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Elementwise accurate doubling algorithm for shifted
M-matrix algebraic Riccati equations

B. Iannazzo E. Addis F. Poloni

Universita di Perugia, Italy

We consider the nonsymmetric algebraic Riccati equation (NARE)
XBX -XA-DX —-C=0, (1)

where A, B, C, D are real matrices of sizes n X n, n X m, m X n, m X m, respectively. We
focus on the case in which the matrix
A -B
M pu—
is an irreducible singular M-matrix. The problem of finding the minimal non negative
solution of such Riccati equations arises in applied probability, transportation theory, fluid
queues.

A structure-preserving doubling algorithm (SDA) for computing the minimal solution
of (1) has been proposed in [3]. This iterative method relies on the fact that the problem
of solving (1) can be reduced to the computation of certain invariant subspaces of the
I, O
0 —Iy
involving the eigenvalues of H.

matrix H = [ } M, and its convergence properties are connected with a quotient

In [2] Guo et al. studied the doubling algorithm in the case where M is an irreducible
singular M-matrix, and in order to speed up the convergence proposed a shift technique
to move one zero eigenvalue of H to a positive real number. This approach modifies the
equation (1) introducing a shifted equation that shares with (1) the solution, and leads
to a reduction of the quotient that controls the convergence so as to produce a dramatic
decrease of the number of steps of the algorithm.

In the case where M is a non singular M-matrix or an irreducible singular M-matrix,
algorithms computing the minimal non negative solution of (1) with high elementwise
relative accuracy have been proposed in [6], [4], [5] . The general approach is based on
the idea that a non singular M-matrix can be inverted by the GTH-like algorithm [1],



that consists in a modification of the standard Gaussian elimination in a cancellation-free
fashion, when a triplet representation of the matrix is known. A triplet representation of A
is a triple (P, u,v) such that P > 0, u > 0, v > 0 with P matrix with null diagonal entries
and A =D — P, where D is diagonal, and Au = v.

Unfortunately, the shifted matrix M constructed in [2] in general is no longer a M-
matrix, so the known elementwise accurate algorithms can not be applied directly together
with the shift technique in order to improve the accuracy and also accelerate the convergence.

We present an elementwise accurate algorithm using the shift technique for the com-
putation of the minimal non negative solution of (1), when M in an irreducible singular
M-matrix.

We propose the idea of delayed shift and some results that guarantee the applicability
and the convergence of structured doubling algorithm based only on the properties of
the matrix of the initial setup of doubling algorithm instead of matrix M or M. We
provide a componentwise error analysis for the algorithm and we also show some numerical
experiments that illustrate the advantage in terms of accuracy and convergence speed.
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Randomized Algorithms for Rounding the Tensor
Train Format

Grey Ballard Paul Cazeaux Eric Hallman Agnieszka Miedlar

Mirjeta Pasha Tim Reid Arvind Saibaba
Hussam Al Daas

Rutherford Appleton Laboratory, STFC, Harwell Campus, Oxfordshire

The Tensor Train (TT) format is a highly compact low-rank representation for high-
dimensional tensors. TT is useful in particular in representing approximations to the
solution of certain types of parametrized partial differential equations. The fundamental
operation used to maintain feasible memory and computational time is called rounding,
which truncates the internal ranks of a tensor already in T'T format. We propose several
randomized algorithms for this task that are generalizations of randomized low-rank matrix
approximation algorithms and provide significant reduction in computation compared to
deterministic TT rounding algorithms. Randomization is particularly effective in the case
of rounding a sum of TT tensors, which is the bottleneck computation in the adaptation of
GMRES to vectors in TT format. In this talk, we will present the randomized algorithms and
compare their empirical accuracy and computational time with deterministic alternatives.
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Solving matrix equations encountered in stochastic
processes by means of fixed point iterations

Dario A. Bini Guy Latouche Beatrice Meini

Dipartimento di Matematica, Universita di Pisa, [taly

We consider the problem of computing special solutions of certain nonlinear matrix
equations encountered in stochastic processes. A first class of equations is of the kind

X = i A X (1)

i=—1

where A;, for i > —1, are nonnegative square matrices such that Y ;> | A; is stochastic.
This class of equations is fundamental in the analysis of M/G/1-type Markov chains which
model a large variety of queuing problems in applied probability. The minimal nonnegative
solution G, besides having an interesting probabilistic interpretation, provides an effective
tool for representing the invariant probability measure of the chain.

Another class of equations, encountered in the analysis of Markov-modulated Lévy
processes, has a matrix integral form of the kind

AuY + 3870 [ T AT~ Dz + Qo U(0) + / T(Qon(@)edz =0 (2
0 0

where the n x n matrix Y is the unknown, ) is an irreducible generator, A, is the

n x n diagonal matrix with diagonal entries v;, i = 1,...,n, the vectors a = (a;)i=1,...n
and 0? = (02);=1,.., are parameters defining a Brownian motion, v;(-), i = 1,...,n,
are continuous densities, and Uy;(-), 7,7 = 1,...,n, are distribution functions, such that

Uij(xz) = Uii(0) + [y psj(u)du. A matrix denoted as G, that solves (2), plays a fundamental
role in the analysis of such stochastic processes. In the positive recurrent case, the matrix
G is a generator and is the unique solution in the set of real matrices of order n having a
simple eigenvalue equal to 0 and n — 1 eigenvalues with strictly negative real parts [4, 5].

Classical fixed point iterations have been designed and analyzed in the literature
for equation (1) and are customarily used for the computation of the matrix G [2], [6].
Concerning equation (2), few authors have considered the question of computing G.
Breuer [4] and Simon [7] suggest some functional iterations but no convergence analysis
nor experimental evidence is given.

In this talk we introduce a new family of fixed point iterations for the numerical
computation of the minimal nonnegative solution G of equation (1) that includes the



classical iterations, and a new approach for computing the solution of interest of (2).
Concerning (1), the idea relies on rewriting the original equation as a polynomial matrix
equation of degree g 4+ 1 of the form

X =B 1(X)+ Bo(X)X + By (X)X? + - + By (X)X, (3)

where the coefficients B;(X) are suitable power series of X. The sequence {Xj}r>0
generated by the iteration, given Xy, is such that the value of Xj.; is the minimal
nonnegative solution of the polynomial equation (3) with coefficients B;(X}). The value of
g and the choice of B;(X) characterize the specific fixed-point iteration in the class.

We show that the classical iterations are obtained for ¢ = 0. Moreover, by means of
a general convergence analysis, for any ¢ > 0 we determine the coefficients B;(X) that
maximize the convergence speed. As a result, we obtain new fixed-point iterations which
are much faster than the classical ones. Numerical experiments confirm the effectiveness of
our extension. More details can be found in [1].

Inspired by this approach, we design some fixed point iterations for solving (2). The idea
consists in solving a sequence of quadratic matrix equations, where the matrix coeflficients
defining the matrix equation depend on the current approximation to the solution G.
The numerical methods differ in the way the quadratic matrix equations are generated.
In fact, relying on some changes of variable, we transform (2) into a sequence of either
unilateral quadratic matrix equations or special nonsymmetric algebraic Riccati equation. A
theoretical algorithmic analysis together with numerical tests are performed. Comparisons
with the algorithms proposed by Breuer [4] and Simon [7] show the effectiveness of our
approach. More details can be found in [3].

References

[1] D.A. Bini, G. LATOUCHE, B. MEINI, A family of fast fixed point iterations for M/G/1
Markov chains IMA J. of Numerical Analysis 2021.

[2] D.A. Bini, G. LATOUCHE, B. MEINI, Numerical Methods for Structured Markov Chains.
Oxford University Press 2005.

[3] D. A. BinI, G. LATOUCHE, AND B. MEINI, Numerical solution of a matriz integral equation
arising in Markov Modulated Lévy processes, submitted for pubblication, 2021, http://arxiv.
org/abs/2107.11611.

[4] L. BREUER, First passage times for Markov additive processes with positive jumps of phase
type, J. Appl. Prob., 45 (2008), pp. 779-799.

[5] B. D’AuR1a, J. Ivanovs, O. KELLA, AND M. MANDJES, First passage of a Markov additive
process and generalized Jordan chains, J. Appl. Probab., 47 (2010), pp. 1048-1057.

[6) G. LATOUCHE, V. RAMASWAMI, Introduction to Matriz Analytic Methods in Sochastic
Modeling. STAM Philadelphia 1999.

[7] M. SIMON, Markov-Modulated Processes: Brownian Motions, Option Pricing and Epidemics,
PhD thesis, Université libre de Bruxelles, 2017.


 http://arxiv.org/abs/2107.11611
 http://arxiv.org/abs/2107.11611

10

Apdst

Matrix Equations and Tensor Techniques IX
Perugia, September 9-10, 2021

A Tensor-Train Dictionary Learning algorithm based
on spectral proximal alternating linearized
minimization.

Domitilla Brandon: Margherita Porcelli Valeria Simoncini

Department of Mathematics, Alma Mater Studiorum-Universita di Bologna,
Piazza di Porta San Donato 5, Bologna

Dictionary Learning (DL) is one of the leading sparsity promoting techniques in the
context of image classification, where the “dictionary” matrix D of images and the sparse
matrix X are determined so as to represent a redundant image dataset Y. The resulting
constrained optimization problem 1511)1(1 Y — DX is nonconvex, non-smooth and NP-

hard, providing several computational challenges for its solution (see e.g. [1]). To preserve
multidimensional data features, various tensor DL formulations have been introduced,
adding to the problem complexity (see e.g. [2]). Unfortunately all the tensor-based DL
methods in the literature are not supported with theoretical convergence analysis. We
propose a new tensor formulation of the DL problem using a Tensor-Train decomposition
([3]) of the multi-dimensional dictionary, together with a new alternating algorithm for its
solution. The new method belongs to the Proximal Alternating Linearized Minimization
(PALM) algorithmic family (see e.g. [4]), with the inclusion of second order information
to enhance efficiency. We discuss a rigorous convergence analysis, and report on the new
method performance on the image classification of several benchmark datasets.

