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Valeria Simoncini (Università di Bologna, Italy)
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that consists in a modification of the standard Gaussian elimination in a cancellation-free
fashion, when a triplet representation of the matrix is known. A triplet representation of A
is a triple (P, u, v) such that P ≥ 0, u > 0, v ≥ 0 with P matrix with null diagonal entries
and A = D − P , where D is diagonal, and Au = v.

Unfortunately, the shifted matrix M̂ constructed in [2] in general is no longer a M -
matrix, so the known elementwise accurate algorithms can not be applied directly together
with the shift technique in order to improve the accuracy and also accelerate the convergence.

We present an elementwise accurate algorithm using the shift technique for the com-
putation of the minimal non negative solution of (1), when M in an irreducible singular
M -matrix.

We propose the idea of delayed shift and some results that guarantee the applicability
and the convergence of structured doubling algorithm based only on the properties of
the matrix of the initial setup of doubling algorithm instead of matrix M or M̂ . We
provide a componentwise error analysis for the algorithm and we also show some numerical
experiments that illustrate the advantage in terms of accuracy and convergence speed.
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[1] Alfa, A.S., Xue, J., Ye, Q.: Accurate computation of the smallest eigenvalue of a diagonally
dominant M -matrix, Math. Comput. 71(237), 217–236 (2002)

[2] Guo, C.H., Iannazzo, B., Meini, B.: On the doubling algorithm for a (shifted) nonsymmetric
algebraic Riccati equation. SIAM J. Matrix Anal. Appl. 29(4), 1083–1100 (2007)

[3] Guo, X.-X., Lin,W.-W., Xu, S.-F.: A structure-preserving doubling algorithm for nonsymmetric
algebraic Riccati equation. Numer. Math. 103, 393–412 (2006)

[4] Nguyen, G.T., Poloni, F.: Componentwise accurate fluid queue computations using doubling
algorithms. Numer. Math. 130(4), 763–792 (2015)

[5] Xue, J., Li, R.-C. Highly accurate doubling algorithms for M -matrix algebraic Riccati equations.
Numer. Math., 135(3):733–767 (2017)

[6] Xue, J., Xu, S., Li, R.-C.: Accurate solutions of M -matrix algebraic Riccati equations. Numer.
Math. 120(4), 671–700 (2012)
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classical iterations, and a new approach for computing the solution of interest of (2).
Concerning (1), the idea relies on rewriting the original equation as a polynomial matrix
equation of degree q + 1 of the form

X = B−1(X) +B0(X)X +B1(X)X2 + · · ·+Bq(X)Xq+1, (3)

where the coefficients Bi(X) are suitable power series of X. The sequence {Xk}k≥0

generated by the iteration, given X0, is such that the value of Xk+1 is the minimal
nonnegative solution of the polynomial equation (3) with coefficients Bi(Xk). The value of
q and the choice of Bi(X) characterize the specific fixed-point iteration in the class.

We show that the classical iterations are obtained for q = 0. Moreover, by means of
a general convergence analysis, for any q > 0 we determine the coefficients Bi(X) that
maximize the convergence speed. As a result, we obtain new fixed-point iterations which
are much faster than the classical ones. Numerical experiments confirm the effectiveness of
our extension. More details can be found in [1].

Inspired by this approach, we design some fixed point iterations for solving (2). The idea
consists in solving a sequence of quadratic matrix equations, where the matrix coefficients
defining the matrix equation depend on the current approximation to the solution G.
The numerical methods differ in the way the quadratic matrix equations are generated.
In fact, relying on some changes of variable, we transform (2) into a sequence of either
unilateral quadratic matrix equations or special nonsymmetric algebraic Riccati equation. A
theoretical algorithmic analysis together with numerical tests are performed. Comparisons
with the algorithms proposed by Breuer [4] and Simon [7] show the effectiveness of our
approach. More details can be found in [3].

References

[1] D.A. Bini, G. Latouche, B. Meini, A family of fast fixed point iterations for M/G/1
Markov chains IMA J. of Numerical Analysis 2021.

