Tame functors from posets to chain complexes

Claudia Landi

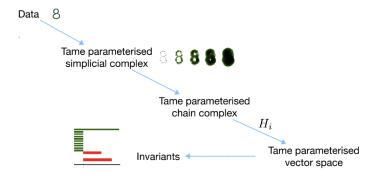
University of Modena and Reggio Emilia

Topology of Arrangements with an Eye to Applications Pisa, 1–5 Sept 2025

- 1 Preliminaries on Persistence Theory
- 2 Parametrized chain complexes
- 3 The filtered case
- 4 The factored case
- 5 The general case

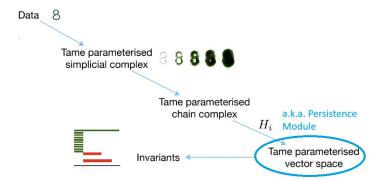
Persistent homology

Multiscale data analysis via parametrized functors $[0, \infty) \to \mathcal{C}$:



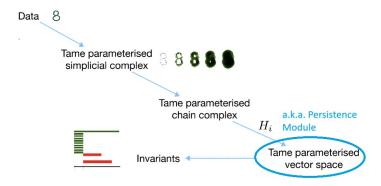
Persistent homology

Multiscale data analysis via parametrized functors $[0, \infty) \to \mathcal{C}$:



Persistent homology

Multiscale data analysis via parametrized functors $[0, \infty) \to \mathcal{C}$:



Key ingredients:

- applying homology to land in **vec**
- parametrization by a linear poset category like $[0, \infty) \subseteq \mathbb{R}$
- tameness

Reason for these choices

Gabriel's Theorem (1972)

Let \mathcal{Q} be a finite connected poset category and let **vec** the category of finite dimensional vector spaces over a field \mathbb{F} . Then, there are finitely many isomorphism classes of indecomposable functors in Fun $(\mathcal{Q}, \mathbf{vec})$ if and only if \mathcal{Q} is of Dynkin type.

Structure theorem

For the poset is $[n] = \{0 < 1 < \dots < n\}$, every functor in Fun $([n], \mathbf{vec})$ uniquely decomposes as a direct sum of functors of the form

Barcodes of parametrized vector spaces

Corollary

Left Kan extending along $[n] \subset [0, \infty)$, from

$$Y:[n]\to\mathbf{vec}$$

we obtain

$$X:[0,\infty)\to\mathbf{vec}$$

which can be identified with a set of intervals

$$Bar(X) = \{[s_i, t_i)\}_i$$

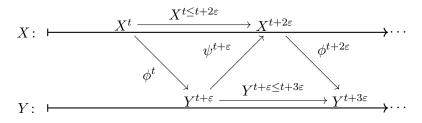
called the **barcode** of X.

The isometry theorem of Persistence

The interleaving distance between $X, Y : [0, \infty) \to \mathbf{vec}$ is defined as

$$d_I(X,Y) := \inf\{\varepsilon > 0 | \exists \varepsilon \text{-interleaving between } X \text{ and } Y\},$$

where an ε -interleaving between X, Y is a pair of morphisms $\phi \colon X \to Y^{\blacktriangle + \varepsilon}$ and $\psi \colon Y \to X^{\blacktriangle + \varepsilon}$ such that



commutes for all t.

The isometry theorem of Persistence

The **bottleneck distance** between two barcodes Bar and Bar' is defined as

$$d_B(\operatorname{Bar},\operatorname{Bar}') := \inf\{c(\mathcal{M}) \mid \mathcal{M} \subseteq \operatorname{Bar} \times \operatorname{Bar}' \text{ is a matching}\}.$$

The cost of a matching \mathcal{M} between two barcodes Bar, Bar' is defined as

$$c(\mathcal{M}) := \max \left\{ \sup_{(I,J) \in \mathcal{M}} c(I,J), \sup_{I \in \operatorname{Bar} \cup \operatorname{Bar}' \text{ unmatched}} c(I) \right\},$$

where for I = [s, t) and J = [s', t') we have

$$c(I, J) = \max\{|t - t'|, |s - s'|\}, \qquad c(I) = \frac{t - s}{2}.$$

Theorem (Lesnick)

The interleaving distance on tame functors $X, Y : [0, \infty) \to \mathbf{vec}$ is equal to the bottleneck distance on their corresponding barcodes Bar(X) and Bar(Y).