This talk is based on [5].
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On the number of elements needed for low-rank
tensor train completion

Stanislav Budzinskiy

Marchuk Institue of Numerical Mathematics RAS, 119333, Moscow

In this talk we explore the problem of recovering a tensor A € R™**" with low
tensor train ranks r = (1,7,...,74-1,1) from a small portion of its entries indexed by
QC [nl] X ... X [nd]:

IRaX — RoA|% — min  st. X € R™XXmd ykpp(X) =r.

By Rq we denote the sampling operator that sets to zero all entries that are not in €.
In the matrix case one knows how many entries ) C [n1] X [n2] are needed to complete
an incoherent low-rank matrix, albeit in the nuclear-norm-minimization formulation:

| X« — min st. X e R"*™ RoX = RgA.
Namely, if €2 is chosen uniformly at random with replacement then
O (r(m + ng) logQ(nl + ng))
entries are sufficient to recover a matrix with high probability [1]. Fewer elements [2]
O (r(n1 + n2)log(n1 + n2))
guarantee local convergence of the Riemannian gradient descent applied to
IRaX — RoA|% — min  st. X € M, = {X € R"*"2: rk(X) = r}.

The method exploits the geometric structure of the set M,, which is an embedded
submanifold of R™*"2,

For tensor trains the problem is less understood (there is progress in the Tucker
case [3, 4]). We follow the geometric route and establish local convergence guarantees—
in terms of the sample size |Q2|—of the Riemannian gradient descent for tensor train
completion:

[RoX — RaA|% — min  st. X € M, = {X € R™**" : tkpp(X) = r}.
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To this we end we extend the notion of incoherence from matrices (their column and row
subspaces) to tensor trains.

We then consider tensor completion with side information. In this problem, we are
additionally given low-dimensional subspaces that contain the mode-k fiber spans of the
tensor. The presence of side information makes it possible to significantly lower the number
of entries sufficient for matrix completion in the nuclear norm formulation [5, 6]. We obtain
similar reduction in the tensor train case.

This work has been supported by Russian Science Foundation Project (21-71-10072).
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Solving the Discrete Euler-Arnold Equations for the
Generalized Rigid Body Motion

Joao R. Cardoso Pedro Miraldo

Coimbra Polytechnic-ISEC,
and Center for Mathematics, University of Coimbra, Portugal

In [4], Moser and Veselov proposed the following equations to discretize the classical
Euler-Arnold differential equations for the motion of a rigid body:

T
My 11 = wpMywy,

1
My, = wlJ — Juy, M)

where Mj, is the angular momentum with respect to the body (here represented by a skew-
symmetric matrix), J is the inertia matrix (symmetric positive definite), and wy (orthogonal
matrix) is the angular velocity. Rigid body equations arise in several applications, e.g.,
celestial mechanics, molecular dynamics, mechanical robotics and flight control, where they
are used in particular to understand the body—body interactions of particles like planets,
atoms and molecules.

The main challenge of solving (1) is to find an orthogonal matrix wy in the second
equation, by assuming that J and M} are given. Mathematically, the problem may be
formulated as finding a special orthogonal matrix X (X7 X = I, det(X) = 1) such that

XJ—-JXT =M, (2)

where J is a given symmetric positive definite matrix, and M is a known skew-symmetric
matrix. The matrix equation (2) was firstly investigated in [4], where the authors based
their developments on factorizations of certain matrix polynomials. A different approach,
but computationally more efficient, was provided later in [2], where the authors noted
that (2) can be connected with a certain algebraic Riccati equation and, in turn, with the

Hamiltonian matrix
_ M/2 I (3)
- M2/4 + J? M/2 |-

It is stated in [2] that (2) has a solution X € SO(n) (the special orthogonal or rotation
group of order n) if and only if the size of the Jordan blocks associated to the pure
imaginary eigenvalues of H (if any) is even. The existing algorithms for solving (2) only
work when H does not admit any pure imaginary eigenvalue. Moreover, the algorithms

H
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based on solving the associated algebraic Riccati equation require the strong condition that
the matrix M?2/4 4+ J? must be symmetric positive definite. These issues have motivated
us to investigate methods whose applicability does not require those restrictive conditions.

The problem of finding a special orthogonal solution X in (2) can be formulated as an
optimization problem in the following way:

. 2
Xerggl(n)HXJ—JXT—MHF, (4)

where |.||r denotes the Frobenius norm. Techniques from Riemannian geometry to solve
optimization problems with orthogonal constraints have attracted the interest of many
researchers in the last decades; see [1, 3], and the references therein. An essential feature
of those techniques is that they allow the transformation of a constrained optimization
problem into an unconstrained one. Since the set of orthogonal matrices is a manifold
and provided that the objective function satisfies some smoothness requirements, we can
make available tools such as Fuclidean gradients, Riemannian gradients, retractions, and
geodesics.

In this talk, we propose two iterative methods for solving (4). They evolve on the
orthogonal manifold and belong to the family of line search methods on matrix manifolds
described in [1, Ch. 4]. They are constraint-preserving, in the sense that, starting with
a matrix Xo € SO(n), all the iterates X also stay in SO(n). The first one splits the
orthogonal constraints using the Bregman method, whereas the second method is of
steepest-descent type, based on a Cayley-transformation to preserve the constraints and
on a Barzilai-Borwein step size. A set of numerical experiments are carried out to compare
the performance of the proposed algorithms, suggesting that the first algorithm has the
best performance in terms of accuracy and number of iterations. An essential advantage of
these two iterative methods is that they work even when the conditions for applicability
of the direct methods available in the literature are not satisfied. That is, they allow
the computation of special orthogonal solutions, even when M?/4 4 J? is not symmetric
positive definite. Those iterative algorithms may also be used in problems where H has
purely imaginary eigenvalues associated with Jordan blocks of even size, but, as will be
illustrated with experiments, the convergence may slow down.

References
[1] P.-A. Absil, R. Mahony, R. Sepulchre, Optimization Algorithms on Matriz Manifolds, Princeton
University Press, Princeton, New Jersey, 2007.
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STAM J. Matrix Anal. Appl. 20 (2), (1999) pp. 303-353.
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of matriz polynomials, Commun. Math. Phys. 139, (1991), pp. 217-243.
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A 1 -mode integrator for solving evolution equations
in Kronecker form

Marco Caliari Fabio Cassini Lukas Einkemmer
Alexander Ostermann Franco Zivcovich

Department of Mathematics, University of Trento,
Via Sommarive 14 — Povo (TN), Italy

Due to the importance of simulation in various fields of science and engineering,
devising efficient numerical methods for solving high—dimensional evolutionary partial
differential equations is of considerable interest. In this talk, we present a u-mode integrator
for computing the solution of stiff evolution equations. It is based on a d-dimensional
splitting approach and it suitably combines, in a tensor framework, one-dimensional matrix
exponentials (usually precomputed).

We show that our integrator solves exactly linear problems in Kronecker form with
time-invariant coefficients, i.e. problems which can be written as

u'(t) = Mu(t), u(0)=ug (1)
where
d
M == Z A®N
pn=1

and
Agp=1i® - @[, 1 ®A, ], 1® - -® 1

being A, an n, X n, matrix and I, the identity matrix of size n,. More in detail, it
computes efficiently the exact solution of (1), i.e. u(t) = exp(tM)up, by means of tensor
techniques without explicitly forming the matrix M. This scheme can also be used as a
building block for numerically solving more general classes of PDEs compared to (1), for
example in the context of a splitting method or an exponential integrator.

We further explain how the needed actions of matrix exponentials can be implemented
efficiently on modern computer systems, such as multithreaded CPUs and GPUs. In
particular, the overall computational cost of our algorithm is O(Nmax,n,), with N =
ny - - - ng, while the storage requirement scales as O(IN). Hence, the scheme is ideally suited
to modern hardware, especially for GPUs.
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We finally illustrate the features and the performances of the py-mode integrator,
both on CPUs and on GPUs, by numerically solving a range of problems from physics,
such as three-dimensional heat equations (see Figure 1) and three-dimensional linear
and nonlinear Schrodinger equations. In particular, we show that our integrator can
significantly outperform numerical methods well established in the field and that we can
obtain performance improvements between a factor of 10 and 20 by performing computations
on GPUs rather than on CPUs.

If time allows, we also present how p-mode products can be employed to compute
spectral transforms efficiently even if no fast transform is available. This technique is
useful, for example, in the context of a Hermite pseudospectral method.
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Figure 1: The wall-clock time for solving a three—dimensional heat equation is shown as a
function of the size n, = n (left), of the order of the finite difference scheme p (middle),
and of the final time T (right).
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Decoupling Dominant Z-eigenvectors of
Tensor Kronecker Products

Charles Colley Huda Nassar David Gleich

Computer Science at Purdue University, 305 N University St, West Lafayette, IN

We present a new extremal Z-eigenvector theorem for the Kronecker products of tensors
which shows that the dominant eigenvector of B® A decouples to the dominant eigenvectors
of B and A, a surprising generalization of the matrix counterpart. Formally, we show [1]

Let A be a symmetric, k-mode, m-dimensional tensor and B be a symmetric, k-
mode, n-dimensional tensor. Suppose that (X%, u*) and (X5, v*) are any dominant
tensor Z-eigenvalues and vectors of A and B, respectively. Then (AN, v ® u*)
is a dominant eigenpair of B® A.

