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Moduli spaces

Definition

Moduli space M = a space (algebraic variety) whose points parametrize some fixed kind
of objects, in a functorial way

i.e. if X → S is a family of objects parametrized by M, there is an associated classifying
morphism

S −→ M , s 7−→ the fiber of X → S over S
and this construction is compatible with pullback of families. Moreover, M is initial
with this property.

Examples

▶ For a fixed genus g, there is a moduli space Mg parametrizing smooth proper
connected algebraic curves of genus g.

▶ If C is a smooth curve, there is a moduli space Mss
r,d(C) of (semi-stable) vector

bundles on C of degree d and rank r.

The geometry of these spaces is usually very interesting and rich, and there are
numerous connections to other areas of mathematics and physics.
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Moduli stacks

Warning

The function {families over S} → Hom(S, M) is rarely a bijection (when this happens
M is called a fine moduli space).

Equivalently, there rarely is a universal family U → M (i.e. that recovers any other
family X → S as pullback along the classifying morphism S → M).

The non-existence of a universal family is typically due to objects having non-trivial
automorphisms.

Stacks are a generalization of schemes, where points “are allowed to have
automorphisms”.

Example: quotient stacks

If G is an algebraic group acting on a scheme X, there is always a quotient stack [X/G],
for which the projection X → [X/G] is a G-principal bundle.

The points of [X/G] correspond to orbits of the action, and the automorphism group is
the isotropy group of any point of the orbit.

“Nice” moduli stacks exist far more often than fine moduli spaces.

For example, there are algebraic stacks Mg and Mss
r,d(C) parametrizing smooth proper

connected genus g curves and semi-stable vector bundles of degree d and rank r on C.
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Andrea Di Lorenzo: moduli of curves (a toy example)

Base field: C.

M1,1 = moduli stack of Riemann surfaces/smooth algebraic curves of genus 1 with 1
marking (elliptic curves).

A more explicit description

M1,1 = [{(a, b) ∈ C2 such that 4a3 + 27b2 ̸= 0}/C∗]

▶ Geometry of M1,1: it is not compact!
▶ Geometry of families of elliptic curves: we cannot always find a filling of a family

of elliptic curves over a punctured disk, if we only allow elliptic curves :(

A (modular) compactification

M1,1 = [{(a, b) ∈ C2 such that (a, b) ̸= (0, 0)}/C∗]

▶ Geometry of M1,1: it is compact, and M1,1 = M1,1 ∪ ∗, where ∗ = curve of genus
1 with one marking and a node.

▶ Geometry of families of elliptic curves: we can always∗ find a filling (in a unique
way) of a family of elliptic curves over a punctured disk, if we allow nodal
curves!
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Andrea Di Lorenzo: compactifying moduli of curves with extra data

Here is one of the major achievements of the last century for what concerns moduli of
curves (two Fields medals here!).

Theorem (Deligne–Mumford, 1969)

The moduli stack Mg,n can be compactified by adding nodal algebraic curves having
finitely many automorphisms (technically, stable curves).

Mg,n = moduli stack of stable algebraic curves of genus g with n markings.

But there is more than just algebraic curves out there!
▶ Mg,n(BG, β) = moduli stack of smooth curves + a principal G-bundle of degree β.

▶ Mg,n(M̃1,1, β) = moduli stack of smooth curves + a fibration in elliptic curves of
degree β.

Open problem

At the moment, there is no general method for compactifying Mg,n(X , β) in a modular
way. Exciting!

Partial solutions (depending on X ): Kontsevich, Abramovich–Vistoli, Caporaso,
Pandharipande, etc. etc.
Recently, Giovanni Inchiostro and Andrea have been exploring new directions for
tackling this problem.
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Andrea Di Lorenzo: computing invariants of moduli of curves

Another way of understanding the geometry of Mg,n: compute their invariants, such
as

▶ Chow ring: similar to singular homology, with algebraic cycles instead of
topological cycles;

▶ Brauer group: related to the existence of Pn-bundles on Mg,n;
Here are a couple of recent results on this topic that Andrea and his collaborators
managed to prove:

Chow ring of M2,1(D.L.–Pernice–Vistoli, 2022)

CH*(M2,1) ≃ Z[λ1, ψ1, ϑ1, λ2, ϑ2]/(α2,1, α2,2, α2,3, β3,1, β3,2, β3,3, β3,4).

Note that Chow rings (with integral coefficients) of Mg,n for g > 2 are absolutely
mysterious!

Brauer group of M3 (D.L.–Pirisi, 2024)

Br(M3) ≃ Z/2.

Fun fact: the non-triviality of the Brauer group is related to the famous 27 lines on a
smooth cubic surface. It was quite surprising to discover this!

Can we compute further invariants in higher genus?
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Mattia Talpo: Logarithmic geometry

“Enhanced” version of algebraic geometry.

Objects are log schemes = a variety X + a sheaf of monoids M with α : M → (OX, ·).

(when α is injective, one should think of M as a monoid of “monomial regular
functions” on X)

Prototypical examples

Pairs (X, D) with X smooth and D a SNC divisor (e.g. An or Pn with the coordinate
hyperplanes), toric varieties.

The extra data typically keeps track of either a (partial) compactification (e.g.
X \ D ⊆ X), or of a family of which the space is a (typically singular) fiber.

▶ It is “combinatorial” in nature, building blocks are affine toric varieties Spec k[P].
▶ There are interesting and fruitful connections to tropical geometry (i.e. “piecewise

linear” algebraic geometry).
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Smoothness and moduli

One can systematically develop “algebraic geometry of log schemes”.

In particular there is a notion of smoothness in the logarithmic category (log
smoothness). Some classically non-smooth morphisms become log smooth when
equipped with appropriate log structures.