[2] D.A. Bini, G. Latouche, B. Meini, Numerical Methods for Structured Markov Chains.
Oxford University Press 2005.

[3] D. A. Bini, G. Latouche, and B. Meini, Numerical solution of a matrix integral equation
arising in Markov Modulated Lévy processes, submitted for pubblication, 2021, http://arxiv.
org/abs/2107.11611.

[4] L. Breuer, First passage times for Markov additive processes with positive jumps of phase
type, J. Appl. Prob., 45 (2008), pp. 779–799.

[5] B. D’Auria, J. Ivanovs, O. Kella, and M. Mandjes, First passage of a Markov additive
process and generalized Jordan chains, J. Appl. Probab., 47 (2010), pp. 1048–1057.

[6] G. Latouche, V. Ramaswami, Introduction to Matrix Analytic Methods in Sochastic
Modeling. SIAM Philadelphia 1999.

[7] M. Simon, Markov-Modulated Processes: Brownian Motions, Option Pricing and Epidemics,
PhD thesis, Université libre de Bruxelles, 2017.
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To this we end we extend the notion of incoherence from matrices (their column and row
subspaces) to tensor trains.

We then consider tensor completion with side information. In this problem, we are
additionally given low-dimensional subspaces that contain the mode-k fiber spans of the
tensor. The presence of side information makes it possible to significantly lower the number
of entries sufficient for matrix completion in the nuclear norm formulation [5, 6]. We obtain
similar reduction in the tensor train case.

This work has been supported by Russian Science Foundation Project (21-71-10072).
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Math, (2016) pp. 1031-1068.
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2013.
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label learning, in Advances in Neural Information Processing Systems 26, Curran Associates
Inc., 2013.
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based on solving the associated algebraic Riccati equation require the strong condition that
the matrix M2/4 + J2 must be symmetric positive definite. These issues have motivated
us to investigate methods whose applicability does not require those restrictive conditions.

The problem of finding a special orthogonal solution X in (2) can be formulated as an
optimization problem in the following way:

min
X∈SO(n)

∥

∥XJ − JXT −M
∥

∥

2

F
, (4)

where ∥.∥F denotes the Frobenius norm. Techniques from Riemannian geometry to solve
optimization problems with orthogonal constraints have attracted the interest of many
researchers in the last decades; see [1, 3], and the references therein. An essential feature
of those techniques is that they allow the transformation of a constrained optimization
problem into an unconstrained one. Since the set of orthogonal matrices is a manifold
and provided that the objective function satisfies some smoothness requirements, we can
make available tools such as Euclidean gradients, Riemannian gradients, retractions, and
geodesics.

In this talk, we propose two iterative methods for solving (4). They evolve on the
orthogonal manifold and belong to the family of line search methods on matrix manifolds
described in [1, Ch. 4]. They are constraint-preserving, in the sense that, starting with
a matrix X0 ∈ SO(n), all the iterates Xk also stay in SO(n). The first one splits the
orthogonal constraints using the Bregman method, whereas the second method is of
steepest-descent type, based on a Cayley-transformation to preserve the constraints and
on a Barzilai-Borwein step size. A set of numerical experiments are carried out to compare
the performance of the proposed algorithms, suggesting that the first algorithm has the
best performance in terms of accuracy and number of iterations. An essential advantage of
these two iterative methods is that they work even when the conditions for applicability
of the direct methods available in the literature are not satisfied. That is, they allow
the computation of special orthogonal solutions, even when M2/4 + J2 is not symmetric
positive definite. Those iterative algorithms may also be used in problems where H has
purely imaginary eigenvalues associated with Jordan blocks of even size, but, as will be
illustrated with experiments, the convergence may slow down.

References

[1] P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton
University Press, Princeton, New Jersey, 2007.

[2] J. R. Cardoso, F. S. Leite, The Moser-Veselov equation, Linear Alg. Appl. 360, (2003), pp.
237-248.

[3] A. Edelman, T. Arias, S. Smith, The geometry of algorithms with orthogonality constraints,
SIAM J. Matrix Anal. Appl. 20 (2), (1999) pp. 303-353.