The stability theorem

Stability theorem for functions (Cohen-Steiner et al.)

Given two real-valued continuous functions f, g defined on the same topological space, let $X, Y : [0, \infty) \to \mathbf{vec}$ be parametrized tame vector spaces given by

$$X^{t} := H_{i}(f^{-1}(-\infty, t]) \quad Y^{t} := H_{i}(g^{-1}(-\infty, t])$$
$$d_{I}(X, Y) \le ||f - g||_{\infty}$$

So, for every $\varepsilon > 0$ and every real-valued smooth function f, if g is a PL function ε -approximating f, then their barcodes are ε -close in the bottleneck distance.

The stability theorem

Stability theorem for functions (Cohen-Steiner et al.)

Given two real-valued continuous functions f, g defined on the same topological space, let $X, Y : [0, \infty) \to \mathbf{vec}$ be parametrized tame vector spaces given by

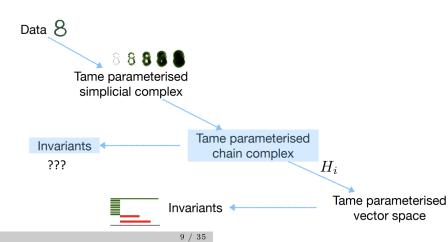
$$X^{t} := H_{i}(f^{-1}(-\infty, t]) \quad Y^{t} := H_{i}(g^{-1}(-\infty, t])$$
$$d_{I}(X, Y) \le ||f - g||_{\infty}$$

So, for every $\varepsilon > 0$ and every real-valued smooth function f, if g is a PL function ε -approximating f, then their barcodes are ε -close in the bottleneck distance.

Goals for this talk

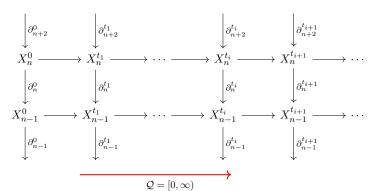
What if we:

- \blacksquare work directly with chain complexes in $\mathbf{ch}(\mathbf{vec})$
- lacktriangle generalize to other poset categories $\mathcal Q$
- want to maintain tameness



- 1 Preliminaries on Persistence Theory
- 2 Parametrized chain complexes
- 3 The filtered case
- 4 The factored case
- 5 The general case

■ Functors $X : \mathcal{Q} \to \mathbf{ch}(\mathbf{vec})$ with \mathcal{Q} a poset category and \mathbf{ch} the category of non-negative chain complexes of vector spaces over a field \mathbb{F}

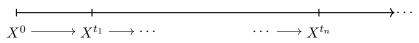


■ Natural transformations between them as morphisms.

Chain Complex

Tameness

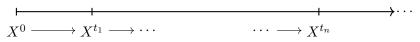
<u>Idea:</u> $X \in \text{Fun}(\mathcal{Q}, \mathbf{ch}(\mathbf{vec}))$ is **tame** if non-trivial in finitely many degrees + there is a finite poset $\mathcal{D} \subset \mathcal{Q}$ s.t. transition morphisms $X^{s \leq t} \colon X^s \to X^t$ may fail to be isomorphisms only when $[s,t) \cap \mathcal{D} \neq \emptyset$



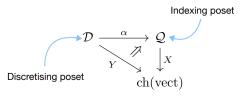
Formally: $X: \mathcal{Q} \to \mathbf{ch}$ (vec) is tame if X is isomorphic to the left Kan extension $\alpha^k Y$ along a poset map $\alpha: \mathcal{D} \to \mathcal{Q}$ with \mathcal{D} finite, of a functor $Y: \mathcal{D} \to \mathbf{ch}$ (vec) non-trivial only at finitely many degrees:

