Geometric topology

21th January 2025

Low–dimensional topology

- *n*-dimensional manifolds, with $n = 2, 3, 4$
- Knot theory

Low–dimensional topology

- *n*-dimensional manifolds, with $n = 2, 3, 4$
- Knot theory
- Geometric structures

Geometric structures

Spaces of constant curvature

- Euclidean space \mathbb{R}^n $(K = 0)$
- Spherical space S^n $(K = 1)$
- Hyperbolic space \mathbb{H}^n $(K=-1)$

Compact surfaces

Compact surfaces

Compact surfaces

Uniformization

Theorem

Every compact surface admits a metric of constant curvature K, with:

- if $g = 0$, then $K = 1$ (spherical case)
- if $g = 1$, then $K = 0$ (flat case)
- if $g = 2$, then $K = -1$ (hyperbolic case)

Uniformization

Theorem

Every compact surface admits a metric of constant curvature K, with:

- if $g = 0$, then $K = 1$ (spherical case)
- if $g = 1$, then $K = 0$ (flat case)
- if $g = 2$, then $K = -1$ (hyperbolic case)

The Teichmüller space $\mathcal{T}(\Sigma)$ of a surface Σ is the space of metrics of constant curvature on Σ .

The hyperbolic case

If Σ is hyperbolic, then

$$
\Sigma = \mathbb{H}^2/\rho(\pi_1(\Sigma))
$$

where

$$
\rho\colon \pi_1(\Sigma)\to \mathsf{Isom}(\mathbb{H}^2)=\mathit{PSL}(2,\mathbb{R})
$$

is an (injective, with discrete image) representation.

The hyperbolic case

If Σ is hyperbolic, then

$$
\Sigma = \mathbb{H}^2/\rho(\pi_1(\Sigma))
$$

where

$$
\rho\colon \pi_1(\Sigma)\to \mathsf{Isom}(\mathbb{H}^2)=\mathit{PSL}(2,\mathbb{R})
$$

is an (injective, with discrete image) representation.

Geometric structures \Longleftrightarrow Representations

Higher Teichmüller Theory (Andrea Tamburelli) Goal: Study geometric structures on surfaces (Higgs bundles, space-time structures on $\Sigma \times \mathbb{R}$, ...) via representations

$$
\rho\colon \pi_1(\Sigma)\to G
$$

where G is a "higher rank" Lie group., e.g.

$$
G=SL(n,\mathbb{R}) .
$$

Higher Teichmüller Theory (Andrea Tamburelli) Goal: Study geometric structures on surfaces (Higgs bundles, space-time structures on $\Sigma \times \mathbb{R}$, ...) via representations

$$
\rho\colon \pi_1(\Sigma)\to G
$$

where G is a "higher rank" Lie group., e.g.

$$
G=SL(n,\mathbb{R}) .
$$

Thurston's Geometrization

Theorem (Thurston's Geometrization Conjecture)

Every compact 3-manifold M can be (canonically) cut into pieces which support locally homogeneous geometries (e.g. flat, spherical or hyperbolic).

Thurston's Geometrization

Theorem (Thurston's Geometrization Conjecture)

Every compact 3-manifold M can be (canonically) cut into pieces which support locally homogeneous geometries (e.g. flat, spherical or hyperbolic).

Theorem (Poincaré Conjecture)

If M is a simply connected 3-manifold, then it supports a spherical metric. Using this, it is immediate to prove that $M = S^3$.

Thurston's Geometrization

Theorem (Thurston's Geometrization Conjecture)

Every compact 3-manifold M can be (canonically) cut into pieces which support locally homogeneous geometries (e.g. flat, spherical or hyperbolic).

Theorem (Poincaré Conjecture)

If M is a simply connected 3-manifold, then it supports a spherical metric. Using this, it is immediate to prove that $M = S^3$.

All these theorems were proved by the Field Medalist Grigory Perelman.

Higher dimensions (Bruno Martelli)

Question

Let $n > 4$. Which n-dimensional manifolds support a hyperbolic structure?

Higher dimensions (Bruno Martelli)

Question

Let $n > 4$. Which n-dimensional manifolds support a hyperbolic structure?

Knot Theory (Paolo Lisca)

- Classical techniques (triangulations, geometrization,. . .)
- Recent invariants (Osvath-Szabo invariants, Heegaard-Floer Homology,. . .).

Many other invariants of manifolds are of great interest. Among them:

• Minimal Volume

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy
- Simplicial Volume

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy
- Simplicial Volume
- Euler characteristic

Many other invariants of manifolds are of great interest. Among them:

- Minimal Volume
- Minimal Entropy
- Simplicial Volume
- Euler characteristic

A manifold M is aspherical if $\pi_n(M) = 0$ for every $n \geq 2$ or, equivalently, if the universal covering M of M is contractible.

Other invariants of manifolds (Frigerio)

Conjecture (Gromov)

Let M be a compact aspherical manifold with vanishing simplicial volume. Then $\chi(M) = 0$.