Decoupling the tensor Kronecker product gives us a new foothold to facilitate the use
of motifs — small repeating subgraphs — in network alignment algorithms. We explore
how this new theorem impacts TAME [2], an unsupervised method for network alignment
— which is used to identify protein ortholog candidates from protein interaction data.
The key to TAME was a tensor that encoded the presence of motifs among groups of
nodes, and the algorithm sought to use the eigenvector of the Kronecker product of two
such tensors to indicate how the original networks ought to align. Our new algorithms
A—TAME & LowRankTAME outperform the original TAME when aligning the LVGNA [3]
protein interaction networks, both running orders of magnitude faster and matching, at
the minimum, as many triangles motifs as TAME.

Specifically, the decoupling allows our new A—TAME to use the power iterations of
T 4 and T'p independently to access useful information on a possible dominant eigenspace.
This moves the computational bottleneck from computing iterations with the Kronecker
product of tensors, as in TAME, to the step of producing an alignment from the possible
eigeninformation. This means that A—TAME runs two orders of magnitude faster than
TAME on the largest problems tested and aligns more triangles. When finding the maximum
matching is infeasible, searching over the quadratic pairs of vectors computed in any step
of the power iterations, is a simple algorithm that runs 3 orders of magnitude faster than
TAME in exchange for a modest reduction in triangles matched.

The theory allows further improvements to the computations. Note that the above
dominant eigenvector result strongly suggests that iterates of a power method applied to a
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Kronecker product of tensors should have low-rank structure (when viewed as a matrix).
We show how to use low-rank structure within the iterates of TAME itself, in concert
with a tensor-generalized mixed product property [4, Thm 3.1], to produce a method that
uses low-rank structure when appropriate. Thus, even without changing the underlying
iteration, we show how to improve the computation TAME’s iterates. In our experiments
we see that we can run an order of magnitude faster than TAME, producing the same
iterates with less susceptibility to numerical imprecision and opening the door to low-rank
matching strategies.

We hope that our work will encourage a wider dissemination of these techniques,
revealing the seemingly daunting runtime costs of tensor Kronecker products as nothing
more than a paper tiger.
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Divide and conquer methods for functions of matrices
with banded or hierarchical low-rank structure

Alice Cortinovis Daniel Kressner Stefano Massei

Institute of Mathematics, EPFL, 1015 Lausanne, Switzerland

This talk is concerned with approximating matrix functions for banded matrices,
hierarchically semiseparable matrices, and related structures [1]. We propose new divide-
and-conquer methods — in the spirit of the divide-and-conquer algorithms developed in [2]
for linear matrix equations — which exploit the fact that these matrices can be (recursively)
decomposed as a sum A = D + R of a block diagonal matrix D and a low-rank correction
R. While the update f(A) — f(D) often has low numerical rank and can be approximated
via (rational) Krylov subspace projections [3, 4], the block diagonal part f(D) is computed
recursively for each diagonal block.

We present a convergence analysis that relates the accuracy attained by the algorithm
with best polynomial or rational approximations of the function. For the special case of a
banded matrix, we show that the divide-and-conquer method reduces to a much simpler
algorithm, which proceeds by computing matrix functions of small submatrices of A. When
only the trace or the diagonal of the matrix function is of interest, we demonstrate — in
practice and in theory — that convergence can be faster.

Finally, we test the algorithms on a variety of matrices and functions; the numerical
results demonstrate that, most of the time, the proposed methods outperform state-of-art
techniques with respect to time consumption and offer a comparable accuracy.
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The Extended Aluthge Transform
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Consider a bounded linear operator 1" acting on a complex separable Hilbert space H
(finite or infinite dimensional), and let T = V |T'| be the canonical polar decomposition
of T (that is, V is a partial isometry and ker T'= ker V). The Aluthge transform of T
is the operator A(T) := \T|l/2 Vv \T|1/2. For P an arbitrary positive operator such that
VP =T, we define the extended Aluthge transform of T associated with P, as follows:
Ap(T) := P2V P12,

First, we establish some basic properties of Ap(7T"). For instance, whenever P > 0
and VP =T, one automatically has

(i) [T <P,

(ii) ker P C ker |7,

(iii) P commutes with |T'|, and

(iv) the restrictions of P and |T| to the range of |T'| agree.

We also derive a 3 x 3 operator matrix representation for A(T") and Ap(T) relative to the
orthogonal decomposition H = Ran |T| @ Ran (P|ker) @ ker P. Along the way, we prove
the following Intertwining Property: |T|*2 Ap(T)PY/2 = PY/2A(T) |T|1/2.

Second, we study the fixed points of the extended Aluthge transform.

Third, we consider the case when 7T is an idempotent, and prove an optimal result for
its associated Aluthge transform and extended Aluthge transform.

Next, we discuss whether the extended Aluthge transform leaves invariant the class of
complex symmetric operators.

We also study how Ap(T') transforms the numerical radius and numerical range of 7'.

Finally, as a key application, we prove that the spherical Aluthge transform of a
commuting pair of operators corresponds to the extended Aluthge transform of a 2 x 2
operator matrix built from the pair; thus, the theory of extended Aluthge transforms
yields results for spherical Aluthge transforms.
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From analysis to learning:
Tensor-based assessment of latent similarity

Lieven De Lathauwer

KU Leuven

In data analysis, tensor decompositions such as the Canonical Polyadic Decomposition
(CPD) and Block Term Decomposition (BTD) may be used as basic tools. They allow one
to break a single data set into interpretable components. In CPD, the terms are rank-1,
while, in the more general BTD, they have low multilinear rank. Instrumental is the
mildness of the conditions under which the tensor decompositions are unique (for instance,
no orthogonality requirements, as in the QR-factorization or singular value decomposition
of matrices). Countless applications have been reported in telecommunication, array pro-
cessing, audio and image processing, chemometrics, psychometrics, astrophysics, biomedical
signal processing, bio-informatics, ... The mildness of the conditions goes together with the
possibility of computational issues: the lack of properties such as orthogonality makes that
the terms in a decomposition can be arbitrarily close to each other, and hence numerically
difficult to separate; in some cases the problem can even be ill-posed.

In this talk we take the step from data analysis to data comparison, and from the
decomposition of a single tensor to the assessment of the similarity between components
of different tensors. Assessing similarity is a key task in pattern recognition and machine
learning. We will show that, also in the latter setting, tensors provide fundamentally new
possibilities beyond matrix techniques. Moreover, under mild conditions, the assessment of
similarity can be done by conventional linear algebra, i.e. the estimation of angles between
subspaces, solving sets of linear equations in least-squares sense and matrix eigenvalue
decomposition. The number of terms and their multilinear rank (in the case of BTD) can
be found as well. The results will be illustrated with applications.
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On the consistency of X' AX = B when B is either
symmetric or skew
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In this talk, we analyze the consistency of the matrix equation
XTAX =B, (1)

where A € C"™*™ X € C™*" (unknown), and B € C™*™ is either symmetric or skew-
symmetric. In particular, we will first provide a necessary condition for (1) to have a
solution X. Then, we will prove that this condition is also sufficient for most matrices A
and an arbitrary symmetric (or skew) matrix B. To be more precise, we will first show
that, in order to analyze the consistency of (1), we can restrict ourselves to the case where
A and B are in Canonical form for congruence. We use the canonical form for congruence
introduced in [3], which is a direct sum of blocks of three types. Then, we will show that
the condition mentioned above is sufficient when A does not contain any blocks of some of
these types with certain size.

We want to emphasize that the question on the consistency of (1), when B is symmetric
(respectively, skew), is equivalent to the following problem: given a bilinear form over C"
(represented by the matrix A), find the maximum dimension of a subspace such that the
restriction of the bilinear form to this subspace is a symmetric (resp., skew) non-degenerate
bilinear form.

The results presented in this talk for B being symmetric have been published in [1],
whereas the ones for B being skew-symmetric are contained in the submitted manuscript

[2].
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Computing the condition number of tensor
decompositions through Tucker compression

Paul Breiding Nick Dewaele Nick Vannieuwenhoven

KU Leuven

In this talk, we investigate the condition number of structured block term decompo-
sitions [1], which are a general class of tensor decompositions encompassing the tensor
rank decomposition, the block term decomposition, and sums of tensor train products.
These decompositions express a tensor A as a sum of R “simple” terms A = Zle A,
Specifically, the summand A, can be expressed as a multilinear product (Uy,...,Up)-C
where Uy, ...,Up are full-rank matrices and C lies on a manifold M, C Rh**ID that
satisfies two assumptions:

1. Every X € M, has multilinear rank (I1,...,lp).

2. M, is invariant under changes of basis.

In practice, the given tensor A is almost always corrupted by noise, so it is essential
to quantify how sensitive the summands A, ..., Ar are to perturbations of 4. We show
how Rice’s condition number [2] can be applied to this decomposition. If A is sufficiently
close to A and A has a structured block term decomposition A= ./2(1 + -+ .ZR, then the
sensitivity is bounded by

(A = As,. . Ar — AR)|| S K| A - A

where & is the condition number and || - || is the Frobenius norm.

The computation of structured block term decompositions is often sped up by applying
a dimensionality technique known as Tucker compression. That is, one expresses A =
(Q1,...,Qp) - G where Q1,...,Qp are matrices with orthonormal columns and G is a
tensor with much smaller dimensions than A. Then, G is decomposed as G = Ele G,
which corresponds to a structured block term decomposition A = Zle(Ql, ...,Qp) - Gr.

Since G has fewer possible perturbations than A, one would expect the condition
number of its decomposition to be smaller than that of A’s decomposition. However, our
main result is that the two condition numbers are equal. This is in contrast to other
problems, where the condition number of the structured problem is much lower than that
of the unstructured one [3].

