Geometric topology

21th January 2025

Low-dimensional topology

- *n*-dimensional manifolds, with n = 2, 3, 4
- Knot theory

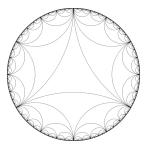
Low-dimensional topology

- *n*-dimensional manifolds, with n = 2, 3, 4
- Knot theory
- Geometric structures

Geometric structures

Spaces of constant curvature

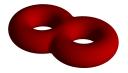
- Euclidean space \mathbb{R}^n (K = 0)
- Spherical space S^n (K = 1)
- Hyperbolic space \mathbb{H}^n (K = -1)



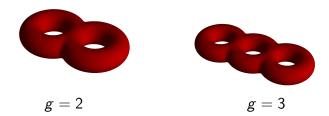
Compact surfaces

Compact surfaces

g = 1



Compact surfaces



Uniformization

Theorem

Every compact surface admits a metric of constant curvature K, *with:*

- if g = 0, then K = 1 (spherical case)
- if g = 1, then K = 0 (flat case)

• if
$$g = 2$$
, then $K = -1$ (hyperbolic case)

Uniformization

Theorem

Every compact surface admits a metric of constant curvature K, *with:*

- if g = 0, then K = 1 (spherical case)
- if g = 1, then K = 0 (flat case)
- if g = 2, then K = -1 (hyperbolic case)

The Teichmüller space $\mathcal{T}(\Sigma)$ of a surface Σ is the space of metrics of constant curvature on Σ .

The hyperbolic case

If $\boldsymbol{\Sigma}$ is hyperbolic, then

$$\Sigma = \mathbb{H}^2 / \rho(\pi_1(\Sigma))$$

where

$$\rho \colon \pi_1(\Sigma) \to \mathsf{Isom}(\mathbb{H}^2) = \mathsf{PSL}(2,\mathbb{R})$$

is an (injective, with discrete image) representation.

The hyperbolic case

If $\boldsymbol{\Sigma}$ is hyperbolic, then

$$\Sigma = \mathbb{H}^2 / \rho(\pi_1(\Sigma))$$

where

$$\rho \colon \pi_1(\Sigma) \to \mathsf{Isom}(\mathbb{H}^2) = \mathsf{PSL}(2,\mathbb{R})$$

is an (injective, with discrete image) representation.

Geometric structures \iff Representations

Higher Teichmüller Theory (Andrea Tamburelli) Goal: Study geometric structures on surfaces (Higgs bundles, space-time structures on $\Sigma \times \mathbb{R}, \ldots$) via representations

$$\rho \colon \pi_1(\Sigma) \to G$$

where G is a "higher rank" Lie group., e.g.

$$G = SL(n,\mathbb{R})$$
.

Higher Teichmüller Theory (Andrea Tamburelli) Goal: Study geometric structures on surfaces (Higgs bundles, space-time structures on $\Sigma \times \mathbb{R}, \ldots$) via representations

$$\rho \colon \pi_1(\Sigma) \to G$$

where G is a "higher rank" Lie group., e.g.

$$G = SL(n,\mathbb{R})$$
.

Thurston's Geometrization

Theorem (Thurston's Geometrization Conjecture)

Every compact 3-manifold M can be (canonically) cut into pieces which support locally homogeneous geometries (e.g. flat, spherical or hyperbolic).

Thurston's Geometrization

Theorem (Thurston's Geometrization Conjecture)

Every compact 3-manifold M can be (canonically) cut into pieces which support locally homogeneous geometries (e.g. flat, spherical or hyperbolic).

Theorem (Poincaré Conjecture)

If M is a simply connected 3-manifold, then it supports a spherical metric. Using this, it is immediate to prove that $M = S^3$.

Thurston's Geometrization

Theorem (Thurston's Geometrization Conjecture)

Every compact 3-manifold M can be (canonically) cut into pieces which support locally homogeneous geometries (e.g. flat, spherical or hyperbolic).

Theorem (Poincaré Conjecture)

If M is a simply connected 3-manifold, then it supports a spherical metric. Using this, it is immediate to prove that $M = S^3$.

All these theorems were proved by the Field Medalist Grigory Perelman.

Higher dimensions (Bruno Martelli)

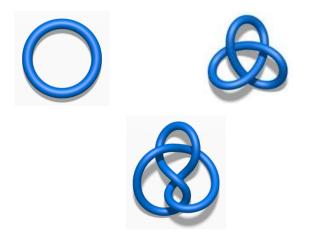
Question

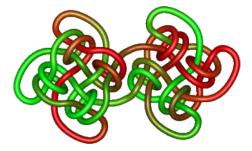
Let $n \ge 4$. Which n-dimensional manifolds support a hyperbolic structure?

Higher dimensions (Bruno Martelli)

Question

Let $n \ge 4$. Which n-dimensional manifolds support a hyperbolic structure?





Knot Theory (Paolo Lisca)

- Classical techniques (triangulations, geometrization,...)
- Recent invariants (Osvath-Szabo invariants, Heegaard-Floer Homology,...).

Many other invariants of manifolds are of great interest. Among them:

• Minimal Volume

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy
- Simplicial Volume

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy
- Simplicial Volume
- Euler characteristic

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy
- Simplicial Volume
- Euler characteristic

A manifold M is aspherical if $\pi_n(M) = 0$ for every $n \ge 2$ or, equivalently, if the universal covering \widetilde{M} of M is contractible.

Other invariants of manifolds (Frigerio)

Conjecture (Gromov)

Let M be a compact aspherical manifold with vanishing simplicial volume. Then $\chi(M) = 0$.

