
Matrix Equations and Tensor Techniques
IX

Perugia, September 9-10, 2021

Solving the Discrete Euler-Arnold Equations for the
Generalized Rigid Body Motion

João R. Cardoso Pedro Miraldo

Coimbra Polytechnic–ISEC,
and Center for Mathematics, University of Coimbra, Portugal

In [4], Moser and Veselov proposed the following equations to discretize the classical
Euler-Arnold differential equations for the motion of a rigid body:

Mk+1 = ωkMkω
T
k

Mk = ωT
k J − Jωk,

(1)

where Mk is the angular momentum with respect to the body (here represented by a skew-
symmetric matrix), J is the inertia matrix (symmetric positive definite), and ωk (orthogonal
matrix) is the angular velocity. Rigid body equations arise in several applications, e.g.,
celestial mechanics, molecular dynamics, mechanical robotics and flight control, where they
are used in particular to understand the body–body interactions of particles like planets,
atoms and molecules.

The main challenge of solving (1) is to find an orthogonal matrix ωk in the second
equation, by assuming that J and Mk are given. Mathematically, the problem may be
formulated as finding a special orthogonal matrix X (XTX = I, det(X) = 1) such that

XJ − JXT = M, (2)

where J is a given symmetric positive definite matrix, and M is a known skew-symmetric
matrix. The matrix equation (2) was firstly investigated in [4], where the authors based
their developments on factorizations of certain matrix polynomials. A different approach,
but computationally more efficient, was provided later in [2], where the authors noted
that (2) can be connected with a certain algebraic Riccati equation and, in turn, with the
Hamiltonian matrix

H =

[
M/2 I

M2/4 + J2 M/2

]
. (3)

It is stated in [2] that (2) has a solution X ∈ SO(n) (the special orthogonal or rotation
group of order n) if and only if the size of the Jordan blocks associated to the pure
imaginary eigenvalues of H (if any) is even. The existing algorithms for solving (2) only
work when H does not admit any pure imaginary eigenvalue. Moreover, the algorithms



based on solving the associated algebraic Riccati equation require the strong condition that
the matrix M2/4 + J2 must be symmetric positive definite. These issues have motivated
us to investigate methods whose applicability does not require those restrictive conditions.

The problem of finding a special orthogonal solution X in (2) can be formulated as an
optimization problem in the following way:

min
X∈SO(n)

∥∥XJ − JXT −M
∥∥2
F
, (4)

where ∥.∥F denotes the Frobenius norm. Techniques from Riemannian geometry to solve
optimization problems with orthogonal constraints have attracted the interest of many
researchers in the last decades; see [1, 3], and the references therein. An essential feature
of those techniques is that they allow the transformation of a constrained optimization
problem into an unconstrained one. Since the set of orthogonal matrices is a manifold
and provided that the objective function satisfies some smoothness requirements, we can
make available tools such as Euclidean gradients, Riemannian gradients, retractions, and
geodesics.

In this talk, we propose two iterative methods for solving (4). They evolve on the
orthogonal manifold and belong to the family of line search methods on matrix manifolds
described in [1, Ch. 4]. They are constraint-preserving, in the sense that, starting with
a matrix X0 ∈ SO(n), all the iterates Xk also stay in SO(n). The first one splits the
orthogonal constraints using the Bregman method, whereas the second method is of
steepest-descent type, based on a Cayley-transformation to preserve the constraints and
on a Barzilai-Borwein step size. A set of numerical experiments are carried out to compare
the performance of the proposed algorithms, suggesting that the first algorithm has the
best performance in terms of accuracy and number of iterations. An essential advantage of
these two iterative methods is that they work even when the conditions for applicability
of the direct methods available in the literature are not satisfied. That is, they allow
the computation of special orthogonal solutions, even when M2/4 + J2 is not symmetric
positive definite. Those iterative algorithms may also be used in problems where H has
purely imaginary eigenvalues associated with Jordan blocks of even size, but, as will be
illustrated with experiments, the convergence may slow down.
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