Computational Inverse Problems

Silvia Gazzola, Dipartimento di Matematica, Università di Pisa

Math PhD days at the University of Pisa

Already in a discrete setting:

$$
\mathbf{b} = F(\mathbf{x}) + \eta
$$

Already in a discrete setting:

$$
\mathbf{b} = F(\mathbf{x}) + \eta
$$

where

b - known vector (observed data)

Already in a discrete setting:

$$
\mathbf{b} = F(\mathbf{x}) + \eta
$$

where

- **b** known vector (observed data)
- \blacksquare F known function (models "forward problem")

Already in a discrete setting:

$$
\mathbf{b} = F(\mathbf{x}) + \eta
$$

where

- **b** known vector (observed data)
- \blacksquare F known function (models "forward problem")
- \blacksquare η unknown noise vector

Already in a discrete setting:

$$
\mathbf{b} = F(\mathbf{x}) + \eta
$$

where

- **b** known vector (observed data)
- \blacksquare F known function (models "forward problem")
- \blacksquare η unknown noise vector
- \blacksquare x unknown vector (what we want to find)

Already in a discrete setting:

$$
\mathbf{b} = F(\mathbf{x}) + \eta
$$

where

- \blacksquare **b** known vector (observed data)
- \blacksquare F known function (models "forward problem")
- \blacksquare η unknown noise vector
- \blacksquare x unknown vector (what we want to find)

Classes of inverse problems:

Linear: $F(x) = Ax$, where **A** is known matrix

Already in a discrete setting:

$$
\mathbf{b} = F(\mathbf{x}) + \eta
$$

where

- \blacksquare **b** known vector (observed data)
- \blacksquare F known function (models "forward problem")
- \blacksquare η unknown noise vector
- \blacksquare x unknown vector (what we want to find)

Classes of inverse problems:

Linear: $F(x) = Ax$, where **A** is known matrix

Nonlinear, or possibly separable linear: $F(\mathbf{x}) = \mathbf{A}(\mathbf{x}_1) \mathbf{x}_2$, $\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$ x_2

1

Ill-posed inverse problems often arise in Science and Engineering:

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Image deblurring (e.g., astronomy and biology applications)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering:

Image deblurring (e.g., astronomy and biology applications), linear

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. *Intro. to Inverse Problems in Imaging*. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering:

Image deblurring (e.g., astronomy and biology applications), separable nonlinear

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. *Intro. to Inverse Problems in Imaging*. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry)

$$
s = \int \psi(e) \exp\left(-\int_{t \in I} \mu(\vec{r}(t), e) dt\right) de + \eta = F(\mu)
$$

where

- $\mu(\vec{r}(t), e)$ is (unknown) linear attenuation coefficient.
- \blacksquare ψ can be estimated from machine calibration

\blacksquare s is measured projection data, usually displayed as "sinogram" Some general references:

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete Ill-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Computed (X-ray) tomography (e.g., medicine, industry), approx. linear

$$
\mathbf{s} = \int \psi(\mathbf{e}) \exp\left(-\int_{t \in I} \mu(\vec{r}(t), \mathbf{e}) dt\right) d\mathbf{e} + \mathbf{\eta} = F(\mu)
$$

$$
\mathbf{b} = \mathbf{A} \qquad \mathbf{x} + \mathbf{\eta}
$$

where

- $\mu(\vec{r}(t), e)$ is (unknown) linear attenuation coefficient.
- \blacksquare ψ can be estimated from machine calibration
- \blacksquare s is measured projection data, usually displayed as "sinogram" Some general references:
	- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
	- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
	- [3] Hansen. Rank-Deficient and Discrete III-Posed Probs., SIAM, 1997.
	- [4] Hansen et al. Computed Tomography, SIAM, 2021.
	- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
	- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.

[7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Seismic Imaging, through Full Waveform Inversion (FWI)

Some general references:

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete Ill-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.