[4] J. Moser, A. P. Veselov, Discrete versions of some classical integrable systems and factorization

of matrix polynomials, Commun. Math. Phys. 139, (1991), pp. 217-243.
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We finally illustrate the features and the performances of the µ-mode integrator,
both on CPUs and on GPUs, by numerically solving a range of problems from physics,
such as three-dimensional heat equations (see Figure 1) and three-dimensional linear
and nonlinear Schrödinger equations. In particular, we show that our integrator can
significantly outperform numerical methods well established in the field and that we can
obtain performance improvements between a factor of 10 and 20 by performing computations
on GPUs rather than on CPUs.

If time allows, we also present how µ-mode products can be employed to compute
spectral transforms efficiently even if no fast transform is available. This technique is
useful, for example, in the context of a Hermite pseudospectral method.
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Figure 1: The wall-clock time for solving a three–dimensional heat equation is shown as a
function of the size nµ = n (left), of the order of the finite difference scheme p (middle),
and of the final time T (right).
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Kronecker product of tensors should have low-rank structure (when viewed as a matrix).
We show how to use low-rank structure within the iterates of TAME itself, in concert
with a tensor-generalized mixed product property [4, Thm 3.1], to produce a method that
uses low-rank structure when appropriate. Thus, even without changing the underlying
iteration, we show how to improve the computation TAME’s iterates. In our experiments
we see that we can run an order of magnitude faster than TAME, producing the same
iterates with less susceptibility to numerical imprecision and opening the door to low-rank
matching strategies.

We hope that our work will encourage a wider dissemination of these techniques,
revealing the seemingly daunting runtime costs of tensor Kronecker products as nothing
more than a paper tiger.

References

[1] C. Colley, H. Nassar, D. Gleich, Addressing Computational Bottlenecks in Higher-Order Graph
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It is not hard to show that the difficulty caused by poorly separated generalized
eigenvalues necessarily occurs as tensor rank and dimensions increase. Indeed, taking a
subpencil of a tensor is equivalent to projecting the columns of one of the tensor’s factors
to be vectors of length 2. The original columns lie in a vector space of dimension I where
typically I >> 2. Roughly speaking, the stability of the original CPD computation is
dependent on the separation of the columns of the original factor matrix, while the stability
of the generalized eigenvalue decomposition used to compute the CPD is dependent on the
separation between the projected columns. Of course, the separation between the columns
can significantly decrease under a projection. This in turn causes instability for the GEVD
algorithm.

We address this fundamental issue by using many different pencils to compute the
CPD. Intuitively, this allows us to consider many projections of the original factor columns,
and allows us to take advantage of the fact that given clusters of columns will be better
separated under some projections than others. More precisely rather than using a single
pencil and computing all of its generalized eigenvectors, we use many different pencils
and in each pencil compute generalized eigenspaces corresponding to sufficiently well
separated generalized eigenvalues. The generalized eigenspaces we compute are then used
to decompose the tensor in question as a sum of tensors with reduced rank. This is done
in a way so that the CPD of the original tensor can be recovered by computing the CPDs
of the summand tensors. Though the resulting “generalized eigenspace decomposition” is
still fundamentally pencil based, it is significantly more robust to noise than the classical
GEVD.

We will present a detailed explanation of the generalized eigenspace decomposition
algorithm, and we will compare the performance in terms of accuracy and computational
time of the generalized eigenspace decomposition to GEVD. In addition, we will examine
stability of the generalized eigenspace decomposition both empirically and theoretically.
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This leads to an iterative procedure, where in each step a Riccati equation of the form (2)
needs to be solved. Using low-rank approximations for the intermediate Riccati equations (2)
and some clever formulations of the iteration matrices allows the use of classical large-
scale sparse solvers for (2), like the ones described, e.g., in [2, 3, 10]. Together with a
reformulation of the overall iteration approach in [6], this leads to our new low-rank Riccati
iteration (LR-RI) method.

Implementations of this new approach are available in [4] for dense systems and in [9]
for the large-scale sparse case.
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This linearization, besides being interesting per se, opens the way to find solutions of
⊤-Riccati equations by relying on algorithms that compute bases of deflating subspaces of
a matrix pencil, such as the QZ algorithm and the Doubling algorithm.