Our result implies an algorithm to compute the condition number of the decomposition
of A based on Tucker compression. This algorithm can reach a speedup of over four orders
of magnitude relative to the state of the art in practical cases, so that it is now possible to
compute the condition numbers of decompositions of large tensors.
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A predictor-corrector method in quantized tensor train
format for the equilibrium of the chemical master
equation
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It is well known that networks with complex interacting components arise in a variety of
disciplines [4], and that a master equation can help describe the joint probability function
of the components over time. This work focuses on the chemical master equation (CME)
that results from modeling the system using a continuous-time Markov chain. It is of our
interest to study the system’s long-term behavior, which can be explored by computing the
stationary solution to the CME. However, the number of states involved grows exponentially
with the number of chemical species tracked. To cope with an extremely large or even
infinite state space when solving the CME in biological problems, a potent strategy is to
restrict to a finite state projection (FSP) [10] and represent the transition matrix and
probability vector in quantized tensor train (QTT) [11] format, leading to savings in
storage while retaining accuracy. In summary, we propose a method that further advances
the efficiency of using tensor-based approaches to estimate the probability mass function
when the system is in statistical equilibrium. We do so by providing a computationally
inexpensive initial approximation from which to efficiently obtain a more robust estimation
of the stationary solution. Our methodology is to use the reaction rate equations of the
system to roughly estimate the probability function of each chemical species. This cheap
estimate is then fed to a predictor-corrector pair of solvers aimed at quickly reaching
equilibrium by alternating between a linear system solver (predictor) and a transient solver
(corrector). Numerous techniques have been developed that leverage tensors in recent
years [11, 6, 8, 7, 2, 5, 9, 12] but here we use the AMEn solver the alternating minimal
energy (AMEn) algorithm [3] for the predictor part and our adaptive FSP tensor-based
solver with sliding windows [1] for the corrector part.
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A recursive eigenspace computation for the Canonical
Polyadic decomposition

Eric Evert Michiel Vandecappelle Lieven De Lathauwer

ESAT, KU Leuven Kulak, Kortrijk

Tensors, or multiindexed arrays, play an important role in fields such as machine
learning and signal processing. These higher-order generalizations of matrices allow for
preservation of higher-order structure present in data, and low rank decompositions of
tensors allow for compression of data and recovery of underlying information [12, 2, 3]. One
of the most popular decompositions for tensors is the canonical polyadic decomposition
(CPD) which expresses a tensor as a sum of rank one tensors.

An important feature of the CPD is that, with mild assumptions [6, 8, 11], the CPD of
a low rank tensor is unique. It is this uniqueness that allows for extraction of component
information from a signal tensor. Furthermore, for a tensor with a unique CPD, the CPD
can often be found algebraically. Such an algebraic solution can typically be obtained with
limited computation time, hence is often used as an initialization for optimization based
methods when the tensor is noisy.

One of the most popular algorithms for algebraic computation of a CPD of a tensor
is the generalized eigenvalue decomposition (GEVD) [4, 5, 10, 9]. The key idea behind
the classical GEVD is that a factor matrix of a tensor may be obtained by computing the
generalized eigenvectors of any subpencil of the tensor.

While in the noiseless setting GEVD can exactly recover a CPD, it has recently been
shown that pencil based algorithms such as GEVD are unstable [1]. That is, the condition
number for computing a generalized eigenvalue decomposition of a subpencil can be
arbitrarily larger than the condition number [14] for computing the CPD of the tensor. In
this talk we present an extension of the GEVD algorithm which significantly improves the
stability of algebraic computation of the CPD.

The stability of computing generalized eigenvectors of a matrix pencil is heavily depen-
dent on the separation between the generalized eigenvalues and the generalized eigenvectors
of the pencil [13, 7]. In the case that the generalized eigenvalues and eigenvectors are well
separated, a GEVD may be stably computed. However, when either a pair of generalized
eigenvalues or generalized eigenvectors are near parallel, computation of the generalized
eigenvectors becomes unstable. As such, the GEVD algorithm performs well when there is
a subpencil for the tensor in which all generalized eigenvalues are well separated; however,
GEVD runs into challenges if one is unable to find a subpencil in which all generalized
eigenvalues are well separated.
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It is not hard to show that the difficulty caused by poorly separated generalized
eigenvalues necessarily occurs as tensor rank and dimensions increase. Indeed, taking a
subpencil of a tensor is equivalent to projecting the columns of one of the tensor’s factors
to be vectors of length 2. The original columns lie in a vector space of dimension I where
typically I >> 2. Roughly speaking, the stability of the original CPD computation is
dependent on the separation of the columns of the original factor matrix, while the stability
of the generalized eigenvalue decomposition used to compute the CPD is dependent on the
separation between the projected columns. Of course, the separation between the columns
can significantly decrease under a projection. This in turn causes instability for the GEVD
algorithm.

We address this fundamental issue by using many different pencils to compute the
CPD. Intuitively, this allows us to consider many projections of the original factor columns,
and allows us to take advantage of the fact that given clusters of columns will be better
separated under some projections than others. More precisely rather than using a single
pencil and computing all of its generalized eigenvectors, we use many different pencils
and in each pencil compute generalized eigenspaces corresponding to sufficiently well
separated generalized eigenvalues. The generalized eigenspaces we compute are then used
to decompose the tensor in question as a sum of tensors with reduced rank. This is done
in a way so that the CPD of the original tensor can be recovered by computing the CPDs
of the summand tensors. Though the resulting “generalized eigenspace decomposition” is
still fundamentally pencil based, it is significantly more robust to noise than the classical
GEVD.

We will present a detailed explanation of the generalized eigenspace decomposition
algorithm, and we will compare the performance in terms of accuracy and computational
time of the generalized eigenspace decomposition to GEVD. In addition, we will examine
stability of the generalized eigenspace decomposition both empirically and theoretically.
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The usual spatial finite element discretisation, of arbitrary order k € N, of elliptic
and parabolic partial differential equations takes the form of a linear system or a system
of ODEs in the parabolic case. On the so-called z-normal domains, we show that the
method allows for a Matrix-Oriented formulation, called MO-FEM, [1]. In the elliptic case,
the discrete problem takes the form of a multiterm Sylvester equation, in the parabolic
case a sequence of multiterm Sylvester equations after time discretisation. The proposed
framework encompasses the special case k = 1 on square and rectangular domains [2],
where the discrete problem is a standard (two-term) Sylvester equation.

On square domains, each Sylvester equation can be solved very efficiently with the
so-called reduced method in the spectral space. On general x-normal domains, when the
reduced approach does not apply, we solve each multiterm Sylvester equation apply through
the matrix-oriented form of the Preconditioned Conjugate Gradient (MO-PCG) with an
ad-hoc preconditioner. The MO-PCG proves more efficient, in terms of computational
time and memory occupation, than its standard counterpart in vector form and than
MATLARB?’s built-in direct solver.

As an application, we consider reaction-diffusion PDE systems, where the coupling
between diffusion and nonlinear kinetics can lead to the so-called Turing instability. To
capture the morphological peculiarities of the Turing patterns, a very fine space discretisa-
tion is required, limiting the use of standard (vector-based) ODE solvers in time because of
excessive computational costs. To show the advantages of the MO-FEM-PCG to approxi-
mate Turing patterns with high spatial resolution, we apply the MO-FEM to a two-species
reaction-diffusion system for battery modeling [3].
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Algebraic Riccati equations with indefinite quadratic terms of the form
ATXE+ETXA+E'X (BlBI - BQB;) XE+CTC =0, (1)

with A, F € R*™™ By € R"™*™_ By € R"™™2 (' € RP*" and E invertible, play an
important role in applications related to robust controller design and differential games;
see, e.g., [5, 7].

A particular interest lies in the existence and computation of a symmetric positive
semi-definite, stabilizing solution X, € R™*™ of (1). In other words, we want to compute
an X that solves (1), that is symmetric positive semi-definite, and that ensures that the
eigenvalues of the matrix pencil AE — (A + B1B] — Bng)XOOE all lie in the left open
half-plane.

While there are some established approaches to that in the case of small-scale dense
coefficient matrices [1, 6, 8], there is no approach available to compute solutions in the
large-scale sparse setting. In our work, we propose an extension of the iterative procedure
developed in [6] to efficiently compute the requested solution of (1) in the large-scale sparse
case via low-rank approximations such that ZooZ; ~ Xoo, With Z,o € R™" and r < n.
The approach is based on considering the Riccati operator

R(X):=A"XE+ E"XA+ E"X(B,B] — B.B)XE + C] .
For two symmetric matrices X; = Xir and Xy = X;—, one can show that
R(X1 + X3) = R(X1) + ATXoF + ET XA + ET X5(B1B] — BoBN)XoFE

holds, where A := A + (B1B] — ByBJ)X1E. In the case that X, is a solution to the
algebraic Riccati equation with negative semi-definite quadratic term

0="R(X1)+ A" XoE + E' XoA — E' XoBy By XoF, (2)

the residual reads
R(X, + Xo) = E"Xy,B1B] X3F.
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This leads to an iterative procedure, where in each step a Riccati equation of the form (2)
needs to be solved. Using low-rank approximations for the intermediate Riccati equations (2)
and some clever formulations of the iteration matrices allows the use of classical large-
scale sparse solvers for (2), like the ones described, e.g., in [2, 3, 10]. Together with a
reformulation of the overall iteration approach in [6], this leads to our new low-rank Riccati
iteration (LR-RI) method.

Implementations of this new approach are available in [4] for dense systems and in [9]

for the large-scale sparse case.
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We consider the Nonsymmetric algebraic T-Riccati equation (T-NARE)
DX +XTA-X"BX+C =0, (1)

where X is the unknown matrix and A, B, C, D € R™*™ are the coefficients, while the super-
script T denotes transposition. Equation (1) has been considered in [1], with applications
to solving large-scale Dynamic Stochastic General Equilibrium models.

The T-NARE takes its name from the nonsymmetric algebraic Riccati equation (NARE)

DX+ XA—XBX +C =0, (2)

whose analysis and numerical solution has been of great interest in the literature in the
last decades (see the books [2], [3]), and from the transposition T of the unknown X in (1),
when it premultiplies a matrix coefficient. Indeed, recently, the T counter-part of classical
linear matrix equations has been widely studied [4], [5].