[7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006. [Computational Inverse Problems](#page-0-0) 22/01/2025 3/10

Ill-posed inverse problems often arise in Science and Engineering: Seismic Imaging, through Full Waveform Inversion (FWI)

$$
b(\mathcal{P}, \omega, s) = \mathcal{R}(\mathcal{P})u(\mathbf{x}, \omega, s) + \eta, \text{ where } G(\mathbf{x}, \omega)u(\mathbf{x}, \omega, s) = f(s, \omega)
$$

where

- **n** constrained to the discretized acoustic frequency domain wave equation
- \bullet x is (unknown) square slowness

R sampling operator, P sensor locations, ω frequency, s sources Some general references:

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete Ill-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Ill-posed inverse problems often arise in Science and Engineering: Seismic Imaging, through Full Waveform Inversion (FWI), nonlinear

$$
b(\mathcal{P}, \omega, s) = \mathcal{R}(\mathcal{P})u(\mathbf{x}, \omega, s) + \eta, \text{ where } G(\mathbf{x}, \omega)u(\mathbf{x}, \omega, s) = f(s, \omega)
$$

b = $F(\mathbf{x}) + \eta$

where

- **n** constrained to the discretized acoustic frequency domain wave equation
- \bullet x is (unknown) square slowness

R sampling operator, P sensor locations, ω frequency, s sources Some general references:

- [1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.
- [2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.
- [3] Hansen. Rank-Deficient and Discrete Ill-Posed Probs., SIAM, 1997.
- [4] Hansen et al. Computed Tomography, SIAM, 2021.
- [5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.
- [6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.
- [7] Hansen, Nagy, O'Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

- existence
- uniqueness
- **stability** (i.e., the solution must depend continuously on the data)

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

- **Existence**
- uniqueness
- **stability** (i.e., the solution must depend continuously on the data)

Analytical study

E.g., convergence to exact solution as $||\eta|| \to 0$

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

- **E** existence
- uniqueness
- **stability** (i.e., the solution must depend continuously on the data)

Analytical study

E.g., convergence to exact solution as $||\eta|| \to 0$

Algorithmic approaches to computational inverse problems

E.g., variational formulations

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

- **E** existence
- uniqueness
- **stability** (i.e., the solution must depend continuously on the data)

Analytical study

- E.g., convergence to exact solution as $||\eta|| \to 0$
- Algorithmic approaches to computational inverse problems E.g., variational formulations
- Bayesian methods
	- E.g., involving likelihood and prior, allowing statistical and uncertainty estimates

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

- **existence**
- uniqueness
- **stability** (i.e., the solution must depend continuously on the data)

Analytical study

E.g., convergence to exact solution as $||\eta|| \to 0$

- Algorithmic approaches to computational inverse problems
	- E.g., variational formulations
- **Bayesian methods**

E.g., involving likelihood and prior, allowing statistical and uncertainty estimates

Machine learning

E.g., blended approach, involving data-driven regularization

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

- **E** existence
- uniqueness
- **stability** (i.e., the solution must depend continuously on the data)
- **Analytical study**

E.g., convergence to exact solution as $||\eta|| \to 0$

Algorithmic approaches to computational inverse problems E.g., variational formulations,

requiring (powerful) numerical linear algebra (NLA) and optimization routines

Bayesian methods

E.g., involving likelihood and prior, allowing statistical and uncertainty estimates

Machine learning

E.g., blended approach, involving data-driven regularization

Variational regularization methods for $Ax = b$

$$
\mathbf{x}_{\text{reg}} = \arg\min_{\mathbf{x} \in \mathcal{C}} \mathcal{J}(\mathbf{b} - \mathbf{A}\mathbf{x}) + \lambda \mathcal{R}(\mathbf{L}\mathbf{x}),
$$

$$
\mathcal{C} \subset \mathbb{R}^n
$$
 constraints
\n
$$
\mathcal{J}
$$
 fit-to-data functional
\n
$$
\mathcal{R}
$$
 regularization functional
\n
$$
\lambda \geq 0
$$
 regularization parameter
\n
$$
\mathbf{L} \in \mathbb{R}^{l \times n}
$$
 regularization matrix

Relevant examples:

■
$$
\mathcal{J}(\cdot) = || \cdot ||_2^2
$$
, $\lambda = 0$:
can be handled by *iterative regularization* (NLA)

