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What is numerical analysis?1 Introduction
Many words (sometimes improperly) used as synonym
• Scientific computing
• Numerical mathematics
• Computational mathematics
• Numerical methods
• Numerical computation
• Mathematical software

A possible definition by Nick Trefethen:
Numerical analysis is the study of algorithms for the problems of continuousmathematics.
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What we aim to do/study1 Introduction

Design algorithms
Efficiency
Accuracy

Convergence
Applications

Identify important mathematical quantities andpropose how to approximate them
Time and memory consumption, use of moderncomputational architectures
Error bounds, and stability analysis
Prove that approximated quantities converge tothe truth as resolution increases
Collaborate with researchers from other areas onspecific applications
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What is NLA about2 Numerical Linear Algebra
NLA concerns the development, analysis, testing and evaluation of numerical algorithmsfor linear systems, eigenvalue problems, matrix functions, and other core LA tasks.
9 Our favourite topics:
• High performance computing
• Eigenvalue problems, especially in structural engineering
• Multilinear algebra (a.k.a. tensors)
• Randomized linear algebra
• Structured matrix problems

9 Less beaten paths:
• Analysis of accuracy and stability of algorithms
• Mixed precision algorithms
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Matrix-analytic methods for Markov chains3 Past projects: Example 1

πij := lim
t→∞

P(Xt = (i, j))
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Matrix-analytic methods for Markov chains3 Past projects: Example 1
Framework:
• Random walk on 2D lattices (phase – level),
• Discrete time,
• Each transition depends only on the currentposition (independent on time),
• Bounded transitions (Quasi-Birth-Death).

Goal:
• Compute the stationary distribution π, i.e.:

πj := lim
n→∞

P(Xn = j), ∀j ∈ N2,

Applications:
• Queuing models,
• Populations growth.
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Matrix-analytic methods for Markov chains3 Past projects: Example 1

For Quasi-Birth-Death processes the transition probability matrix looks like

P =


B0 B1

A−1 A0 A1

A−1 A0 A1. . . . . . . . .

 , Bi,Ai ∈ RN×N, i = −1, 0, 1.

Finding π requires to solve A−1 + A0X + A1X2 = X ⇝ infinite matrix arithmetic.
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Matrix-analytic methods for Markov chains3 Past projects: Example 1
We have introduced and studied the class of semi-infinite matrices of the form

a0 a1 a2 ...

a−1 a0 a1
. . .

a−2 a−1 a0
. . .... . . . . . . . . .

 + E +

 1
1
1
1...

 [v1 v2 v3 ...]

with the following decay properties.

+ +

Idea: the matrices within this class form a Banach algebra and are representable at any
arbitrary precision with a finitely large set of parameters.11/21
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Rational approximation for matrix functions4 Past projects: Example 2
Let f (z) = z−α, α ∈ (0, 1).
Problem: Given a symmetric positive definite matrix A ∈ Rn×n with eigenvalues in
[λmin, λmax] ⊂ Ω and v ∈ Rn compute

x := f (A)v.

Reminder: A = Q

λ1 . . .
λn

Q∗ ⇒ f (A) = Q

f (λ1) . . .
f (λn)

Q∗.

Settings: A is large and structured⇝ we do not want to form f (A) explicitly but we areallowed to compute matvecs and solve (shifted) linear systems with A.
Applications: Fractional diffusion, Matrix Transform Method
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Rational approximation for matrix functions4 Past projects: Example 2
Let U ⊂ Rn be a ℓ-dimensional subspace (ℓ ≪ n) with an orthogonal basis
U = [u1| . . . |uℓ] and Aℓ = U∗AU, vℓ = U∗v be the projections of A and v on U .
• Linear systems

x = A−1v ≈ xℓ := UA−1
ℓ vℓ.

• Matrix functions
x = f (A)v ≈ xℓ := Uf (Aℓ)vℓ.

