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m applying homology to land in vec
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Key ingredients:

m parametrization by a linear poset category like [0,00) C R

m tameness
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Reason for these choices

Gabriel’s Theorem (1972)

Let Q be a finite connected poset category and let vec the
category of finite dimensional vector spaces over a field F. Then,
there are finitely many isomorphism classes of indecomposable
functors in Fun (Q, vec) if and only if Q is of Dynkin type.

Structure theorem

For the poset is [n] = {0 < 1 < --- < n}, every functor in
Fun ([n], vec) uniquely decomposes as a direct sum of functors

of the form
0 s ¢
0—» -0 — F 14y dep 50 ,
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Barcodes of parametrized vector spaces

Left Kan extending along [n] C [0, 00), from
Y : [n] — vec

we obtain
X :[0,00) — vec

which can be identified with a set of intervals
Bar(X) = {[Si, tz)}z

called the barcode of X.

5/ 35



The isometry theorem of Persistence

The interleaving distance between X, Y : [0,00) — vec is
defined as

dr(X,Y) :=inf{e > 0| 3 e-interleaving between X and Y},

where an e-interleaving between X,Y is a pair of morphisms
¢: X - Y2 and ¢: Y — XA such that

Xt§t+2€
X: X X >
wt—i—a ¢t+2e
¢t
Yt+€§t+3s
V.o Yt-‘ra Yt+36

commutes for all ¢.
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The isometry theorem of Persistence

The bottleneck distance between two barcodes Bar and Bar’
is defined as
dp(Bar,Bar’) := inf{c(M) | M C Bar x Bar’ is a matching}.

The cost of a matching M between two barcodes Bar, Bar’ is
defined as

¢(M):=max{ sup c(1,J), sup c(l) p,
(I,J)em IeBarUBar’ unmatched

where for I = [s,t) and J = [¢/,t') we have
t—s

c(I,J) = max{|t —t|,|s — §'|}, c(l) = 5

Theorem (Lesnick)

The interleaving distance on tame functors X,Y : [0, 00) — vec
is equal to the bottleneck distance on their corresponding
barcodes Bar(X) and Bar(Y).
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The stability theorem

Stability theorem for functions (Cohen-Steiner et al.)

Given two real-valued continuous functions f, g defined on the
same topological space, let X,Y : [0, 00) — vec be parametrized
tame vector spaces given by

Xt = Hy(fY—o00,t]) Y*':=H;(g (—o00,t])

di(X,Y) < ||f — gl
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The stability theorem

Stability theorem for functions (Cohen-Steiner et al.)

Given two real-valued continuous functions f, g defined on the
same topological space, let X,Y : [0, 00) — vec be parametrized
tame vector spaces given by

Xt = Hy(fY—o00,t]) Y*':=H;(g (—o00,t])
dr(X,Y) <||f — gl

So, for every € > 0 and every real-valued smooth function f,
if g is a PL function e-approximating f, then their barcodes are
e-close in the bottleneck distance.
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Goals for this talk

What if we:
m work directly with chain complexes in ch(vec)
m generalize to other poset categories Q
m want to maintain tameness

Data 8
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(@ Parametrized chain complexes
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Parametrized chain complexes

m Functors X : @ — ch(vec) with Q a poset category and ch
the category of non-negative chain complexes of vector
spaces over a field F
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Q=10,00)
m Natural transformations between them as morphisms.
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Tameness

Idea: X € Fun(Q, ch(vec)) is tame if non-trivial in finitely
many degrees + there is a finite poset D C Q s.t. transition
morphisms X*<f: X¥ — X! may fail to be isomorphisms only
when [s,t) N D # ()

XO th *}th

~
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Tameness

Idea: X € Fun(Q, ch(vec)) is tame if non-trivial in finitely
many degrees + there is a finite poset D C Q s.t. transition
morphisms X*<f: X¥ — X! may fail to be isomorphisms only
when [s,t) N D # ()

XO th *}th

~

Formally: X: Q — ch(vec) is tame if X is isomorphic to the
left Kan extension oY along a poset map a: D — Q with D

finite, of a functor Y: D — ch(vec) non-trivial only at finitely
many degrees:

Indexing poset

D—=—Q

b

Discretisi t
iscretising pose vect
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How to obtain invariants (barcodes)

Tame (Q, ch (vec)) = full subcategory of tame functors in
Fun (Q, ch (vec))

Take an object X | Decompose X into
in Tame (Q, ch (vec)) “simple” indecomposables

We next examine 3 situations in which this is possible:

@ Q=[0,00) and X filtered
@ Q=[0,00) and X factored
® dim Q =1 and X cofibrant
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Filtered chain complexes

A filtered chain complex is a tame parametrized chain
complex X : [0,00) — ch(vec)) whose transition morphisms
X5<t: X% — X! are monomorphisms.