 $\mathcal{J}(\cdot)=\mathcal{R}(\cdot)=\|\cdot\|_2^2$, $\boldsymbol{\mathsf{L}}=\boldsymbol{\mathsf{I}}$: std form Tikhonov regularization can be handled by SVD (NLA, small scale or structured pbs, only)

■
$$
\mathcal{J}(\cdot) = \|\cdot\|_p^p
$$
, $\mathcal{R}(\cdot) = \|\cdot\|_q^q$, $p, q > 0$: most general (possibly non-smooth, non-cvx optimization)

$$
\mathbf{x}_{\text{reg}} = \arg\min_{\mathbf{x} \in \mathcal{C}} \mathcal{J}(\mathbf{b} - \mathbf{A}\mathbf{x}) + \lambda \mathcal{R}(\mathbf{L}\mathbf{x})
$$

$$
\mathbf{x}_{\text{reg}} = \arg\min_{\mathbf{x} \in \mathcal{C}} \mathcal{J}(\mathbf{b} - \mathbf{A}\mathbf{x}) + \lambda \mathcal{R}(\mathbf{L}\mathbf{x})
$$

• choice of $\lambda \geq 0$: avoids *under-* or *over-regularization*

$$
\mathbf{x}_{\text{reg}} = \arg\min_{\mathbf{x} \in \mathcal{C}} \mathcal{J}(\mathbf{b} - \mathbf{A}\mathbf{x}) + \lambda \mathcal{R}(\mathbf{L}\mathbf{x})
$$

n choice of $\lambda > 0$: avoids under- or over-regularization choice of $\mathcal{R}(L)$: enforce *prior* information on x_{reg}

$$
\mathbf{x}_{\text{reg}} = \arg\min_{\mathbf{x} \in \mathcal{C}} \mathcal{J}(\mathbf{b} - \mathbf{A}\mathbf{x}) + \lambda \mathcal{R}(\mathbf{L}\mathbf{x})
$$

• choice of $\lambda \geq 0$: avoids *under-* or *over-regularization* choice of $\mathcal{R}(L)$: enforce *prior* information on x_{reg} • choice of $\mathcal{J}(\cdot)$: accurate modeling of noise in **b**

$$
\mathbf{x}_{\text{reg}} = \arg\min_{\mathbf{x} \in \mathcal{C}} \mathcal{J}(\mathbf{b} - \mathbf{A}\mathbf{x}) + \lambda \mathcal{R}(\mathbf{L}\mathbf{x})
$$

- **n** choice of $\lambda > 0$: avoids under- or over-regularization
- choice of $\mathcal{R}(L)$: enforce *prior* information on x_{rec}
- choice of $\mathcal{J}(\cdot)$: accurate modeling of noise in **b**
- **handling realistic** *large-scale* settings

Hybrid projection methods

Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems: A Survey on Hybrid Projection Methods. SIAM Review, 66(2), May 2024

Hybrid projection methods

Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems: A Survey on Hybrid Projection Methods. SIAM Review, 66(2), May 2024

Within at iterative projection process for $\mathcal{J}(\cdot)=\mathcal{R}(\cdot)=\|\cdot\|_2^2$, at iteration $k \ll n$ (size of x):

Compute
$$
\mathbf{x}_{reg} = \mathbf{x}(k, \lambda_k) = \mathbf{V}_k \mathbf{y}(k, \lambda_k) \in \mathcal{V}_k
$$
,
where $\mathbf{y}(k, \lambda_k) = \arg \min_{\mathbf{y} \in \mathbb{R}^k} ||\mathbf{d}_k - \mathbf{T}_k \mathbf{y}||_2^2 + \lambda_k ||\mathbf{y}||_2^2$,

with automatic tuning of λ_k ; typically \mathcal{V}_k is a Krylov subspace.

Hybrid projection methods

Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems: A Survey on Hybrid Projection Methods. SIAM Review, 66(2), May 2024

Within at iterative projection process for $\mathcal{J}(\cdot)=\mathcal{R}(\cdot)=\|\cdot\|_2^2$, at iteration $k \ll n$ (size of x):

Compute
$$
\mathbf{x}_{reg} = \mathbf{x}(k, \lambda_k) = \mathbf{V}_k \mathbf{y}(k, \lambda_k) \in \mathcal{V}_k
$$
,
where $\mathbf{y}(k, \lambda_k) = \arg \min_{\mathbf{y} \in \mathbb{R}^k} ||\mathbf{d}_k - \mathbf{T}_k \mathbf{y}||_2^2 + \lambda_k ||\mathbf{y}||_2^2$,

with automatic tuning of λ_k ; typically \mathcal{V}_k is a Krylov subspace.

