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Persistent homology

Multiscale data analysis via parametrized functors [0,∞) → C:

Key ingredients:

applying homology to land in vec

parametrization by a linear poset category like [0,∞) ⊆ R
tameness
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Reason for these choices

Gabriel's Theorem (1972)

Let Q be a �nite connected poset category and let vec the

category of �nite dimensional vector spaces over a �eld F. Then,
there are �nitely many isomorphism classes of indecomposable

functors in Fun (Q,vec) if and only if Q is of Dynkin type.

Structure theorem

For the poset is [n] = {0 < 1 < · · · < n}, every functor in

Fun ([n],vec) uniquely decomposes as a direct sum of functors

of the form

0 · · · 0 F · · · F 0 · · · 0

0 s t n

id id
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Barcodes of parametrized vector spaces

Corollary

Left Kan extending along [n] ⊂ [0,∞), from

Y : [n] → vec

we obtain

X : [0,∞) → vec

which can be identi�ed with a set of intervals

Bar(X) = {[si, ti)}i

called the barcode of X.
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The isometry theorem of Persistence

The interleaving distance between X,Y : [0,∞) → vec is

de�ned as

dI(X,Y ) := inf{ε > 0| ∃ ε-interleaving between X and Y },

where an ε-interleaving between X,Y is a pair of morphisms

ϕ : X → Y ▲+ε and ψ : Y → X▲+ε such that

· · ·X : Xt Xt+2ε

· · ·Y : Y t+ε

ϕt

ψt+ε

Xt≤t+2ε

Y t+3ε
Y t+ε≤t+3ε

ϕt+2ε

commutes for all t.
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The isometry theorem of Persistence

The bottleneck distance between two barcodes Bar and Bar′

is de�ned as

dB(Bar,Bar
′) := inf{c(M) | M ⊆ Bar× Bar′ is a matching}.

The cost of a matching M between two barcodes Bar,Bar′ is
de�ned as

c(M) := max

{
sup

(I,J)∈M
c(I, J), sup

I∈Bar∪Bar′ unmatched

c(I)

}
,

where for I = [s, t) and J = [s′, t′) we have

c(I, J) = max{|t− t′|, |s− s′|}, c(I) =
t− s

2
.

Theorem (Lesnick)

The interleaving distance on tame functors X,Y : [0,∞) → vec

is equal to the bottleneck distance on their corresponding

barcodes Bar(X) and Bar(Y ).
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The stability theorem

Stability theorem for functions (Cohen-Steiner et al.)

Given two real-valued continuous functions f, g de�ned on the

same topological space, let X,Y : [0,∞) → vec be parametrized

tame vector spaces given by

Xt := Hi(f
−1(−∞, t]) Y t := Hi(g

−1(−∞, t])

dI(X,Y ) ≤ ∥f − g∥∞

So, for every ε > 0 and every real-valued smooth function f ,
if g is a PL function ε-approximating f , then their barcodes are

ε-close in the bottleneck distance.
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Goals for this talk

What if we:

work directly with chain complexes in ch(vec)
generalize to other poset categories Q
want to maintain tameness
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Parametrized chain complexes

Functors X : Q → ch(vec) with Q a poset category and ch
the category of non-negative chain complexes of vector

spaces over a �eld F

C
h
a
in

C
o
m
p
le
x

X0
n Xt1

n · · · Xti
n X

ti+1
n · · ·

X0
n−1 Xt1

n−1 · · · Xti
n−1 X

ti+1

n−1 · · ·

∂0
n+2 ∂

t1
n+2 ∂

ti
n+2

∂
ti+1
n+2

∂0
n ∂

t1
n ∂

ti
n ∂

ti+1
n

∂0
n−1 ∂

t1
n−1 ∂

ti
n−1 ∂

ti+1
n−1

Q = [0,∞)

Natural transformations between them as morphisms.
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Tameness

Idea: X ∈ Fun(Q, ch(vec)) is tame if non-trivial in �nitely

many degrees + there is a �nite poset D ⊂ Q s.t. transition

morphisms Xs≤t : Xs → Xt may fail to be isomorphisms only

when [s, t) ∩ D ≠ ∅
· · ·

X0 Xt1 · · · · · · Xtn

Formally: X : Q → ch (vec) is tame if X is isomorphic to the

left Kan extension αkY along a poset map α : D → Q with D
�nite, of a functor Y : D → ch(vec) non-trivial only at �nitely

many degrees:
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How to obtain invariants (barcodes)