A standard procedure when dealing with an algebraic Riccati equation is the “lineariza-
tion” that relates its solutions to the invariant (deflating) subspaces of a matrix (pencil).
This greatly improves the analysis and the numerical solution of the equation. For instance,
Equation (2) is associated with the matrix

A -B
we | o)

and X is a solution to (2) if and only if there exists an n-dimensional invariant subspace

of H spanned by the columns of [ )I(] .

Here, we introduce a linearization for the T-Riccati equation (1). More specifically,
using the coefficients of the matrix equation, we construct a T-palindromic pencil p(z) =
M +2zM 7 of size 2n, that linearizes the equation: if ¢(2) is regular and if X is a solution to

(1), then the columns of [I

X] span a deflating subspace of ¢(z) and also a kind of converse

result holds.
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This linearization, besides being interesting per se, opens the way to find solutions of
T-Riccati equations by relying on algorithms that compute bases of deflating subspaces of
a matrix pencil, such as the QZ algorithm and the Doubling algorithm.

In our tests we show that the two latter algorithms are more efficient, in terms of
computational cost and CPU time, than Newton’s method, the reference algorithm in [1],
keeping the same accuracy.

Another interesting feature of our linearization of the T-NARE is that it captures the
peculiar structure of the problem, and this structure can be exploited by applying the
palindromic QZ algorithm [6], [7], a structured variant of the QZ. We develop a structured
ordering procedure for the palindromic QZ algorithm that allows us to find the required
basis and gives computational advantages, being superior, in terms of forward error, in
some difficult problems.
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Method
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The diagonal update method can be used in the Bernoulli’s method to solve a quadratic
matrix equation AX? + BX + C = 0, and it has better results on iteration number and
time than the pure Bernoulli’s method [1]. In this talk, we suggest the optimal constant
which extends the sufficient condition to use the diagonal update method and guarantees
the monotone convergence. Moreover, with some numerical experiments, we also compare
the number of iterations defined by the generalized diagonal update method and the pure
Bernoulli’s method. Furthermore, we show that this generalized diagonal update method
is useful to solve matrix equations with the form AX? + eBX + C = 0.

In detail, we consider the following quadratic matrix equation
Qi(X)=AX?*+BX+C=0 (1)
where

A € R™" is a diagonal matrix with positive diagonal elements,
B € R™" is a nonsingular M-matrix,

C € R™" is an M-matrix such that B~C is nonnegative.

The equation (1) was motivated by a quadratic eigenvalue problem arising from an
overdamped vibrating system [4]. In order to improve the pure Bernoulli’s method
in [2] and the diagonal update method in [1], we suggest the optimal constant * :=
min{real(eig(B — C)), 2} and the generalized diagonal update skills:

G(X) == (B+X — (v = 1)oxI) 7 (C + (v = 1)ox X), (2)
Hoy(X) = — (B —~0xI) " (X? +90x X +C), (3)
where dx = min{1, min{|diag(X)|}} and 1 <y < ~*. When B — C — [ is a nonsingular

M-matrix, we can prove that both Berboulli’s iterations defined by (2) and (3) with X¢ =0
converge to the primary solvent X*, by using some properties of M-matrices which are in [3].
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Furthermore, we consider a numerical example with the following m x m coefficient
matrices:

20 —10 [ 15 -5
—-10 30 -—10 -5 15 =5
—-10 30 -—10 -5 15 =5
A:I7B:6 _10 ,C: _5
30 —10 .15 =5
i -10 20 | i -5 15 |

which are motivated by [1] and [5], where € € R. We used the following algorithms:

Xo =0, dx = min{1, min{|diag(X)|}}, v = min{real(eig(B — C)),2} — 0.0001
Xii1=—-(B+ X))o, (BI1)
Xi1 = —(B+ X; — (v — D)o, 1)~ (C + (7 — 1)6x,X;). (B11-0C)

Xo =0, dx = min{l, min{|diag(X)|}}, v = min{real(eig(B — C)), 2} — 0.0001

Xip1 = -B7H(X} +O), (BI2)

X1 = —(B = 70x,1) (X} +70x,X; + O). (BI2-OC)
When ¢ = 0.95, we can not use the original diagonal update method in [1], because

B — C' — 21 is not a nonsingular M-matrix. Fortunately, if we use the generalized diagonal
update method with v = 1.8683, we have the good results as follows:

15 T T T 18 T T T
[ B12 I B2
[ BI2-OC 161 I B12-OC | |
14+
5 10 - 5 12
E E
2 3 10 -
g g
E I
2 2
-1 = 6r
4+
P
0 0
m=30 m=100 m=500 m=30 m=100 m=500
Example 5.1 Example 5.1

Figure 1: Comparison of iteration number with the methods BI1, BI1-OC (left), and BI2,
BI2-OC (right)
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On Newton Method for the Minimal Positive Solution
of a System of Multi-Variable Nonlinear Matrix
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In this study, we consider the minimal positive solution of the following system of the
multi-variable nonlinear matrix equations that can be expressed in the form

Ay X4 Ay Xy e A X2+ A X, 4 A =0,
Ag n XJ + Ag 1 X514 Ag o X2 + Ag 1 X1 + Ag = 0,

An,nXg + An,n—lX{l_l"i_ st A2,2X7%72 + An,an—l + An,O =0

where X; € RP*P are unknown matrices, A; ; € RP*P for i =1,2,...,nand j =0,1,...,n.
We give the following assumptions on the coefficient matrices of the system (1):
Fort=1,2,...,nand j =2,3,...,n,
A; j is a positive matrix or a nonnegative irreducible matrix,
—A; 1 is nonsingular M-matrix,
A; o is a positive matrix.

For j =0,1,...,n, set the coefficient matrices A;, unknown matrix ¥ and the permutation
matrix P, then the system (1) can be equivalently reformulated as

F(Y) = Anyn + An_lpTYnil_P + e+ Al(PT)nfl}/Pnfl + AO

n o 2
=Y Aj(PT)y"iyipri =o. 2)
=0

Newton’s iteration for solving equation (2) can be stated as
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{Dn(Hi)Z—F(Yz’% i=1.2. ...

Yijin =Y+ H.
n n—p p—1 (3)
where Dy (H) = Y_ [ 4, (PT> S yeEYPat| (P
p=1 q=0
Note that the matrices in equation (3) is of size np x np, which implies that the
computation cost of the classical Newton’s iteration is expensive if n and p are large. To
reduce the computation cost, we propose the modified Newton’s iteration as follows:

A, I L) (Hy,) + Al,nfqu(f_’?(HZi) +-+ A Hp = —Fi( X, ., Xng),
Ag T2 (Hy ) + A2,n—1F;3_7q(H3,i) +o 4+ Ao Hiy = —Fo (X, .. Xna),

—~

3

—~

3

(1ii)(H1,i) +oF A Hy i = —Fo(Xag, - X)),

n—1

An,nrq(q,n’i)(Hn,i) + An,nflr

X1 =X1; + Hyg, (4)
Xoit1 =Xo; + Hoj,

Xniv1 =Xn; + Hp g,
k
where TV (H) = Y XV HXE P for j=1,2,...,n.
p=1

Set X0 = 0 for j = 1,2,...,n, we prove that the sequences {X;;} generated by (4)
converge to the minimal positive solution of system (1). And some numerical experiments
are given to show the efficiency of the modified Newton’s iteration in calculation time and
memory.
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A matrix-oriented POD-DEIM algorithm applied to
semilinear differential matrix equations

Gerhard Kirsten Valeria Simoncini

Universita di Bologna

We are interested in numerically approximating the solution U(t) € S to the following
semilinear matrix differential equation

Ult)=AU(t)+U(t)B+ F(U,t), U(0)=U,, (1)

where A € R"*" B € R™*™ and t € [0,Tf] = T C R, equipped with appropriate
boundary conditions. The function F : S x 7 — R"*™ ig a sufficiently regular nonlinear
function that can be evaluated elementwise, and S is a functional space containing the
sought after solution.

The problem (1) arises for instance in the discretization of two-dimensional partial
differential equations of the form

wp = L(u) + f(u,t), w=u(z,y,t) with (z,y) e QC R} teT, (2)

and given initial condition u(x,y,0) = ug(z,y), for certain choices of the physical domain
Q. The differential operator £ is linear in u, typically a second order operator in the space
variables, while f : S x T — R is a nonlinear function, where S is an appropriate space
with u € S.
In this talk we present a matrix-oriented model order reduction strategy for the problem
(1) that leads to a semilinear matriz differential equation with the same structure as (1),
but of significantly reduced dimension. More precisely, we determine an approximation to
U (t) of the type
W,UYk(t)WTUﬂ te [O,Tf], (3)

T

where V, iy € R™*F1 and W,u € R™*F2 are matrices to be determined, independent of
time. Here ki, ks < n and we let k = (ki, k2). The function Yj(¢) is determined as the
numerical solution to the following reduced semilinear matrix differential problem

Yi(t) = ApYa(t) + Yi(t) By + Fio(Ya, )

(4)
Y:(0) = Y, == V,,UW, 1,
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with Ay = VZ,TUAV&U’ By = WT’TUBWT,U, and m is a matrix-oriented approxima-
tion to
Fe(Yi, t) = Vi F(Vi g YW, i, ) W, (5)

By stacking the columns of the matrix U (t) one after the other into a long vector, a
collection of existing approaches typically map the matrix-valued problem (1) to a vector-
valued dynamical system, for which order reduction is a well-established procedure. Among
various methods, the Proper Orthogonal Decomposition (POD) [5, 2] methodology has
been widely employed. The overall effectiveness of the POD procedure is largely influenced
by the capability of evaluating the nonlinear term within the reduced space, motivating
a considerable amount of work towards this estimation. One very successful approach is
the Discrete Empirical Interpolation Method (DEIM) [3], which is based on the Empirical
Interpolation Method (EIM) originally introduced in [1].