X.O( le( ...(_>X£n
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Filtered chain complexes

A filtered chain complex is a tame parametrized chain
complex X : [0,00) — ch(vec)) whose transition morphisms
X5<t: X¢ — X! are monomorphisms.

X?r Xflr %Xﬁn

Structure Theorem

Each filtered chain complex decomposes into a finite direct sum
X=0, @[b,d)eBarn I [b,d) where I"™ [b,d) is

w

b—e b d—e d
> 0 > 0 > 0 > F 5 n+1
> 0 > F > F s S ... M

[Chacholski-Giunti-L. 2021: Invariants for tame parametrised chain complexes]
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Application: A persistence algorithm

[
decomposition of tame . decomposition of tame
filtered chain complexes parametrized vector spaces
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Application: A persistence algorithm

decomposition of tame . decomposition of tame
filtered chain complexes parametrized vector spaces

%r a parametrized simpicial complex K% C K' C --- C K, do:
m Find two simplices 0; and o0; s.t. 0; € 0o; & o; has the
latest entrance time ¢ among cofaces of o; & o; has the
earliest entrance time s among faces of o;

m Append [b,d) to the list of bars of degree n = dimo;
m Split I™[b, d) from ch(K*)
m Repeat until possible, then append [b, 00) to the list of bars

of degree n = dim o for every remaining o

[Chacholski-Giunti-Jin-L. 2023: Decomposing filtered chain complexes]
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Factored chain complexes

A tame parametrized chain complex X : [0,00) — ch(vec) is
called factored if its transition morphisms X*<!: X* — X! are
epimorphisms.
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Factored chain complexes

A tame parametrized chain complex X : [0,00) — ch(vec) is
called factored if its transition morphisms X*<*: X* — X are
epimorphisms.

XO le N H')an

~

Structure Theorem
Any factored chain complex is isomorphic to a finite direct sum
of indecomposables of the form

0 s t
— . . . T
! Lol Lol
0 — i 50— 00— e s ) s ) —— -
4 1 { { {

WAL [O,S,t) =N F N s F S F—y e — s F— 30— .-
—— ! Lol Loy
tagged interval N1 F— . —F—0— - —— 00— 00— -

+ 1 4 d 1
0— i —0—0— -+ — 00— 0—— -
! 1 1 { {
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Isometry Theorem on factored chain complexes

A tagged barcode is a multiset of tagged intervals [0, s,t) :=
the interval [0,¢) + a distinguished point s € [0, ¢].

Given two tagged intervals I = [0, s,t),J = [0,s',t"), we set

m c(,J) :=max{|t —t'|,|s — §|}

mc(]):= %
yielding a well-defined generalized bottleneck distance of
tagged barcodes.

Also, we have the generalized interleaving distance on
parametrized chain complexes.

Isometry Theorem

For any factored chain complexes X, Y,

di(X,Y) = max dp(tBar,(X), tBar,(Y)).
ne
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Application: tagged barcodes for vector fields

gradient-like
vector field v

weighted based
Morse Complex
(MCq(v), Be, W)

factored
chain complex
X (MC,(v)

tagged barcode
Hn,i(n7 [03 Siy tl))
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Gradient-like Morse Smale vector fields

Vector fields on a closed manifold M that are:
m gradient-like, i.e. without closed orbits

m Morse-Smale, i.e. with only hyperbolic singularities
whose stable and unstable manifolds are transversal

We also fix a Riemannian structure on M.
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vector field — Morse complex

The Morse complex MC,(v) is the chain complex where
m MCyg(v) is the free F-vector space generated by the singular
points of index k of v
m 0: MCg(v) = MCg_1(v) is defined by counting (mod 2)
the flowlines between singular points of adjecent index.

2
F 11
11
=111
11
F4
; N 1111
A% 01[1111]
+ 1
+
(— P ]FQ
l-) Jr-)
(F = Zs)
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Morse complex — weighted based chain complex

We can turn MC,(v) into a weighted based chain complex
by chosing for all k:

m as basis By of Cj the set of singular points of v of index k
m weights wy: By x Bi_1 — [0,00) given by the distance
d(a,b) for all a € B, and b € By_;.