Example

The simplest example is probably the family of curves given by

A2 → A1

(x, y) 7→ xy.

One consequence: moduli spaces of log smooth objects are more often already
compact.

For example: a log smooth curve is the same as a nodal curve. The moduli space (stack)
of stable log smooth curves is precisely the Deligne–Mumford compactification Mg.

Equipping objects with log structures allows for better control over degenerations.
This has applications to (for example) enumerative geometry and mirror symmetry.
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Parabolic bundles

I also work with parabolic bundles, a notion of decorated vector bundles that naturally
live on log schemes.

Example

On a curve with marked points (C, p1, . . . , pn), these are vector bundles E, together with
weighted filtrations of the fibers Epi over the markings.

For curves, these generalize the Narasimhan-Seshadri correspondence (between stable
bundles of degree 0 and irreducible unitary representations of the fundamental group)
to the non-projective case.

The extra “boundary data” morally keeps track of the monodromy of loops around the
markings.

There are moduli spaces and stacks for semi-stable parabolic vector bundles, and their
geometry hasn’t been studied very much, especially in the singular (but log smooth)
case.

Some understanding of these should be useful in studying degenerations of moduli
spaces of vector bundles on smooth varieties.
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Francesco Sala: Geometric Representation Theory

Goal

topology of moduli spaces ⇐⇒ representations of interesting algebras
(e.g., vertex algebras, quantum groups, etc.)

Motivating Example: the topology of Hilbert schemes of points on S

Symmetric product of a smooth surface

S = smooth (quasi-)projective complex surface. For any n ∈ N, define

Symn(S):=
(

S × · · · × S
)/

Sn = moduli space of unordered n-tuples of points of S

▶ Symn(S) is a singular complex variety

Hilbert scheme of n points of a smooth surface

Resolution of singularities of Symn(S):

π : Hilbn(S) −→ Symn(S)

▶ Hilbn(S) is a smooth complex variety

▶ Hilbn(S) = moduli space of ideal sheaves JZ ⊂ OS of 0-dimensional subschemes
Z ⊂ S of length n
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Set bi(−) := dim Hi(−; Q) = i-th Betti number

Göttsche-Soegel: topology of Hilbn(S)

∑
n∈N

∑
i∈N

bi(Hilbn(S)) ti qn =
+∞

∏
m=1

(1 + t2m−1qm)b1(S)(1 + t2m+1qm)b3(S)

(1 − t2m−2qm)b0(S)(1 − t2mqm)b2(S)(1 − t2m+2qm)b4(S)

= character of the Fock space of the

(super-)Heisenberg algebra HeisS associated to H∗(S; Q)

Nakajima: Hilbn(S) vs. Heisenberg algebra

∃ an action of HeisS on V0(S) :=
⊕

n
H∗(Hilbn(S); Q) such that V0(S) ≃ Fock space

=⇒ we can describe explicitly all cohomology classes in V0(S)

Generalization
▶ Schiffmann-Vasserot, Neguţ: from cohomology to K-theory

HeisS is replaced by the Elliptic Hall algebra (depending on K0(S))

▶ Schiffmann-Vasserot, Soibelman & co, Neguţ, etc: from Hilbn(S) to other moduli
spaces (quiver varieties, instanton moduli spaces, Gieseker moduli spaces, etc)
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▶ Schiffmann-Vasserot, Neguţ: from cohomology to K-theory

HeisS is replaced by the Elliptic Hall algebra (depending on K0(S))

▶ Schiffmann-Vasserot, Soibelman & co, Neguţ, etc: from Hilbn(S) to other moduli
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spaces (quiver varieties, instanton moduli spaces, Gieseker moduli spaces, etc)



12/14

Warning

▶ Not only topology of moduli spaces ⇐⇒ representations of interesting algebras
(e.g., vertex algebras, quantum groups, etc.)

▶ but also topology of moduli stacks =⇒ geometric realizations such algebras
(theory of Cohomological, K-theoretical, categorical Hall algebras)

Examples of COHAs

(1) Schiffmann-Vasserot: K0(Coh0- dim(C2)) is endowed with a Hall multiplication s. t.

KHA0- dim(C2) := (K0(Coh0- dim(C2)), ∗) ≃ the elliptic Hall algebra

(2) Kapranov-Vasserot: ∃KHAdim⩽k(S), COHAdim⩽k(S) for any smooth surface S

(3) Porta-S.: ∃ categorical Hall algebra on Db(Coh(RCohdim⩽k(S)))

Why is the theory of COHAs important?

▶ (1) & (2) =⇒ Proofs of conjectures in Enumerative Geometry

(e.g. Alday-Gaiotto-Tachikawa conj., P=W conj., Okounkov’s conj.)

▶ (3) =⇒ foundation for the theory of Categorical Enumerative Geometry

due to Pădurariu and Toda.
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due to Pădurariu and Toda.



13/14

Algebraic and Arithmetic Geometry Group

▶ Andrea Di Lorenzo: Moduli stacks of curves and their invariants

▶ Marco Franciosi, Rita Pardini: birational geometry, moduli spaces of surfaces

▶ Gregory Pearlstein: Hodge theory

▶ Tamás Szamuely: cohomology of varieties and arithmetic questions

▶ Francesco Sala: cohomological Hall algebras and geometric representation theory

▶ Mattia Talpo: Logarithmic and tropical algebraic geometry
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Contacts

▶ Andrea Di Lorenzo: andrea.dilorenzo@unipi.it

▶ Francesco Sala: francesco.sala@unipi.it

available during the coffee break at 4 pm

▶ Mattia Talpo: mattia.talpo@unipi.it

available during the coffee break tomorrow morning