In our tests we show that the two latter algorithms are more efficient, in terms of
computational cost and CPU time, than Newton’s method, the reference algorithm in [1],
keeping the same accuracy.

Another interesting feature of our linearization of the ⊤-NARE is that it captures the
peculiar structure of the problem, and this structure can be exploited by applying the
palindromic QZ algorithm [6], [7], a structured variant of the QZ. We develop a structured
ordering procedure for the palindromic QZ algorithm that allows us to find the required
basis and gives computational advantages, being superior, in terms of forward error, in
some difficult problems.
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Furthermore, we consider a numerical example with the following m ×m coefficient
matrices:

A = I, B = ǫ
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which are motivated by [1] and [5], where ǫ ∈ R. We used the following algorithms:











X0 = 0, δX = min{1,min{|diag(X)|}}, γ = min{real(eig(B − C)), 2} − 0.0001

Xi+1 = −(B +Xi)
−1C, (BI1)

Xi+1 = −(B +Xi − (γ − 1)δXi
I)−1(C + (γ − 1)δXi

Xi). (BI1-OC)











X0 = 0, δX = min{1,min{|diag(X)|}}, γ = min{real(eig(B − C)), 2} − 0.0001

Xi+1 = −B−1(X2
i
+ C), (BI2)

Xi+1 = −(B − γδXi
I)−1(X2

i
+ γδXi

Xi + C). (BI2-OC)

When ǫ = 0.95, we can not use the original diagonal update method in [1], because
B −C − 2I is not a nonsingular M -matrix. Fortunately, if we use the generalized diagonal
update method with γ = 1.8683, we have the good results as follows:

Figure 1: Comparison of iteration number with the methods BI1, BI1-OC (left), and BI2,
BI2-OC (right)
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{

DYi
(Hi) = −F (Yi),

Yi+1 = Yi +Hi.
i = 1, 2, . . .

where DY (H) =
n
∑

p=1



Ap

(

P⊤

)n−p





p−1
∑

q=0

Y qHY p−q−1



 (P )n−p





(3)

Note that the matrices in equation (3) is of size np × np, which implies that the
computation cost of the classical Newton’s iteration is expensive if n and p are large. To
reduce the computation cost, we propose the modified Newton’s iteration as follows:



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





A1,nΓ
(1,i)
n (H1,i) +A1,n−1Γ

(2,i)
n−1(H2,i) + · · ·+A1,1Hn,i = −F1(X1,i, . . . , Xn,i),

A2,nΓ
(2,i)
n (H2,i) +A2,n−1Γ

(3,i)
n−1(H3,i) + · · ·+A2,1H1,i = −F2(X1,i, . . . , Xn,i),

...

An,nΓ
(n,i)
n (Hn,i) +An,n−1Γ

(1,i)
n−1(H1,i) + · · ·+An,1Hn−1,i = −Fn(X1,i, . . . , Xn,i),

X1,i+1 =X1,i +H1,i,

X2,i+1 =X2,i +H2,i,

... i = 1, 2, . . .

Xn,i+1 =Xn,i +Hn,i,

where Γ
(j,i)
k (H) =

k
∑

p=1

X
p−1
j,i HX

k−p
j,i for j = 1, 2, . . . , n.

(4)

Set Xj,0 = 0 for j = 1, 2, . . . , n, we prove that the sequences {Xj,i} generated by (4)
converge to the minimal positive solution of system (1). And some numerical experiments
are given to show the efficiency of the modified Newton’s iteration in calculation time and
memory.
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with Ak = V ⊤

ℓ,UAVℓ,U , Bk = W⊤

r,UBWr,U , and Fk(Yk, t)
∧

is a matrix-oriented approxima-
tion to

Fk(Yk, t) = V
⊤

ℓ,UF(Vℓ,UYkW
⊤

r,U , t)Wr,U . (5)

By stacking the columns of the matrix U(t) one after the other into a long vector, a
collection of existing approaches typically map the matrix-valued problem (1) to a vector-
valued dynamical system, for which order reduction is a well-established procedure. Among
various methods, the Proper Orthogonal Decomposition (POD) [5, 2] methodology has
been widely employed. The overall effectiveness of the POD procedure is largely influenced
by the capability of evaluating the nonlinear term within the reduced space, motivating
a considerable amount of work towards this estimation. One very successful approach is
the Discrete Empirical Interpolation Method (DEIM) [3], which is based on the Empirical
Interpolation Method (EIM) originally introduced in [1].