Tameness

<u>Idea:</u> $X \in \text{Fun}(\mathcal{Q}, \mathbf{ch}(\mathbf{vec}))$ is **tame** if non-trivial in finitely many degrees + there is a finite poset $\mathcal{D} \subset \mathcal{Q}$ s.t. transition morphisms $X^{s \leq t} \colon X^s \to X^t$ may fail to be isomorphisms only when $[s,t) \cap \mathcal{D} \neq \emptyset$



Formally: $X: \mathcal{Q} \to \mathbf{ch} \, (\mathbf{vec})$ is **tame** if X is isomorphic to the left Kan extension $\alpha^k Y$ along a poset map $\alpha: \mathcal{D} \to \mathcal{Q}$ with \mathcal{D} finite, of a functor $Y: \mathcal{D} \to \mathbf{ch} (\mathbf{vec})$ non-trivial only at finitely many degrees:



How to obtain invariants (barcodes)

Tame $(Q, \mathbf{ch}(\mathbf{vec}))$ = full subcategory of tame functors in Fun $(Q, \mathbf{ch}(\mathbf{vec}))$

Take an object
$$X$$
 in Tame $(Q, \mathbf{ch}(\mathbf{vec}))$ ---- "Decompose X into "simple" indecomposables

We next examine 3 situations in which this is possible:

- ① $Q = [0, \infty)$ and X filtered
- $\mathcal{Q} = [0, \infty)$ and X factored
- 3 dim Q = 1 and X cofibrant

- 1 Preliminaries on Persistence Theory
- 2 Parametrized chain complexes
- 3 The filtered case
- 4 The factored case
- 5 The general case

Filtered chain complexes

A filtered chain complex is a tame parametrized chain complex $X: [0, \infty) \to \mathbf{ch}(\mathbf{vec}))$ whose transition morphisms $X^{s < t} : X^s \to X^t$ are monomorphisms.

Structure Theorem

Each filtered chain complex decomposes into a finite direct sum $X = \bigoplus_n \bigoplus_{[b,d) \in \text{Bar}_n} I^n[b,d)$ where $I^n[b,d)$ is ... $b-\varepsilon$ b ... $d-\varepsilon$ d ... \cdots $0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots \longrightarrow 0 \longrightarrow \mathbb{F} \longrightarrow \cdots$ n+1

[Chachólski-Giunti-L. 2021: Invariants for tame parametrised chain complexes]

Filtered chain complexes

A filtered chain complex is a tame parametrized chain complex $X: [0, \infty) \to \mathbf{ch}(\mathbf{vec})$) whose transition morphisms $X^{s < t} \colon X^s \to X^t$ are monomorphisms.

$$X^0_{\bullet} \longrightarrow X^{t_1}_{\bullet} \longrightarrow \cdots \longrightarrow X^{t_n}_{\bullet}$$

Structure Theorem

Each filtered chain complex decomposes into a finite direct sum $X = \bigcap_{n \in \mathbb{N}} \bigcap_{n \in \mathbb{N}} I^n[b,d)$ where $I^n[b,d)$ is

$$X = \bigoplus_{n} \bigoplus_{[b,d) \in \text{Bar}_n} I^n [b,d) \text{ where } I^n [b,d) \text{ is}$$

$$\dots \qquad b-\varepsilon \qquad b \qquad \dots \qquad d-\varepsilon \qquad d \qquad \dots$$

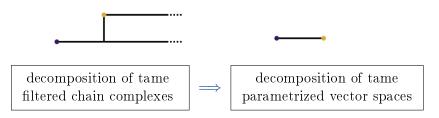
$$\dots \longrightarrow 0 \longrightarrow 0 \longrightarrow \dots \longrightarrow 0 \longrightarrow \mathbb{F} \longrightarrow \dots \qquad n+1$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