However, a shortcoming of these vectorization procedures is the massive computational
and storage demand in the offline phase. Even in the online phase, several vectors of length
N = ngny need to be stored to lift the low-dimensional functions back to the full dimension.
Here we address precisely this shortcoming, focusing on POD for dimension reduction and
DEIM for interpolation of the nonlinear function.

To this end, we devise a matrix-oriented POD approach tailored towards the construction
of the matrix reduced problem formulation (4). An adaptive procedure is also developed
to limit the number of snapshots contributing to the generation of the approximation
spaces. The reduction of the nonlinear term is then performed by means of a fully matricial
interpolation using left and right projections onto two distinct reduction spaces, giving
rise to a new two-sided version of DEIM. By maintaining a matrix-oriented reduction,
we are able to employ first order exponential integrators at negligible costs. Numerical
experiments on benchmark problems illustrate the effectiveness of the new setting [4].
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Inspired by current research in tumor progression modeling, we consider continuous-time
Markov chains that describe interacting processes. In general a Markov chain is defined
by its state space S, its initial probability distribution p(0) € RS and its transition rate
matrix Q € R5*9. In tumor progression models, a tumor is identified by its genotype
where d mutations may have occurred or not. The Markov chain starts with the absence
of all mutations and then gradually accumulates mutations. Its state space S describes the
set of possible tumors and thus, grows exponentially in the number of mutations d with
|S| = 2¢. Modeling the transition rate matrix Q leads to an optimization problem based
on given tumor data. Since the age of a tumor at its diagnosis is typically unknown, this
optimization requires the so-called time-marginal distribution p € RS which is defined as

e}

p:= /exp(—t) -exp (Qt) p(0) dt where ¢ ~ Expl[l].
0

The time-marginal distribution is obtained as the solution of the linear system

(Id-Q)p = p(0). (1)

However, the size of this system renders classical solvers infeasible.

In this talk, we introduce the concept of Mutual Hazard Networks [3] which allows for
a low-rank tensor representation of the transition rate matrix Q. Using low-rank tensor
techniques reduces the computational complexity from exponential to linear provided the
distribution p exhibits a low-rank structure. Previously known iterative methods also allow
for low-rank approximations of the solution for (1) but are unable to guarantee that its

entries sum up to one, i.e,
Z pz: =1, (2)

€S
as required for a probability distribution. We present a convergent iterative method based
on the concept of uniformization [2]. This strategy allows us to use low-rank tensor formats
and, at the same time, to satisfy condition (2). Numerical experiments illustrate that the
time-marginal distribution is well approximated with low rank.
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The Unilateral Quadratic Matrix Equation (UQME)
AX? +BX +C =0 (1)

is a rarely mentioned equation in numerical linear algebra. Only a few publications
and algorithms cover the solution of this equation. Beside a direct solved based on the
underlying quadratic eigenvalue problem, only the Bernoulli Iteration and Newton’s Method
are known [2, 3] for general matrices A, B, and C.

In our contribution, we develop an algorithm using the underlying eigenvalue problem

0 1 I 0 v
Fy—[_c _B]y—k{o A}y—AGy, y—[)w], (2)
and the connection that if X is a solution of the UQME (1), it can be written as
X = ZanZ3". (3)

Thereby, the matrices Zo; and Zq; originate from the generalized Schur decomposition of
the matrix pair (F,G):

H H (T Ti2| [Su1 Si2|)
with o o , p
_Qun Q12 |2 Zio
©= [Qm Q2z] and 7= [221 222] ’ (5)

where each block is of size m x m. Since there is no predefined order of the eigenvalues on
the diagonals of (T, .5), a variety of solutions X exists. Typically, the minimal solution,
which corresponds to the m smallest eigenvalues, or the dominant solution, derived using
the deflating subspace related to the m largest eigenvalues, are of interest. Obtaining
these solutions with the computation of the generalized Schur decomposition (4) and a
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subsequent eigenvalue reordering is a time-consuming procedure due to the complexity
and the behavior of the QZ algorithm. Obviously, it is sufficient to compute the block
decomposition as shown in Equation (4), without having (71, S11) and (T2, S22) in (quasi)
upper triangular form. Only the zero block in the lower left of (4) needs to be of size
m X m. Furthermore, if we assume that we want to compute the minimal solution, the
blocks of (T, S) have to fulfill the following condition:

A< [l YA€ A(Ti1,S1), p€ A(Tr,S2). (6)

Our Successive Divide and Conquer algorithm (SDC) computes a sequence of unitary
transformations (Qy, Zx) with

Q=Q1 - Qy and Z=2--7, (7)

until the block partitioning (4)/(5) fulfills the condition (6) and (711, S11) are of size m x m.
Thereby, the sequence of transformation matrices (Qg, Zx) is computed from deflating
subspaces, which are computed with the help of the matrix disc function [1] and a dedicated
scaling technique [4]. In this way, the algorithm successively transforms the matrix pair
(F,G) as long as necessary.

If the UQME (1) is given with real data and the desired solution should be real as well,
a minimal solution does not exist if there a complex conjugate eigenvalue pair would be
split when computing the block decomposition (4). In order to overcome this issue, we
relax this to computing the quasi minimal solution, which differs from the minimal solution
in one missing real eigenvalue.

The numerical experiments show that our algorithm is a fast replacement for solving
the problem with the QZ algorithm. Even with a pure naive MATLAB implementation
of our algorithm, we obtain a speed up of 5.5 to 10 compared to the QZ algorithm.
The comparison to the Bernoulli iteration strongly depends on its convergence behavior.
Especially, if the gap between the spectra of (T11,.511) and (Th2, Sa2) in (4) gets very small,
our algorithms comes up with a much faster solution. Here, we obtain a speed up of 1.25
with a naive MATLAB implementation of the SDC algorithm. Finally, we show an example
for the quasi minimal solution, where the Bernoulli iteration does not converge at all.
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One established strategy to solve large-scale algebraic matrix equations is to compute a
low-rank approximations of the solution by iterative methods. Often, these methods work
internally with rational Krylov subspaces which necessitates to solve a large and sparse
linear system of equations inside each iteration step. In this presentation we will look at
inexact variants of rational Krylov subspace and low-rank ADI methods [1], where ”inexact”
refers to the scenario when the occurring inner linear systems are solved inexactly by
iterative methods such as, e.g., preconditioned Krylov subspace methods. Our main focus
are estimates for the required accuracy regarding the inner linear systems which will dictate
when the inner Krylov subspace methods can be terminated, thus potentially saving some
computational effort without endangering the functionality of the outer low-rank method.
If time permits, we will also look at inexact matrix-valued low-rank Krylov methods [2]
for general linear matrix equations, where inexactness occurs in the form of low-rank
truncations and similar considerations as before can be done.
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Recent Progresses on Highly Entrywise Accurate
Methods For Matrix Equations

Ren-Cang Li
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In 2002, Alfa, Xue, and Ye showed that the inverse of a nonsingular M-matrix can be

determined to highly relative entrywise accuracy by a triplet representation of the M-matrix,
and devised the so-called GTH-like algorithm, a variant of Gaussian elimination, to deliver a
numerical inverse with comparable entrywise relative accuracy. The breakthrough form the
foundation of later developments in numerical solutions of the M-matrix algebraic Riccati
equation (MARE) and the Quasi-Birth-and-Death (QBD) equation with guaranteed high
relative entrywise accuracy. In this talk, we will survey those developments, including recent
ones on the shifted M-matrix algebraic Riccati equation and the structured M-matrix
algebraic Riccati equation.
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Low-rank based data compression can sometimes lead to a dramatic acceleration of
numerical simulations. A striking example is the solution of time dependent elliptic PDEs
of the form:

{?;; = Lu+ f(t,u, V) (2,9) €Q, ¢ € [0, Tinas] "

’LL(CL‘,y, 0) = Uo(l’,y)

where  C R? is a rectangular domain, L is a linear differential operator, f is nonlinear
and (1) is coupled with appropriate boundary conditions in space. When the source term
and the solution are smooth, their (structured) discretizations lead to matrices that allow
for excellent low-rank approximations. Under suitable assumptions on the differential
operator, one can recast the corresponding discretized PDE as a matrix equation [1, 2]. In
turn, this yields the possibility to facilitate efficient algorithms for matrix equations with
low-rank right-hand side [3, 4]. However, in many situations of interest the smoothness
property is not present in the whole domain. A typical instance are solutions that feature
singularities along curves, while being highly regular elsewhere. This renders a global
low-rank approximation ineffective. During the last decades, there has been significant
effort in developing hierarchical low-rank formats that apply low-rank approximation only
locally [5]. These formats recursively partition the matrix into blocks that are either
represented as a low-rank matrix or are sufficiently small to be stored as a dense matrix.
These techniques are usually applied in the context of operators with a discretization
known to feature low-rank off-diagonal blocks, such as integral operators with singular
kernel.

We propose a new format that automatically adapts the choice of the hierarchical
partitioning and the location of the low-rank blocks without requiring the use of an
admissibility criterion. The admissibility is decided on the fly by the success or failure of
low-rank approximation techniques. We call this format Hierarchical Adaptive Low-Rank
(HALR) matrices.