Tame (Q, ch (vec)) = full subcategory of tame functors in

Fun (Q, ch (vec))

Take an object X
in Tame (Q, ch (vec))

Decompose X into

�simple� indecomposables

We next examine 3 situations in which this is possible:

1 Q = [0,∞) and X �ltered

2 Q = [0,∞) and X factored

3 dimQ = 1 and X co�brant
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Filtered chain complexes

A �ltered chain complex is a tame parametrized chain

complex X : [0,∞) → ch(vec)) whose transition morphisms

Xs<t : Xs → Xt are monomorphisms.

· · ·
X0

• Xt1
• · · · · · · Xtn

•

Structure Theorem

Each �ltered chain complex decomposes into a �nite direct sum

X =
⊕

n

⊕
[b,d)∈Barn

In [b, d) where In [b, d) is

· · · 0 0 · · · 0 F · · ·

· · · 0 F · · · F F · · ·

··· b−ε b ··· d−ε d ···

n+1

n

[Chachólski-Giunti-L. 2021: Invariants for tame parametrised chain complexes]
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Application: A persistence algorithm

decomposition of tame

�ltered chain complexes
=⇒ decomposition of tame

parametrized vector spaces

For a parametrized simpicial complex K0 ⊆ K1 ⊆ · · · ⊆ K, do:

Find two simplices σi and σj s.t. σj ∈ ∂σi & σi has the
latest entrance time t among cofaces of σj & σj has the
earliest entrance time s among faces of σi

Append [b, d) to the list of bars of degree n = dimσj

Split In[b, d) from ch(K▲)

Repeat until possible, then append [b,∞) to the list of bars

of degree n = dimσ for every remaining σ

[Chachólski-Giunti-Jin-L. 2023: Decomposing �ltered chain complexes]
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Factored chain complexes

A tame parametrized chain complex X : [0,∞) → ch(vec) is
called factored if its transition morphisms Xs<t : Xs → Xt are

epimorphisms.

· · ·
X0

• Xt1
• · · · · · · Xtn

•

Structure Theorem

Any factored chain complex is isomorphic to a �nite direct sum

of indecomposables of the form

In [0, s, t)︸ ︷︷ ︸
tagged interval

=
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Isometry Theorem on factored chain complexes

A tagged barcode is a multiset of tagged intervals [0, s, t) :=
the interval [0, t) + a distinguished point s ∈ [0, t].

Given two tagged intervals I = [0, s, t), J = [0, s′, t′), we set

c(I, J) := max{|t− t′|, |s− s′|}
c(I) := t

2

yielding a well-de�ned generalized bottleneck distance of

tagged barcodes.

Also, we have the generalized interleaving distance on

parametrized chain complexes.

Isometry Theorem

For any factored chain complexes X,Y ,

dI(X,Y ) = max
n∈N

dB(tBarn(X), tBarn(Y )).
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Application: tagged barcodes for vector �elds

gradient-like

vector �eld v

weighted based

Morse Complex

(MC•(v),B•,w•)

factored

chain complex

X(MC•(v)

tagged barcode∐
n,i(n, [0, si, ti))
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Gradient-like Morse Smale vector �elds

Vector �elds on a closed manifold M that are:

gradient-like, i.e. without closed orbits

Morse-Smale, i.e. with only hyperbolic singularities

whose stable and unstable manifolds are transversal

We also �x a Riemannian structure on M .

21 / 35



vector �eld −→ Morse complex

The Morse complex MC•(v) is the chain complex where

MCk(v) is the free F-vector space generated by the singular

points of index k of v

∂ : MCk(v) → MCk−1(v) is de�ned by counting (mod 2)

the �owlines between singular points of adjecent index.

F2

F4

F2

∂2 =


1 1
1 1
1 1
1 1



∂1

[
1 1 1 1
1 1 1 1

]

(F = Z2)
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Morse complex −→ weighted based chain complex

We can turn MC•(v) into a weighted based chain complex

by chosing for all k:

as basis Bk of Ck the set of singular points of v of index k

weights wk : Bk × Bk−1 → [0,∞) given by the distance

d(a, b) for all a ∈ Bk and b ∈ Bk−1.

