_{i=1}^N \Delta_{x_i} + \sum_{i < j}^N N^2 V \big( N(x_i - x_j) \big)$$

acting on  $\psi \in L^2_s(\Lambda^N)$ .

(We have translation invariance and a conserved momentum.)

The spectrum of  $H_N - E_N$  is given by  $\sum_{\rho \in \Lambda^*_+} n_\rho \sqrt{|\rho|^4 + 16\pi a \rho^2} + \mathcal{O}(N^{-1/4})$ with  $n_\rho \in \mathbb{N}$  and  $n_\rho \neq 0$  for finitely many  $\rho \in \Lambda^*_+$  only  $(n_\rho$  is the number of excited states with momentum p). The dispersion relation of excitations

$$\mathcal{D}(\boldsymbol{\rho}) = \sqrt{|\boldsymbol{\rho}|^4 + 16\pi\mathfrak{a}\boldsymbol{\rho}^2} = \sqrt{16\pi\mathfrak{a}}|\boldsymbol{\rho}| \left(1 + \mathcal{O}(\boldsymbol{\rho}^2)\right).$$

is linear for small momenta  $\rightarrow$  signature of superfluidity (frictionless flow)

Effect due to INTERACTIONS.





This is in agreement with the predictions of Bogoliubov and Landau but its proof requires a **new description of correlations**, to justify **universality** of the spectrum depending only on  $\mathfrak{a}$ .

## **Related Projects**

#### Correlations in Bosonic Systems

Temperature effect in the Bose gas:  $\rightarrow$  find minimizers of a free energy functional

Many-body time evolution of bosonic systems:

 $\rightarrow$  prove a norm approximation for the dynamics of excitations

#### Quantum Systems with Disorder

Localization of ground states, non-ergodic behavior

#### Effective Description of Quantum Hall States

Dynamics of many-body fermionic systems in a magnetic field

#### Ising Model

Quasi-periodic disorder, universality of critical exponents









PRIN 2022 Grant "Interacting Quantum Systems: Topological Phenomena and Effective Theories"

**Network of Collaborators**: U Zurich, IST Austria (Vienna), VirginiaTech, U Bonn, SISSA Trieste, U La Sapienza, U Hagen, GSSI L'Aquila, U Milano, ...