We discuss techniques for the efficient adaptation of the structure in case of moving
singularities, with the aim of tracking the time-evolution of the solution of (1); the
numerical tests demonstrate that the proposed techniques can effectively detect changes
in the structure, and ensure the desired level of accuracy. We develop efficient Lyapunov
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and Sylvester solvers for matrix equations with HALR right-hand-side and Hierarchically
off-diagonal low-rank (HODLR) coefficients. Several numerical experiments demonstrate
both the effectiveness and the flexibility of the approach.
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Model reduction and utilization of the reduced basis
for aggregation kinetic equations
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In this work we apply Proper Orthogonal Decomposition (POD) for model reduction in
application to kinetic equations of irreversible aggregation process with source of monomers:

dn

Tk =J,+ - Z Cijning — nkzcjkn], k=1N (1)
H—] k

We assume the existence of an orthonormal basis, gathered as columns of a matrix
V € RV*E such that
T
[n(t) = VVin()|| < In@)], (2)

where n(t) is the solution of the original system and further introduce the reduced solution
z(t) = VIn(t), z(t) € RE (3)

which can be evaluated within O(R?) operations instead of O(NN log N) required for the
original system. In case R < N evaluation of the reduced solution requires much less
operations and depends only on the dimensionality of the basis. Final reconstruction of
the original solution can be done as

n(t) ~ a(t) = Vi(t). (4)

Thus, the main problem is choice of algorithm for construction of the target basis allowing
to perform the reduction of dimensionality. In our work we show that POD exploiting the
method of “snapshots” allows to obtain the basis and in our experiments we show that
R<N.

All in all, we also show that utilization of such basis allows to perform a speedup of
compuations for aggregation kinetic equations without significant loss of accuracy of the
solutions. At the same time, we also demonstrate problematic sides of the chosen approach
— the control of the precision of the reduced solution seems to be not an easy task due to
the nonlinearity of both method and model and requires additional studies in future.

This work has been supported by Russian Science Foundation Project (21-71-10072).
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Solution of the matrix equation for geodesics
associated with the Riemannian metric on the space
of positive-definite matrices based on the power
potential
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In this work, we give a closed-form expression for the nonlinear second-order differential
equation of geodesic curves associated with the Riemannian metric given by the Hessian of
the power potential function on P,, the space of positive-definite matrices of order n. The
B-power potential function on P, is [2]

1 — (det X)B
B )
It generalizes the logarithmic potential in the sense that limg_,o ®5(X) = —Indet(X).

For 8 < %, the Hessian of (1) is positive definite, and hence it provides at each point
X € P, a one-parameter family of Riemannian metrics on P(n) given by

Pp(X) = B #0. (1)

95.x (U, V) := (det XP) (tr(XT'UX V) — Btr(X1U) tr(X V), (2)

where U and V' are points of the tangent space to P, at X, identified as usual with the
space of symmetric matrices of order n.

A geodesic curve {X(¢), t € [0, 1]} with respect to the Riemannian metric (2) satisfies
the second-order matrix differential equation

d (9g95x(X', X")\  9g5x(X', X')
dt X' 0X

= O, (3)

Theorem 1 ([1]). Let X : [0,1] — P(n) be a smooth geodesic on P(n) equipped with the
Riemannian metric (2). Then, by introducing the matriz function G(t) = X ~1(t)X'(t), the
second-order ODE (3) can be written as the decoupled first-order system for X and G:
B 2 2
(——" — Bt I- Bt 4
6' = g o (0(G7) = BU%(C) T - 5u(GG. (10)
X' = XG. (4b)
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It is worthy to note that (4.a) is a nonlinear (quadratic) ODE for G(t). Once G(t) is
obtained, the linear first-order ODE (4.b) can be solved for X (¢).

We show that, under some conditions on (3, there exists a unique geodesic curve for
the metric (2) joining two positive-definite matrices A and B and we provide an explicit
expression for this geodesic.

Before we state our main result, let us define the following measure of linear independence
between two symmetric positive definite matrices A and B

—1/n —1/n
73(A, B) = |B]0(det(A) A, det(B) B)’ (5)

2\/1/n—p
where (-, -) is the Riemannian distance on P,, given for any two matrices M, N € P, by

1/2
d(M,N) := (Z?Zl In? )\i) , with A1, ..., \, are the eigenvalues of M1 N.

Theorem 2. If A, B € P(n) are linearly independent, set d := §(det(A)~1/" A, det(B)~'/"B)

and
B = V7in? + 4nd? + By = Vr2n2 4+ 4nd? — mn
L= 2nd? L 2nd? '
Then, for B € (P1,0) U (0, B2), there exists a unique geodesic joining A and B given by
Gp(A, B, t) = n(t) A(AT'B)*W, ¢ eo,1], (6)
where

<(1 — )2+ 2t(1 — t)ocosy + t20'2>n16

1 to siny
a(t) = — arctan<—>, 77(15) - o2c(t)

v 1—t+tocosy
with o = det(A™'B)#/2 and y := y5(A, B).

The geodesic curve (6) has an exponential part, similar to that of the geometric mean,
but with exponent «(t); and a scalar power part, n(t), which reduces to the weighted
%—power mean when v = 0.

When § goes to 0 then (6) becomes the matrix geometric mean

lim G3(A, B,t) = Go(A, B,t) := A(A"'B)".
B—0

Furthermore, if A and B are linearly dependent matrices in P(n), then (6) reduces to the

matrix %ﬂ—power mean

Gs(A,B.t) = (1—t)A% + BT,
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On the low-rank approximations in the Chebyshev
norm

Stanislav Morozov Nikolai Zamarashkin Eugene Tyrtyshnikov

Marchuk Institute of Numerical Mathematics
of the Russian Academy of Sciences, Moscow

Low-rank matrices and tensors are ubiquitous in science. A lot of methods have been
developed using low-rank structures in computational mathematics [1], computational
fluid dynamics [2], movie preferences [3] and automated machine learning [4]. To date,
most of the methods have been developed to build effective low-rank approximations in
the Frobenius norm. In the matrix case, the quality of such approximations depends
on the decrease rate of the singular values of the matrix. However, recent results show
that low-rank approximations of matrices in other norms can be effective even without
decreasing singular values. One fundamental result was proved in [5]:

Theorem. Let X € R™*™ with m > n and 0 < € < 1. Then, with

r = [72log (2n + 1)/€?] (1)

we have
inf ||X —Y|c < el X[z, where [[X[lc=max]|Xi] (2)
rankY <r 2,7
This work is devoted to low-rank approximations in the Chebyshev, that is, elementwise
norm (2). For simplicity of presentation, the results are given in the matrix case, although
some of them can be generalized to tensors. Let a matrix A € R™*™ be given. We call

p= inf A-UvT| ., (3)

N UeRmx7r YV R X"
the value of the best Chebyshev approximation of rank r. To date, the problem of
constructing low-rank approximations in the Chebyshev norm has been little studied. One
of the few works devoted to this topic is [6], in which a method for finding local minima
for rank 1 approximations has been proposed. The authors construct an approximation
using the alternance method. Let U©) be given. In the case of rank 1, it is easy to find a
matrix (in fact, a vector) V(%) being the solution of the problem

= min
B yermr

A-uowT| (4)
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Then the authors find the matrix (vector) U (1) that is optimal for V() and repeat the
procedure.

The results presented in [6] can be generalized to the case of an arbitrary rank. The
key step here is the possibility of solving the problem of the form (4), which becomes
challenging for > 1. This problem can be reduced to solving several independent problems
of the form

p=inf |la—Uv|, a€R™, UeR™" (5)
vERT
Suppose that in the matrix U € R™*" all submatrices of size r X r are non-singular. Let I,
be a subset of k indices from 1 to m, I, = {i1,42,...,ix}. Let us denote ay, the subvector
of the vector a with elements from Iy, and Uy, the submatrix of the matrix U with rows
from Ij. It can be shown that there exists a subset I, of r + 1 indices such that the
solution of the problem

ﬂ - ’Uienléir Hal'r‘+1 - UIT+1’UHOO (6)

coincides with the solution of the problem (5). Such a subset I, is called characteristic.
The problem of size r + 1 can be solved exactly in O(r*) operations ([7]). The above
arguments allow us to find the optimal solution to the problem (5) (and therefore (4))
by iterating over all subsets of  + 1 indices. However, more efficient methods for finding
the characteristic set and solving the problem (4) can also be constructed based on
generalizations of the Remez algorithm. Such algorithm does not require iterating over all
subsets and in practice work in polynomial time.

This work has been supported by Russian Science Foundation Project (21-71-10072).
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Stein-based preconditioners for weak-constraint
4D-Var
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State-of-the-art algorithms for data assimilation are very sophisticated schemes which
try to predict the most likely state of a dynamical system by combining information from
observations and prior models. The linearized weak-constraint four-dimensional variational
assimilation problem (4D-Var) can be reformulated as a saddle point problem that needs
to be preconditioned to ensure fast convergence in terms of number of iterations.

In this talk we illustrate novel preconditioning operators which involve the solution of
certain Stein matrix equations. In addition to achieving better computational performance,
the latter machinery allows us to derive tighter bounds for the eigenvalue distribution of
the preconditioned problem.

A panel of diverse numerical results displays the effectiveness of the proposed method-
ology compared to current state-of-the-art algorithms.
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Improved variants of the Hutch+4+4 algorithm for
trace estimation

David Persson Alice Cortinovis Daniel Kressner
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This work is concerned with two improved variants of the Hutch++ algorithm [2] for
estimating the trace tr(A) of a square matrix A, implicitly given through matrix-vector
products. Hutch+-+ combines randomized low-rank approximation in a first phase with
stochastic trace estimation in a second phase. In turn, Hutch++ only requires O (5_1)
matrix-vector products to approximate tr(A) within a relative error e with high probability.
This compares favorably with the O (5_2) matrix-vector products needed when using
stochastic trace estimation alone. In Hutch++, the number of matrix-vector products
is fixed a priori and distributed in a prescribed fashion among the two phases. In this
work, we derive an adaptive variant of Hutch++, which outputs an estimate of tr(A)
that is within some prescribed error tolerance with a prescribed success probability, while
splitting the matrix-vector products in a near-optimal way among the two phases. For the
special case of symmetric positive semi-definite A, we present another variant of Hutch++,
called Nystrom-+-, which utilizes the so called Nystrém approximation [1] and requires
only one pass over the matrix A, as compared to two passes with Hutch++. We prove
that the theoretical results on Hutch++ extend to Nystrom-++. Numerical experiments
demonstrate the effectiveness of our two new algorithms.
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Matrix completion generally refers to the problem of finding a matrix based on the
knowledge of a small fraction of it’s elements, under the assumption that the target matrix
has a low rank. Certain approaches, like SVP algorithm [1], have been developed for this
problem, notably, with geometric convergence bounds under the incoherence hypothesis,
and work has been done on the complexity reduction of the said SVP algorithm [2].