However, a shortcoming of these vectorization procedures is the massive computational
and storage demand in the offline phase. Even in the online phase, several vectors of length
N = nxny need to be stored to lift the low-dimensional functions back to the full dimension.
Here we address precisely this shortcoming, focusing on POD for dimension reduction and
DEIM for interpolation of the nonlinear function.

To this end, we devise a matrix-oriented POD approach tailored towards the construction
of the matrix reduced problem formulation (4). An adaptive procedure is also developed
to limit the number of snapshots contributing to the generation of the approximation
spaces. The reduction of the nonlinear term is then performed by means of a fully matricial
interpolation using left and right projections onto two distinct reduction spaces, giving
rise to a new two-sided version of DEIM. By maintaining a matrix-oriented reduction,
we are able to employ first order exponential integrators at negligible costs. Numerical
experiments on benchmark problems illustrate the effectiveness of the new setting [4].
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subsequent eigenvalue reordering is a time-consuming procedure due to the complexity
and the behavior of the QZ algorithm. Obviously, it is sufficient to compute the block
decomposition as shown in Equation (4), without having (T11, S11) and (T22, S22) in (quasi)
upper triangular form. Only the zero block in the lower left of (4) needs to be of size
m ×m. Furthermore, if we assume that we want to compute the minimal solution, the
blocks of (T, S) have to fulfill the following condition:

|λ| < |µ| ∀λ ∈ Λ (T11, S11) , µ ∈ Λ (T22, S22) . (6)

Our Successive Divide and Conquer algorithm (SDC) computes a sequence of unitary
transformations (Qk, Zk) with

Q = Q1 · · ·Qp and Z = Z1 · · ·Zp (7)

until the block partitioning (4)/(5) fulfills the condition (6) and (T11, S11) are of size m×m.
Thereby, the sequence of transformation matrices (Qk, Zk) is computed from deflating
subspaces, which are computed with the help of the matrix disc function [1] and a dedicated
scaling technique [4]. In this way, the algorithm successively transforms the matrix pair
(F,G) as long as necessary.

If the UQME (1) is given with real data and the desired solution should be real as well,
a minimal solution does not exist if there a complex conjugate eigenvalue pair would be
split when computing the block decomposition (4). In order to overcome this issue, we
relax this to computing the quasi minimal solution, which differs from the minimal solution
in one missing real eigenvalue.

The numerical experiments show that our algorithm is a fast replacement for solving
the problem with the QZ algorithm. Even with a pure naive MATLAB implementation
of our algorithm, we obtain a speed up of 5.5 to 10 compared to the QZ algorithm.
The comparison to the Bernoulli iteration strongly depends on its convergence behavior.
Especially, if the gap between the spectra of (T11, S11) and (T22, S22) in (4) gets very small,
our algorithms comes up with a much faster solution. Here, we obtain a speed up of 1.25
with a naive MATLAB implementation of the SDC algorithm. Finally, we show an example
for the quasi minimal solution, where the Bernoulli iteration does not converge at all.
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and Sylvester solvers for matrix equations with HALR right-hand-side and Hierarchically

off-diagonal low-rank (HODLR) coefficients. Several numerical experiments demonstrate
both the effectiveness and the flexibility of the approach.
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It is worthy to note that (4.a) is a nonlinear (quadratic) ODE for G(t). Once G(t) is
obtained, the linear first-order ODE (4.b) can be solved for X(t).

We show that, under some conditions on β, there exists a unique geodesic curve for
the metric (2) joining two positive-definite matrices A and B and we provide an explicit
expression for this geodesic.