If v is in general position, i.e. the distances between its
singular points are pairwise distinct, then MC,(v) is generic,
i.e. Wy is injective.
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weighted based Morse complex — factored chain
complex

Given v a Morse-Smale vector field in general position, we
define the factored chain complex X = X (v) as follows:

m Set to = 0 and let X% = MC(v).

m Assume we have already defined a sequence of chain
complexes X% — X — ... — X% We define

m t;1q :=t; +d(a,b), where (a,b) is the pair of critical points
with b in d(a) and the smallest distance.

m X'+ = X' /(a,0a) the result of simplifying X' along the
pair (a,b).

m For t; <t < t;;1 we define X* := X% and for
t; <t <s <t wedefine X< = 1.

m When we reach the point where all the differentials in the
chain complex X' are zero, then we stop the algorithm and
define Xt = Xt for all ¢, < t < oo and X*<* =1 for all
t, <t<s<oo.
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Stability

Theorem

The function v — tBar(X(v)) is a continuous map if we endow
the space of tagged barcodes with the intereleaving distance and
the space of gradient-like Morse-Smale vector fields in general
position with Whitney C'-topology.

deg
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Proof Sketch

Let v € Xyms+ (M) and let € > 0. Denote by Sing(v) the set of
singular points of v.

Since Morse-Smale vector fields are structurally stable and
their singular points are locally structurally stable, there
exists a neighbourhoud N of v in Xgars4 (M) such that for all
w € N we have

m Vp € Sing(v) 3! ¢ € Sing(w): d(p,q) < e.

m The vector fields v and w are topologically equivalent.

= The algorithm applied to v and w simplifies pairs of
corresponding singular points.

= d;(X(v), X(w)) < ne, where n = | Sing(v)|.
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Combinatorial approximation

Theorem

Let M be an oriented Riemannian manifold and let
v € Xgms+(M). Let (M',¢,V) be a triangulation of v. Then for
every € > 0 there exists N € N such that for all n > N we have

dr (X(MCs(v)), X (MCW(A™(V)))) <e.

) L L P
S 1T
I v
Ir N 9 ~=
o/ V't
v
'S -
\ | ’
\ 4 9 4 9 > 4
< 5 an

[Bannwart-L.: Tagged barcodes for the topological analysis of gradient-like
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Issues with the general case

Tame(Q, ch(vect)) C Fun(Q, ch(vect))

Abelian x

Model X X

m problems with Fun(Q, ch(vec)) if the poset is not finite
m tameness is not preserved by taking finite limits

m some choices of Q solve the issues
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One-dimensional posets

A poset Q has dimension 1 if for every z in Q, Q < x is empty
or for any two noncomparable elements y, z in Q < z, whose
least upper bound is x, there is no common lower bound.

X AN

VAN

trees

zig-zags
fences
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Realizations of posets

The realisation of a poset of dimension 1 is the disjoint union
of @ and e Hyep(z) (—1,0). It is again of dimension 1.

YA

zig-zags
fences

trees

If O is the realization of a poset of dimension 1, then

Tame(Q, ch(vect)) C Fun(Q, ch(vect))

Abelian

Model X
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Cofibrant replacements

The model structure on Tame(Q, ch(vec)) is such that each
object X admits a unique up to isomorphism minimal
cofibrant replacement Y i.e. there is ¢: Y — X such that:

m  is an epimorphism at each positive degree and a
quasi-isomorphism
m Y is free in each degree

m all summands of Y are acyclic

We think about a minimal cofibrant replacement Y as a
simplifying approximation of X.
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Structure theorem for cofibrant objects

Structure Theorem

Each cofibrant object in Tame (Q, ch (vec)) is isomorphic to a
direct sum of indecomposables X, each one degreewise-free and
nonzero in at most two consecutive degrees with differentials
being monomorphisms:
m if X is acyclic, then it is isomorphic to F(z, —) u, F(x,-)
in degrees ¢ and ¢ — 1,
m otherwise, there is a unique 4 such that if H;(X) # 0, and
X is isomorphic to P = P; < Py, where P is the minimal
free resolution of H;(X) in Tame (Q, vec).

[Chacholski-Giunti-L.-Tombari: Abelian and model structures on tame
functors]
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Counter-example for higher dimensional posets

Not true for posets with dimension strictly greater than 1: the
following parametrized chain complex is degree-wise free and
indecomposable but nonzero in four consecutive degrees.

. /.\ g P (i
NN - b
NSNS

NS ]
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Conclusions

Take home message:

Parametrized chain complexes are a wealthy source of invariants
for persistence theory
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Conclusions

Take home message:

Parametrized chain complexes are a wealthy source of invariants
for persistence theory

Thank you for your attention!
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