In this work, the problem of completion of matrices of small ranks is considered in
a special setting, where each element of the matrix may be erroneous with probability
pe=0(3)

Although such a perturbation is extremely sparse on a given mask of known elements,
it is not incoherent and algorithms such as SVP method most likely will not work. A new
iterative method is proposed that is insensitive to rare observation errors. The method
provides the low rank matrix and defines a set containing the erroneous matrix elements.
The cardinality of the erroneous set is only a finite number of times greater than the
cardinality of a true set of errors.

The method maintains a geometric convergence rate, which is supported by numer-
ical experiments on artificial data. The approach is also applicable to the problem of
approximating a given matrix by the sum of a sparse matrix and a matrix of low rank.

This work has been supported by Russian Science Foundation Project (21-71-10072).
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Mixed precision recursive block diagonalization for
bivariate functions of matrices

Stefano Massei Leonardo Robol
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Matrix functions, denoted by f(A), appear naturally in several applications, such as
the analysis of complex networks and control theory. The efficient evaluation of matrix
functions has been subject of a thourough study in recent years [1].

This concept extends extends quite naturally to the bivariate setting. Given two square
matrices A € C"™*™ B € C"*" and a complex-valued function f(z,y), the bivariate matriz
function f{A, BT} [3] is a linear operator on C"™*". As in the univariate case, the definition
of f{A, BT} can be given, equivalently, in terms of (bivariate) Hermite interpolation, power
series expansion and contour integration. In the latter formulation, let A4 and Ap be the
spectra of A and B, respectively, and let f(z,y) be analytic in an open neighborhood of
A x Ap; then, f{A, BT} is defined as

f{A, BT} L OmXn L, omXn

C — f{AjBT}(C) ::jé d flz,y) (=l — A)flc'(yf— B)f1 dxdy,

with I'4, ' closed contours enclosing A 4 and Apg, respectively.

Several matrix equations and related numerical problems can be expressed as the
evaluation of bivariate matrix functions: solving a Sylvester equations corresponds to
evaluating 1/(z + y); computing the Frechét derivative of f(z) at A can be rephrased
as evaluating the divided difference at the matrices A and A”, applied to the desired
direction. Similarly, any matrix function of I ® A + BT ® I can be recast as a bivariate
matrix function of the form f(x,y) = h(x + y).

For univariate matrix functions, the Schur-Parlett algorithm provides a robust tool
for evaluating f(A) for a generic function. The approach does not extend easily to the
bivariate setting.

We propose a numerically reliable method for computing f{A, BT}(C) for a general
function f(z,y) without requiring that A and/or B can be diagonalized with a well
conditioned similarity transformation. In complete analogy to the univariate scenario, our
procedure computes the Schur decompositions A = QAT4Q% and B = QpTBQ7%, so that
the task boils down to evaluate the bivariate function for triangular coefficients:

FABTHO) = Qaf{Ta, TEHCO)Qy,  C:=Q4CQp.
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A generalized block recurrence is applied to retrieve f{T}4, Tg}(é’); the recursion requires
to compute f on pairs of diagonal blocks of T4 and Tg and to solve Sylvester equations
involving either diagonal blocks of T4 or of Tg. In view of the latter operation, we need to
reorder the Schur forms of A and B such that distinct diagonal blocks have sufficiently
separated eigenvalues. Finally, we evaluate f on the smallest diagonal blocks of T4 and
T g, the so-called atomic blocks, via a truncated bivariate Taylor expansion or, in the
spirit of [2], with a randomized approximate diagonalization technique combined with
high precision arithmetic. The procedure can be interpreted as an implicit (recursive)
block-diagonalization strategy, where the eigenvectors matrices are not formed explicitly.
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A distance formula for tuples of doubly commuting
matrices

Priyanka Grover Sushil Singla
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For a tuple of operators A = (A1, ..., Ag), dist(A,C?I) is defined as min |A—=zI|
zeC

and var(A) as || A z||? —Z;lzl |(x]Ajz) ‘2. Ming [3] showed that if A is a tuple of commuting
€T
normal operators on a Hilbert space H, then

sup var(A) = R%, (1)

lz]l=1 *

where R4 is the radius of the smallest disc containing the Taylor spectrum of A. We have
R = dist(A, CT).

We will state the idea of the proof of the following. For tuples of doubly commuting
matrices, we have

dist(A,C?I)? = sup var(A).
Jefl=1 *

The main facts we will use for the proof will be the normal form for a collection of
doubly commuting matrices proved in the main theorem of [1] and the idea of the proof of
Proposition 4 of [2].
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Solving PDEs on hypercubes using Chebyshev
interpolation

Daniel Kressner Christoph Stréassner
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In this talk, we extend our work [2] on the approximation of trivariate functions
in functional low-rank formats by combining tensorized Chebyshev interpolation and a
low-rank approximation of the coefficient tensor. In the spirit of Chebfun [1], we want
to perform numerical computations with these approximations. The application of a
differential operator to an approximation in this format, can be evaluated by directly
modifying the coefficient tensor. Following the ideas of Chebop2 [3] for two-dimensional
domains, we develop a spectral method to solve PDEs on three-dimensional hypercubes by
inverting the differential operator in combination with boundary conditions. This leads to
a tensor equation, which for certain PDEs has a structure generalizing generalized Sylvester
equations from matrices to tensors of order 3.
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Non-intrusive model order reduction for cross-diffusion
systems
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Non-intrusive reduced-order models (ROMs) are developed for parametrized cross-
diffusion systems [1]

ul' = d, V2l 4 dp V20" 4 f(u 0" ), (2,t) € Q% (0,T],

ob' = dyy V2ul + d, V20 + g(ul, vt p),  (2,t) € Q x (0,7, M)
where Q C R¢ (d = 2,3) is the spatial domain, and 7" > 0 is the target time. The parameter
dependent variables u* = u(z,t; 1) and v* = v(x,t; u) represent chemical concentrations
or population densities, V2 is the Laplace operator, and f(ut,vH;u), g(ut,vk;u) are
the nonlinear reaction terms. Exploiting the Kronecker structure in the finite-difference
discretization of (1), the resulting system of ordinary differential equations (ODEs) are
integrated in time with the semi-implicit Euler method in matrix or tensor form [2].

The ROMs are constructed using a two-level approach. In the first level, for each param-
eter value from a sample set of parameters, using higher-order singular value decomposition
(HOSVD) [3, 4], the space-time coefficients of the ROMs are computed from the snapshot
tensor data, which correspond to the core tensor of the truncated Tucker decomposition of
the tensor. In the second level, applying standard singular value decomposition (SVD) to
the matrix containing the reduced space-time coefficients for each parameter, the ROM
basis is obtained in the training phase. In the test phase, reduced-order solutions are
constructed for new parameter values using radial bases functions (RBF). The compu-
tational efficiency and accuracy of the ROMs are illustrated to predict the patterns of
two examples of cross-diffusion systems of the form (1), the 2D Schnackenberg and 3D
Brusselator equations.
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Operator-dependent prolongation and restriction for
parameter-dependent multigrid methods using
low-rank tensor formats
Lars Grasedyck Tim A. Werthmann
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We discuss the solution of parameter-dependent linear systems, i.e., A(p)u(p) = f, using
parameter-dependent multigrid methods. Such a system arises, e.g., from a discretization

of a PDE:
=V (o(z,p)Vu(z,p)) = f(x)  forz e,

u(xz,p) =0 for x € 0.

In case of discontinuous o(z,p), e.g., if the parameters are jumping or random, Vu(z,p) is
discontinuous, too, cf. [1]. Therefore using standard linear interpolation for the prolongation
and restriction, as in [2], is inaccurate and the convergence rate of a multigrid method
declines.

In this talk, we motivate how to deal with these discontinuous o(x,p) in a parameter-
dependent multigrid method.

To do so, we will recapitulate the convergence theory of parameter-dependent multigrid
methods which we proved in [2]. This theory holds for arbitrary parameter-dependent
problems. To achieve a data-sparse representation of the parameter-dependent linear
system we recapitulate low-rank tensor formats. Our main question is then: How to deal
with discontinuous o(x,p) in (1)?

We motivate the derivation of an operator-dependent prolongation and restriction
based on block Gaussian elimination, cf. [3]. Numerical experiments using these operator-
dependent prolongations and restrictions illustrate a fast convergence of low-rank tensor
multigrid methods for discontinuous o(z, p).

(1)
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An important research trend is the transition from vector and matrix based mathemati-
cal engineering to generalizations that make use of higher-order tensors. Tensor-algorithms
have revolutionised high-dimensional computations. In machine learning or more specifi-
cally supervised learning, the potential still largely has to be unleashed [5]. In supervised
learning, one searches for an approximation of a nonlinear map. This is done for example
with neural networks or support vector machines. Polynomials and splines can also be used,
thanks to tensor decompositions that allow for a compact representation of multivariate
polynomials and splines [1].

Previously, a similar model was studied specifically with polynomials [4]. These are
easy to represent and allow for a uniform approximation of continuous functions, but fall
short when nonlinearities are present in the approximated map. In this research [6] splines
are used. These give the same advantages, but also allow the approximation of isolated
nonlinearities [3]. The extra difficulty is the placement of the spline-knots.

The contribution of this research is a general solution method to approximate an un-
known map, based on noisy data [2]. Different implementations have been compared.
For classical multivariate splines, one has an exponential time and memory complexity
in function of the number of input-variables. With this model it is reduced to a linear
complexity. Finally, a few heuristic methods for placing the spline-knots are compared.
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