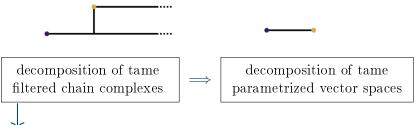
$$\dots \longrightarrow 0 \longrightarrow \mathbb{F} \longrightarrow \dots \longrightarrow \mathbb{F} \longrightarrow \dots \qquad n$$

[Chachólski-Giunti-L. 2021: Invariants for tame parametrised chain complexes]

Application: A persistence algorithm



Application: A persistence algorithm



For a parametrized simplicial complex $K^0 \subseteq K^1 \subseteq \cdots \subseteq K$, do:

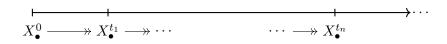
- Find two simplices σ_i and σ_j s.t. $\sigma_j \in \partial \sigma_i$ & σ_i has the latest entrance time t among cofaces of σ_j & σ_j has the earliest entrance time s among faces of σ_i
- Append [b,d) to the list of bars of degree $n = \dim \sigma_j$
- Split $I^n[b,d)$ from $\mathbf{ch}(K^{\blacktriangle})$
- Repeat until possible, then append $[b, \infty)$ to the list of bars of degree $n = \dim \sigma$ for every remaining σ

[Chachólski-Giunti-Jin-L. 2023: Decomposing filtered chain complexes]

- 1 Preliminaries on Persistence Theory
- 2 Parametrized chain complexes
- 3 The filtered case
- 4 The factored case
- 5 The general case

Factored chain complexes

A tame parametrized chain complex $X: [0, \infty) \to \mathbf{ch}(\mathbf{vec})$ is called **factored** if its transition morphisms $X^{s < t}: X^s \to X^t$ are epimorphisms.



Structure Theorem $\mathcal{I}^n[0,s,t] =$

Any factored chain complex is impropried to a finite direct sum of indecomposables of the form

Factored chain complexes

A tame parametrized chain complex $X \colon [0, \infty) \to \mathbf{ch}(\mathbf{vec})$ is called **factored** if its transition morphisms $X^{s < t} \colon X^s \to X^t$ are epimorphisms.

Structure Theorem

Any factored chain complex is isomorphic to a finite direct sum of indecomposables of the form

Isometry Theorem on factored chain complexes

A tagged barcode is a multiset of tagged intervals [0, s, t) := the interval [0, t) + a distinguished point $s \in [0, t]$.

Given two tagged intervals I = [0, s, t), J = [0, s', t'), we set

- $c(I, J) := \max\{|t t'|, |s s'|\}$
- $lacksquare c(I) := rac{t}{2}$

yielding a well-defined generalized bottleneck distance of tagged barcodes.

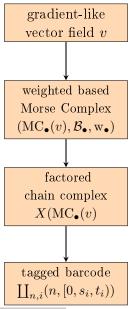
Also, we have the generalized **interleaving distance** on parametrized chain complexes.

Isometry Theorem

For any factored chain complexes X, Y,

$$d_I(X,Y) = \max_{n \in \mathbb{N}} d_B(\mathsf{tBar}_n(X), \mathsf{tBar}_n(Y)).$$

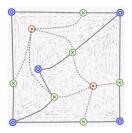
Application: tagged barcodes for vector fields



Gradient-like Morse Smale vector fields

Vector fields on a closed manifold M that are:

- gradient-like, i.e. without closed orbits
- Morse-Smale, i.e. with only hyperbolic singularities whose stable and unstable manifolds are transversal

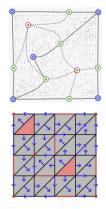


We also fix a Riemannian structure on M.

vector field \longrightarrow Morse complex

The Morse complex $MC_{\bullet}(v)$ is the chain complex where

- $MC_k(v)$ is the free \mathbb{F} -vector space generated by the singular points of index k of v
- $\partial: \mathrm{MC}_k(v) \to \mathrm{MC}_{k-1}(v)$ is defined by counting (mod 2) the flowlines between singular points of adjecent index.



