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A framework for Inverse Problems

Already in a discrete setting:

b = F (x) + η

where

b - known vector (observed data)

F - known function (models “forward problem”)

η - unknown noise vector

x - unknown vector (what we want to find)

Classes of inverse problems:

Linear: F (x) = Ax, where A is known matrix

Nonlinear, or possibly separable linear: F (x) = A(x1) x2, x =

[
x1
x2

]
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Notable examples of inverse problems

Ill-posed inverse problems often arise in Science and Engineering:

xx

xx

xx

xx

xx

xx

Some general references:

[1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.

[2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.

[3] Hansen. Rank-Deficient and Discrete Ill-Posed Probs., SIAM, 1997.

[4] Hansen et al. Computed Tomography, SIAM, 2021.

[5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.

[6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.

[7] Hansen, Nagy, O’Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.
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Notable examples of inverse problems

Ill-posed inverse problems often arise in Science and Engineering:
Computed (X-ray) tomography (e.g., medicine, industry)
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Notable examples of inverse problems

Ill-posed inverse problems often arise in Science and Engineering:
Computed (X-ray) tomography (e.g., medicine, industry)

s =

∫
ψ(e)exp

(
−
∫
t∈l

µ (r⃗ (t) , e) dt

)
de + η = F (µ)

where

µ (r⃗ (t) , e) is (unknown) linear attenuation coefficient.

ψ can be estimated from machine calibration

s is measured projection data, usually displayed as “sinogram”
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Notable examples of inverse problems

Ill-posed inverse problems often arise in Science and Engineering:
Computed (X-ray) tomography (e.g., medicine, industry), approx. linear

s =

∫
ψ(e)exp

(
−
∫
t∈l

µ (r⃗ (t) , e)dt

)
de + η = F (µ)

b = A x + η

where

µ (r⃗ (t) , e) is (unknown) linear attenuation coefficient.

ψ can be estimated from machine calibration

s is measured projection data, usually displayed as “sinogram”
Some general references:

[1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.

[2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.

[3] Hansen. Rank-Deficient and Discrete Ill-Posed Probs., SIAM, 1997.

[4] Hansen et al. Computed Tomography, SIAM, 2021.

[5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.

[6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.

[7] Hansen, Nagy, O’Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.
Silvia Gazzola Computational Inverse Problems 22/01/2025 3 / 10



Notable examples of inverse problems

Ill-posed inverse problems often arise in Science and Engineering:
Seismic Imaging, through Full Waveform Inversion (FWI)

Some general references:

[1] Engl, Hanke, Neubauer. Regularization of Inverse Problems. Kluwer, 2000.

[2] Vogel. Computational Methods for Inverse Problems, SIAM, 2002.

[3] Hansen. Rank-Deficient and Discrete Ill-Posed Probs., SIAM, 1997.

[4] Hansen et al. Computed Tomography, SIAM, 2021.

[5] Mueller and Siltanen. Linear and Nonlinear Inverse Problems, SIAM, 2012.

[6] Bertero and Boccacci. Intro. to Inverse Problems in Imaging. IOP, 1998.

[7] Hansen, Nagy, O’Leary. Deblurring Images: Matr., Spectra and Filt., SIAM, 2006.
Silvia Gazzola Computational Inverse Problems 22/01/2025 3 / 10



Notable examples of inverse problems

Ill-posed inverse problems often arise in Science and Engineering:
Seismic Imaging, through Full Waveform Inversion (FWI)

b(P, ω, s) = R(P)u(x, ω, s) + η, where G(x, ω)u(x, ω, s) = f (s, ω)

where

constrained to the discretized acoustic frequency domain wave equation

x is (unknown) square slowness

R sampling operator, P sensor locations, ω frequency, s sources
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Notable examples of inverse problems

Ill-posed inverse problems often arise in Science and Engineering:
Seismic Imaging, through Full Waveform Inversion (FWI), nonlinear

b(P, ω, s) = R(P)u(x, ω, s) + η, where G(x, ω)u(x, ω, s) = f (s, ω)

b = F (x) + η

where

constrained to the discretized acoustic frequency domain wave equation

x is (unknown) square slowness

R sampling operator, P sensor locations, ω frequency, s sources
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Solution approaches

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

existence

uniqueness

stability (i.e., the solution must depend continuously on the data)

Analytical study
E.g., convergence to exact solution as ∥η∥ → 0
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Solution approaches, using regularization

Dealing with ill-posed problems, i.e., violate well-posedness (Hadamard):

existence

uniqueness

stability (i.e., the solution must depend continuously on the data)

Analytical study
E.g., convergence to exact solution as ∥η∥ → 0

Algorithmic approaches to computational inverse problems
E.g., variational formulations,

requiring (powerful) numerical linear algebra (NLA) and optimization routines

Bayesian methods
E.g., involving likelihood and prior, allowing statistical and uncertainty estimates

