Algebraic and Arithmetic Geometry Seminar

Singularities on K-moduli spaces of Fano varieties

by Andrea Petracci (Università di Bologna)

Aula Mancini (SNS)

Aula Mancini



Recently there has been spectacular progress, due to many scholars, on the construction of moduli (called K-moduli) of Fano varieties using K-stability (which is related to the existence of Kähler-Einstein metrics). It is a natural question to understand the geometry of these (newly constructed) spaces. Although smooth Fano varieties have unobstructed deformations, in joint work with Kaloghiros we constructed the first examples of obstructed K-polystable Fano varieties by using toric geometry. These give singular points on K-moduli of Fanos. In this talk I will try to explain these constructions; as a corollary I will show that K-moduli of Fano of dimension at least 3 can have arbitrarily many local branches.