Before we state our main result, let us define the following measure of linear independence
between two symmetric positive definite matrices A and B

γβ(A,B) :=
|β|δ(det(A)−1/nA, det(B)−1/nB)

2
√

1/n− β
, (5)

where δ(·, ·) is the Riemannian distance on Pn given for any two matrices M,N ∈ Pn by

δ(M,N) :=
(

∑n
i=1 ln

2 λi

)1/2
, with λ1, . . . , λn are the eigenvalues of M−1N .

Theorem 2. If A,B ∈ P(n) are linearly independent, set d := δ(det(A)−1/nA, det(B)−1/nB)
and

β1 := −π

√
π2n2 + 4nd2 + πn

2nd2
, β2 := π

√
π2n2 + 4nd2 − πn

2nd2
.

Then, for β ∈ (β1, 0) ∪ (0, β2), there exists a unique geodesic joining A and B given by

Gβ(A,B, t) = η(t)A(A−1B)α(t), t ∈ [0, 1], (6)

where

α(t) =
1

γ
arctan

( tσ sin γ

1− t+ tσ cos γ

)

, η(t) =
((1− t)2 + 2t(1− t)σ cos γ + t2σ2

σ2α(t)

)
1

nβ
,

with σ = det(A−1B)β/2 and γ := γβ(A,B).

The geodesic curve (6) has an exponential part, similar to that of the geometric mean,
but with exponent α(t); and a scalar power part, η(t), which reduces to the weighted
2
nβ -power mean when γ = 0.

When β goes to 0 then (6) becomes the matrix geometric mean

lim
β→0

Gβ(A,B, t) = G0(A,B, t) := A(A−1B)t.

Furthermore, if A and B are linearly dependent matrices in P(n), then (6) reduces to the
matrix nβ

2 -power mean

Gβ(A,B, t) =
(

(1− t)A
nβ

2 + tB
nβ

2

)
2

nβ .
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Then the authors find the matrix (vector) U (1) that is optimal for V (0) and repeat the
procedure.

The results presented in [6] can be generalized to the case of an arbitrary rank. The
key step here is the possibility of solving the problem of the form (4), which becomes
challenging for r > 1. This problem can be reduced to solving several independent problems
of the form

µ = inf
v∈Rr

‖a− Uv‖
∞
, a ∈ R

m, U ∈ R
m×r (5)

Suppose that in the matrix U ∈ R
m×r all submatrices of size r× r are non-singular. Let Ik

be a subset of k indices from 1 to m, Ik = {i1, i2, . . . , ik}. Let us denote aIk the subvector
of the vector a with elements from Ik, and UIk

the submatrix of the matrix U with rows
from Ik. It can be shown that there exists a subset Ir+1 of r + 1 indices such that the
solution of the problem

µ̂ = inf
v∈Rr

∥∥aIr+1
− UIr+1

v
∥∥
∞

(6)

coincides with the solution of the problem (5). Such a subset Ir+1 is called characteristic.
The problem of size r + 1 can be solved exactly in O(r4) operations ([7]). The above
arguments allow us to find the optimal solution to the problem (5) (and therefore (4))
by iterating over all subsets of r + 1 indices. However, more efficient methods for finding
the characteristic set and solving the problem (4) can also be constructed based on
generalizations of the Remez algorithm. Such algorithm does not require iterating over all
subsets and in practice work in polynomial time.
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A generalized block recurrence is applied to retrieve f{TA, T
T

B
}(C̃); the recursion requires

to compute f on pairs of diagonal blocks of TA and T T

B
and to solve Sylvester equations

involving either diagonal blocks of TA or of TB . In view of the latter operation, we need to
reorder the Schur forms of A and B such that distinct diagonal blocks have sufficiently
separated eigenvalues. Finally, we evaluate f on the smallest diagonal blocks of TA and
T T

B
, the so-called atomic blocks, via a truncated bivariate Taylor expansion or, in the

spirit of [2], with a randomized approximate diagonalization technique combined with
high precision arithmetic. The procedure can be interpreted as an implicit (recursive)
block-diagonalization strategy, where the eigenvectors matrices are not formed explicitly.
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