Machine learning
E.g., blended approach, involving data-driven regularization
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Variational regularization methods for Ax = b

xreg = argmin
x∈C

J (b− Ax) + λR(Lx),

C ⊂ Rn constraints
J fit-to-data functional
R regularization functional
λ ≥ 0 regularization parameter
L ∈ Rl×n regularization matrix

Relevant examples:

J (·) = ∥ · ∥22, λ = 0:
can be handled by iterative regularization (NLA)

J (·) = R(·) = ∥ · ∥22, L = I: std form Tikhonov regularization
can be handled by SVD (NLA, small scale or structured pbs, only)

J (·) = ∥ · ∥pp, R(·) = ∥ · ∥qq, p, q > 0:
most general (possibly non-smooth, non-cvx optimization)
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Ever-present challenges in variational regularization...

xreg = argmin
x∈C

J (b− Ax) + λR(Lx)

choice of λ ≥ 0: avoids under- or over-regularization

choice of R(L·): enforce prior information on xreg

choice of J (·): accurate modeling of noise in b

handling realistic large-scale settings
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... and possible common frameworks to address them

Hybrid projection methods
Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems:
A Survey on Hybrid Projection Methods. SIAM Review, 66(2), May 2024

Within at iterative projection process for J (·) = R(·) = ∥ · ∥22,
at iteration k ≪ n (size of x):

Compute xreg = x(k, λk) = Vky(k, λk) ∈ Vk ,

where y(k, λk) = arg min
y∈Rk

∥dk − Tky∥22 + λk∥y∥22,

with automatic tuning of λk ; typically Vk is a Krylov subspace.

Bilevel learning (for J (·), λ, R(L·))
Crockett and Fessler. Bilevel Methods for Image Reconstruction.
Foundations and Trends in Signal Processing, 2022

Leveraging the availability of training data {x̂k , b̂k}k , computing

J ∗, λ∗,R∗,L∗ = arg min
J ,λ,R,L

1

2

∑
k

∥x̂k − xk(J , λ,R,L)∥2

subject to xk(J , λ,R,L) = argmin
x∈C

J (bk − Ax) + λR(Lx)
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Bilevel learning (for J (·), λ, R(L·))
Crockett and Fessler. Bilevel Methods for Image Reconstruction.
Foundations and Trends in Signal Processing, 2022

Leveraging the availability of training data {x̂k , b̂k}k , computing

J ∗, λ∗,R∗,L∗ = arg min
J ,λ,R,L

1

2

∑
k

∥x̂k − xk(J , λ,R,L)∥2

subject to xk(J , λ,R,L) = argmin
x∈C

J (bk − Ax) + λR(Lx)
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Recent and future projects: hybrid projection methods

Beyond 2-norm: needs ‘non-standard’ Krylov methods
Linking flexible and generalized Krylov subspace methods to well-established

optimization methods

Beyond linear problems: separable nonlinear pbs.

Collaborations with: James Nagy and Julianne Chung (Emory), Malena Sabaté
Landman (Oxford), Mirjeta Pasha (VT)

Beyond deterministic NLA: Randomized NLA
E.g., randomized Krylov methods for more efficient projection methods
Collaborations with: Julianne Chung (Emory)

Here in Pisa: Leonardo Robol, Alice Cortinovis (Informatica)

Beyond linear algebra: multi-linear algebra
Regularizing multi-dimensional problems in their native space
E.g., undersampled spectromicroscopy (diamond @ UK’s STFC) and multi-spectral
tomography, with joint regularizers and embedded post-processing
Here in Pisa: Leonardo Robol, Stefano Massei
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Recent and future projects: bilevel learning and beyond

Bilevel learning
NLA (e.g., recycling) may empower (even) more efficient bilevel
optimization methods, and cheaper computations (with Matthias
Ehrhardt (Bath))
Introducing and analysing new (non-supervised) bilevel optimization
formulations
Optimal experimental design and fully optimized ((amount of) sources,
frequencies) FWI

Here in Pisa: Stefano Massei, Cecilia Pagliantini

Software development: contributing to well-established packages
MATLAB’s IR Tools
Gazzola, Hansen, Nagy. IR Tools (2019),
https://github.com/silviagazzola/IRtools

CIL
https://ccpi.ac.uk/cil/
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This is not the end of the story...

Research in computational inverse problems
is relevant and exciting!!!

Calls for a range of mathematical and computational techniques

Truly multi-disciplinary

Growing number of applications

Some useful references:

[1] Chung and Gazzola. Computational Methods for Large-Scale Inverse Problems:
A Survey on Hybrid Projection Methods. SIAM Review, 66(2), 2024

[2] Crockett and Fessler. Bilevel Methods for Image Reconstruction.
Foundations and Trends in Signal Processing, 2022

[3] Martinsson and Tropp. Randomized numerical linear algebra: Foundations and
algorithms. Acta Numerica, 29, 2020

Thanks for your attention!
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