If v is in general position, i.e. the distances between its

singular points are pairwise distinct, then MC•(v) is generic,
i.e. wk is injective.
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weighted based Morse complex −→ factored chain
complex

Given v a Morse-Smale vector �eld in general position, we

de�ne the factored chain complex X = X(v) as follows:

Set t0 = 0 and let Xt0 = MC(v).

Assume we have already de�ned a sequence of chain
complexes Xt0 → Xt1 → · · · → Xti . We de�ne

ti+1 := ti + d(a, b), where (a, b) is the pair of critical points
with b in ∂(a) and the smallest distance.

Xti+1 := Xti/⟨a, ∂a⟩ the result of simplifying Xti along the

pair (a, b).
For ti < t < ti+1 we de�ne Xt := Xti and for

ti ≤ t ≤ s < ti+1 we de�ne Xs≤t = 1.

When we reach the point where all the di�erentials in the

chain complex Xtr are zero, then we stop the algorithm and

de�ne Xt = Xtr for all tr < t <∞ and Xt≤s = 1 for all

tr ≤ t ≤ s <∞.
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Stability

Theorem

The function v 7→ tBar(X(v)) is a continuous map if we endow

the space of tagged barcodes with the intereleaving distance and

the space of gradient-like Morse-Smale vector �elds in general

position with Whitney C1-topology.

7→

25 / 35



Proof Sketch

Let v ∈ XgMS+(M) and let ε > 0. Denote by Sing(v) the set of
singular points of v.
Since Morse-Smale vector �elds are structurally stable and

their singular points are locally structurally stable, there

exists a neighbourhoud N of v in XgMS+(M) such that for all

w ∈ N we have

∀p ∈ Sing(v) ∃! q ∈ Sing(w) : d(p, q) ≤ ε.

The vector �elds v and w are topologically equivalent.

=⇒ The algorithm applied to v and w simpli�es pairs of

corresponding singular points.

=⇒ dI(X(v), X(w)) ≤ nε, where n = | Sing(v)|.
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Combinatorial approximation

Theorem

Let M be an oriented Riemannian manifold and let

v ∈ XgMS+(M). Let (M ′, ϕ, V ) be a triangulation of v. Then for

every ε > 0 there exists N ∈ N such that for all n ≥ N we have

dI
(
X(MC•(v)), X(MC•(∆

n(V )))
)
< ε.

[Bannwart-L.: Tagged barcodes for the topological analysis of gradient-like
vector �elds] 27 / 35
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Issues with the general case

problems with Fun(Q, ch(vec)) if the poset is not �nite
tameness is not preserved by taking �nite limits

some choices of Q solve the issues
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One-dimensional posets

A poset Q has dimension 1 if for every x in Q, Q < x is empty

or for any two noncomparable elements y, z in Q < x, whose
least upper bound is x, there is no common lower bound.
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Realizations of posets

The realisation of a poset of dimension 1 is the disjoint union

of Q and ⨿x∈Q ⨿y∈P(x) (−1, 0). It is again of dimension 1.

If Q is the realization of a poset of dimension 1, then
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Co�brant replacements

The model structure on Tame(Q, ch(vec)) is such that each

object X admits a unique up to isomorphism minimal

co�brant replacement Y i.e. there is φ : Y → X such that:

φ is an epimorphism at each positive degree and a

quasi-isomorphism

Y is free in each degree

all summands of Y are acyclic

We think about a minimal co�brant replacement Y as a

simplifying approximation of X.
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Structure theorem for co�brant objects

Structure Theorem

Each co�brant object in Tame (Q, ch (vec)) is isomorphic to a

direct sum of indecomposables X, each one degreewise-free and

nonzero in at most two consecutive degrees with di�erentials

being monomorphisms:

if X is acyclic, then it is isomorphic to F(x,−)
id−→ F(x,−)

in degrees i and i− 1,

otherwise, there is a unique i such that if Hi(X) ̸= 0, and
X is isomorphic to P = P1 ↪→ P0, where P is the minimal

free resolution of Hi(X) in Tame (Q,vec).

[Chachólski-Giunti-L.-Tombari: Abelian and model structures on tame
functors]
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Counter-example for higher dimensional posets

Not true for posets with dimension strictly greater than 1: the

following parametrized chain complex is degree-wise free and

indecomposable but nonzero in four consecutive degrees.
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Conclusions

Take home message:

Parametrized chain complexes are a wealthy source of invariants

for persistence theory

Thank you for your attention!
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