$$\mathbb{F}^{2}$$

$$\downarrow \partial_{2} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\mathbb{F}^{4}$$

$$\downarrow \partial_{1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbb{F}^{2}$$

$$(\mathbb{F} = \mathbb{Z}_{2})$$

Morse complex → weighted based chain complex

We can turn $MC_{\bullet}(v)$ into a weighted based chain complex by chosing for all k:

- as basis \mathcal{B}_k of C_k the set of singular points of v of index k
- weights $\mathbf{w}_k \colon \mathcal{B}_k \times \mathcal{B}_{k-1} \to [0, \infty)$ given by the distance d(a, b) for all $a \in \mathcal{B}_k$ and $b \in \mathcal{B}_{k-1}$.

If v is **in general position**, i.e. the distances between its singular points are pairwise distinct, then $MC_{\bullet}(v)$ is **generic**, i.e. w_k is injective.

weighted based Morse complex \longrightarrow factored chain complex

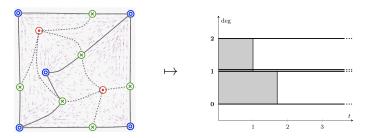
Given v a Morse-Smale vector field in general position, we define the factored chain complex X = X(v) as follows:

- Set $t_0 = 0$ and let $X^{t_0} = MC(v)$.
- Assume we have already defined a sequence of chain complexes $X^{t_0} \to X^{t_1} \to \cdots \to X^{t_i}$. We define
 - $t_{i+1} := t_i + d(a, b)$, where (a, b) is the pair of critical points with b in $\partial(a)$ and the smallest distance.
 - $X^{t_{i+1}} := X^{t_i}/\langle a, \partial a \rangle$ the result of simplifying X^{t_i} along the pair (a, b).
 - For $t_i < t < t_{i+1}$ we define $X^t := X^{t_i}$ and for $t_i \le t \le s < t_{i+1}$ we define $X^{s \le t} = \mathbb{1}$.
- When we reach the point where all the differentials in the chain complex X^{t_r} are zero, then we stop the algorithm and define $X^t = X^{t_r}$ for all $t_r < t < \infty$ and $X^{t \le s} = 1$ for all $t_r \le t \le s < \infty$.

Stability

Theorem

The function $v \mapsto tBar(X(v))$ is a continuous map if we endow the space of tagged barcodes with the intereleaving distance and the space of gradient-like Morse-Smale vector fields in general position with Whitney C^1 -topology.



Proof Sketch

Let $v \in \mathfrak{X}_{gMS+}(M)$ and let $\varepsilon > 0$. Denote by $\operatorname{Sing}(v)$ the set of singular points of v.

Since Morse-Smale vector fields are **structurally stable** and their singular points are **locally structurally stable**, there exists a neighbourhoud \mathcal{N} of v in $\mathfrak{X}_{gMS+}(M)$ such that for all $w \in \mathcal{N}$ we have

- $\forall p \in \text{Sing}(v) \exists ! \ q \in \text{Sing}(w) : \ d(p,q) \leq \varepsilon.$
- lacktriangle The vector fields v and w are topologically equivalent.
- \implies The algorithm applied to v and w simplifies pairs of corresponding singular points.

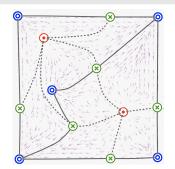
$$\implies d_I(X(v), X(w)) \le n\varepsilon$$
, where $n = |\operatorname{Sing}(v)|$.