Bilevel learning (for $\mathcal{J}(\cdot)$, λ , $\mathcal{R}(L \cdot)$)

Crockett and Fessler. Bilevel Methods for Image Reconstruction. Foundations and Trends in Signal Processing, 2022

Hybrid projection methods

Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems: A Survey on Hybrid Projection Methods. SIAM Review, 66(2), May 2024

Within at iterative projection process for $\mathcal{J}(\cdot)=\mathcal{R}(\cdot)=\|\cdot\|_2^2$, at iteration $k \ll n$ (size of x):

Compute
$$
\mathbf{x}_{reg} = \mathbf{x}(k, \lambda_k) = \mathbf{V}_k \mathbf{y}(k, \lambda_k) \in \mathcal{V}_k
$$
,
where $\mathbf{y}(k, \lambda_k) = \arg \min_{\mathbf{y} \in \mathbb{R}^k} ||\mathbf{d}_k - \mathbf{T}_k \mathbf{y}||_2^2 + \lambda_k ||\mathbf{y}||_2^2$,

with automatic tuning of λ_k ; typically \mathcal{V}_k is a Krylov subspace.

Bilevel learning (for $\mathcal{J}(\cdot)$, λ , $\mathcal{R}(L \cdot)$)

Crockett and Fessler. Bilevel Methods for Image Reconstruction. Foundations and Trends in Signal Processing, 2022

Leveraging the availability of training data $\{\widehat{\mathbf{x}}_k, \widehat{\mathbf{b}}_k\}_k$, computing

$$
\mathcal{J}^*, \boldsymbol{\lambda}^*, \mathcal{R}^*, \boldsymbol{L}^* = \text{arg} \min_{\mathcal{J}, \boldsymbol{\lambda}, \mathcal{R}, \boldsymbol{L}} \frac{1}{2} \sum_k \|\widehat{\boldsymbol{x}}_k - \boldsymbol{x}_k(\mathcal{J}, \boldsymbol{\lambda}, \mathcal{R}, \boldsymbol{L})\|_2
$$

subject to $\mathbf{x}_k(\mathcal{J}, \lambda, \mathcal{R}, \mathbf{L}) = \arg\min_{\mathbf{x} \in \mathcal{C}} \mathcal{J}(\mathbf{b}_k - \mathbf{A}\mathbf{x}) + \lambda \mathcal{R}(\mathbf{L}\mathbf{x})$

Beyond 2-norm: needs 'non-standard' Krylov methods Linking flexible and generalized Krylov subspace methods to well-established optimization methods

Beyond linear problems: separable nonlinear pbs.

Collaborations with: James Nagy and Julianne Chung (Emory), Malena Sabat´e Landman (Oxford), Mirjeta Pasha (VT)

Beyond 2-norm: needs 'non-standard' Krylov methods Linking flexible and generalized Krylov subspace methods to well-established optimization methods

Beyond linear problems: separable nonlinear pbs.

Collaborations with: James Nagy and Julianne Chung (Emory), Malena Sabaté Landman (Oxford), Mirjeta Pasha (VT)

Beyond deterministic NLA: Randomized NLA E.g., randomized Krylov methods for more efficient projection methods Collaborations with: Julianne Chung (Emory)

Here in Pisa: Leonardo Robol, Alice Cortinovis (Informatica)

Beyond 2-norm: needs 'non-standard' Krylov methods Linking flexible and generalized Krylov subspace methods to well-established optimization methods

Beyond linear problems: separable nonlinear pbs.