If we use the Krylov subspace U = Kℓ(A, v) := span{v,Av, . . . ,Aℓ−1v} then,
||x − xℓ||2 ≤ 2 · min

p(z)∈Pℓ−1

max
z∈[λmin,λmax]

|p(z)− f (z)|,

where Pℓ := {poly of degree ≤ ℓ}.
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Rational approximation for matrix functions4 Past projects: Example 2
Rational Krylov subspace. Given Σℓ := {σ1, . . . , σℓ} ⊂ C it is defined as1

RKℓ(A, v,Σℓ) : = qℓ(A)−1Kℓ+1(A, v) =
{

p(A)
qℓ(A)

v : p(z) ∈ Pℓ

}
= span{v, (σ1I − A)−1v, . . . , (σℓI − A)−1v}

where qℓ(z) :=
∏

j(z − σj)
−1.

If U = RKℓ(A, v,Σℓ) we get a problem of rational approximation with fixed poles
||x − xℓ||2 ≤ 2 · min

r(z)∈ Pℓ
qℓ(z)

max
z∈[λmin,λmax]

|r(z)− f (z)|.

1last equality is valid only for distinct poles
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Rational approximation for matrix functions4 Past projects: Example 2
Goal. Provide selection strategies for Σℓ and estimates of the error ||x − xℓ||2.
Idea: Exploit the integral formulation of z−α = sin(απ)

π

∫∞
0

t−α

z+t dt we get:∫ ∞

0
(A + tI)−1v dµ(t) = f (A)v ≈ Uf (Aℓ)vℓ =

∫ ∞

0
U(Aℓ + tI)−1vℓ dµ(t).

Outcome:
Theorem

Let f (z) = z−α, α ∈ (0, 1), U be an orthogonal basis ofRKℓ(A, v,Σ∗
ℓ ) and xℓ = Uf (Aℓ)vℓ.

Then
||f (A)v − xℓ||2 ≤ 8f (λmin)||v||2ρℓ,

where ρ := exp

(
− π2

log
(

16 λmax
λmin

)
)
.
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Approximation via exponential sums5 New directions
Goal: Study both theoretically, and computationally the problem of finding anapproximation of f : C → C as

f (z) ≈
k∑

j=1

αj exp(βjz), αj, βj ∈ C.

• Fixed a compact region Ω ⊂ C, and a norm, how do the approximation error decaywith respect to k? What is the role of the regularity of f?
• The interpolation problem has been already studied (Prony’s method); what is thebest computational way to deal with the least squares approximation problem?
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Approximation via exponential sums5 New directions
• For functions defined via an integral transform, study the connection with therational approximation of the integrand.For instance in the case f (z) is the Laplace transform of φ(z)

f (z) =
∫ ∞

0
φ(t)e−ztdt ≈

∫ ∞

0

k∑
j=1

αj

z − βj
e−ztdt =

k∑
j=1

αj exp(βjz),

where∑k
j=1

αj
z−βj

is a rational approximation of φ(z).
• In the case f (z) = 1

z exploit exponential sums for preconditioning linear systemswith Kronecker structure like (A1 ⊗ I + I ⊗ A2)x = b, by means of the relation:
exp(A1 ⊗ I + I ⊗ A2) = exp(A1)⊗ exp(A2).
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New directions: dynamical hierarchical structures in PDEs5 New directions
• The solution of certain PDEs on 2D domains are rank-structured.• For evolutionary problems, such as the Burgers equation, the structure is timedependent.

Blue blocks: Full rank submatrices, Grey blocks: Low-rank submatrices20/21




New directions: dynamical hierarchical structures in PDEs5 New directions
Why not extending this framework to tensors?

=

Research questions/challenges:• Various possibilities for the representation of the low-rank blocks: Tucker, TensorTrain, Hierarchical Tucker, ...• How to identify an advantageous partitioning in an efficient way.• Under which circumstances we can mitigate the curse of dimensionality?
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