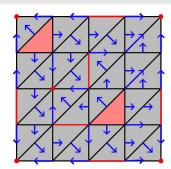
Combinatorial approximation

Theorem

Let M be an oriented Riemannian manifold and let $v \in \mathfrak{X}_{gMS+}(M)$. Let (M', ϕ, V) be a triangulation of v. Then for every $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have

$$d_I(X(MC_{\bullet}(v)), X(\overline{MC}_{\bullet}(\Delta^n(V)))) < \varepsilon.$$





 $[Bannwart-L.:\ Tagged\ barcodes\ for\ the\ topological\ analysis\ of\ gradient-like$

27 / 35

- 1 Preliminaries on Persistence Theory
- 2 Parametrized chain complexes
- 3 The filtered case
- 4 The factored case
- 5 The general case

Issues with the general case

Model

$$\operatorname{Tame}(\mathcal{Q},\operatorname{ch}(\operatorname{vect}))\subset\operatorname{Fun}(\mathcal{Q},\operatorname{ch}(\operatorname{vect}))$$
 Abelian

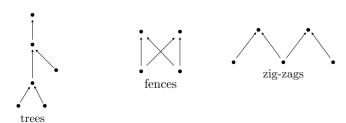
- \blacksquare problems with Fun(\mathcal{Q} , **ch**(**vec**)) if the poset is not finite
- tameness is not preserved by taking finite limits

X

 \blacksquare some choices of \mathcal{Q} solve the issues

One-dimensional posets

A poset \mathcal{Q} has dimension 1 if for every x in \mathcal{Q} , $\mathcal{Q} < x$ is empty or for any two noncomparable elements y, z in $\mathcal{Q} < x$, whose least upper bound is x, there is no common lower bound.



Realizations of posets

The **realisation** of a poset of dimension 1 is the disjoint union of Q and $\coprod_{x \in Q} \coprod_{y \in \mathcal{P}(x)} (-1,0)$. It is again of dimension 1.



If Q is the realization of a poset of dimension 1, then

$$Tame(Q, ch(vect)) \subset Fun(Q, ch(vect))$$

Cofibrant replacements

The model structure on $\operatorname{Tame}(\mathcal{Q}, \operatorname{\mathbf{ch}}(\operatorname{\mathbf{vec}}))$ is such that each object X admits a unique up to isomorphism $\operatorname{\mathbf{minimal}}$ cofibrant replacement Y i.e. there is $\varphi \colon Y \to X$ such that:

- ullet φ is an epimorphism at each positive degree and a quasi-isomorphism
- \blacksquare Y is free in each degree
- \blacksquare all summands of Y are acyclic

We think about a minimal cofibrant replacement Y as a simplifying approximation of X.

Structure theorem for cofibrant objects

Structure Theorem

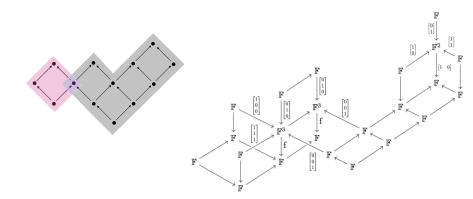
Each cofibrant object in Tame $(Q, \mathbf{ch}(\mathbf{vec}))$ is isomorphic to a direct sum of indecomposables X, each one degreewise-free and nonzero in at most two consecutive degrees with differentials being monomorphisms:

- if X is acyclic, then it is isomorphic to $\mathbb{F}(x,-) \xrightarrow{\mathrm{id}} \mathbb{F}(x,-)$ in degrees i and i-1,
- otherwise, there is a unique i such that if $H_i(X) \neq 0$, and X is isomorphic to $P = P_1 \hookrightarrow P_0$, where P is the minimal free resolution of $H_i(X)$ in Tame $(\mathcal{Q}, \mathbf{vec})$.

[Chachólski-Giunti-L.-Tombari: Abelian and model structures on tame functors]

Counter-example for higher dimensional posets

Not true for posets with dimension strictly greater than 1: the following parametrized chain complex is degree-wise free and indecomposable but nonzero in four consecutive degrees.



Conclusions

Take home message:

Parametrized chain complexes are a wealthy source of invariants for persistence theory

Thank you for your attention!

Conclusions

Take home message:

Parametrized chain complexes are a wealthy source of invariants for persistence theory

Thank you for your attention!