Collaborations with: James Nagy and Julianne Chung (Emory), Malena Sabat´e Landman (Oxford), Mirjeta Pasha (VT)

Beyond deterministic NLA: Randomized NLA E.g., randomized Krylov methods for more efficient projection methods Collaborations with: Julianne Chung (Emory)

Here in Pisa: Leonardo Robol, Alice Cortinovis (Informatica)

Beyond linear algebra: multi-linear algebra Regularizing multi-dimensional problems in their native space E.g., undersampled spectromicroscopy (diamond @ UK's STFC) and multi-spectral tomography, with joint regularizers and embedded post-processing Here in Pisa: Leonardo Robol, Stefano Massei

Bilevel learning $\mathcal{L}_{\mathcal{A}}$

NLA (e.g., recycling) may empower (even) more efficient bilevel optimization methods, and cheaper computations (with Matthias Ehrhardt (Bath))

Bilevel learning

- NLA (e.g., recycling) may empower (even) more efficient bilevel optimization methods, and cheaper computations (with Matthias Ehrhardt (Bath))
- **n** Introducing and analysing new (non-supervised) bilevel optimization formulations

Bilevel learning

- NLA (e.g., recycling) may empower (even) more efficient bilevel optimization methods, and cheaper computations (with Matthias Ehrhardt (Bath))
- **Introducing and analysing new (non-supervised) bilevel optimization** formulations
- Optimal experimental design and fully optimized ((amount of) sources, frequencies) FWI

Bilevel learning

- NLA (e.g., recycling) may empower (even) more efficient bilevel optimization methods, and cheaper computations (with Matthias Ehrhardt (Bath))
- **Introducing and analysing new (non-supervised) bilevel optimization** formulations
- Optimal experimental design and fully optimized ((amount of) sources, frequencies) FWI

Here in Pisa: Stefano Massei, Cecilia Pagliantini

Bilevel learning

- NLA (e.g., recycling) may empower (even) more efficient bilevel optimization methods, and cheaper computations (with Matthias Ehrhardt (Bath))
- **Introducing and analysing new (non-supervised) bilevel optimization** formulations
- Optimal experimental design and fully optimized ((amount of) sources, frequencies) FWI

Here in Pisa: Stefano Massei, Cecilia Pagliantini

■ Software development

Bilevel learning

- NLA (e.g., recycling) may empower (even) more efficient bilevel optimization methods, and cheaper computations (with Matthias Ehrhardt (Bath))
- **Introducing and analysing new (non-supervised) bilevel optimization** formulations
- Optimal experimental design and fully optimized ((amount of) sources, frequencies) FWI

Here in Pisa: Stefano Massei, Cecilia Pagliantini

Software development: contributing to well-established packages

```
MATLAR's IR Tools
  Gazzola, Hansen, Nagy. IR TOOLS (2019),
  https://github.com/silviagazzola/IRtools
\blacksquare CIL
```

```
https://ccpi.ac.uk/cil/
```
Research in computational inverse problems is relevant and exciting!!!

Research in computational inverse problems is relevant and exciting!!!

■ Calls for a range of mathematical and computational techniques

Research in computational inverse problems is relevant and exciting!!!

■ Calls for a range of mathematical and computational techniques **Truly multi-disciplinary**

Research in computational inverse problems is relevant and exciting!!!

- Calls for a range of mathematical and computational techniques
- **Truly multi-disciplinary**
- Growing number of applications

Research in computational inverse problems is relevant and exciting!!!

- Calls for a range of mathematical and computational techniques
- **Truly multi-disciplinary**
- Growing number of applications

Some useful references:

- [1] Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems: A Survey on Hybrid Projection Methods. SIAM Review, 66(2), 2024
- [2] Crockett and Fessler. Bilevel Methods for Image Reconstruction. Foundations and Trends in Signal Processing, 2022
- [3] Martinsson and Tropp. Randomized numerical linear algebra: Foundations and algorithms. ACTA NUMERICA, 29, 2020

Research in computational inverse problems is relevant and exciting!!!

- Calls for a range of mathematical and computational techniques
- **Truly multi-disciplinary**
- Growing number of applications

Some useful references:

- [1] Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems: A Survey on Hybrid Projection Methods. SIAM Review, 66(2), 2024
- [2] Crockett and Fessler. Bilevel Methods for Image Reconstruction. Foundations and Trends in Signal Processing, 2022
- [3] Martinsson and Tropp. Randomized numerical linear algebra: Foundations and algorithms. ACTA NUMERICA, 29, 2020

Thanks for your attention!