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Algebraic Riccati equations with indefinite quadratic terms of the form

ATXE + ETXA+ ETX
(
B1B

T
1 −B2B

T
2

)
XE + CTC = 0, (1)

with A,E ∈ Rn×n, B1 ∈ Rn×m1 , B2 ∈ Rn×m2 , C ∈ Rp×n and E invertible, play an
important role in applications related to robust controller design and differential games;
see, e.g., [5, 7].

A particular interest lies in the existence and computation of a symmetric positive
semi-definite, stabilizing solution X∞ ∈ Rn×n of (1). In other words, we want to compute
an X∞ that solves (1), that is symmetric positive semi-definite, and that ensures that the
eigenvalues of the matrix pencil λE − (A + B1B

T
1 − B2B

T
2 )X∞E all lie in the left open

half-plane.
While there are some established approaches to that in the case of small-scale dense

coefficient matrices [1, 6, 8], there is no approach available to compute solutions in the
large-scale sparse setting. In our work, we propose an extension of the iterative procedure
developed in [6] to efficiently compute the requested solution of (1) in the large-scale sparse
case via low-rank approximations such that Z∞Z

T
∞ ≈ X∞, with Z∞ ∈ Rn×r and r � n.

The approach is based on considering the Riccati operator

R(X) := ATXE + ETXA+ ETX(B1B
T
1 −B2B

T
2 )XE + CT

1C1.

For two symmetric matrices X1 = XT
1 and X2 = XT

2 , one can show that

R(X1 +X2) = R(X1) + ÃTX2E + ETX2Ã+ ETX2(B1B
T
1 −B2B

T
2 )X2E

holds, where Ã := A + (B1B
T
1 − B2B

T
2 )X1E. In the case that X2 is a solution to the

algebraic Riccati equation with negative semi-definite quadratic term

0 = R(X1) + ÃTX2E + ETX2Ã− ETX2B2B
T
2X2E, (2)

the residual reads
R(X1 +X2) = ETX2B1B

T
1X2E.



This leads to an iterative procedure, where in each step a Riccati equation of the form (2)
needs to be solved. Using low-rank approximations for the intermediate Riccati equations (2)
and some clever formulations of the iteration matrices allows the use of classical large-
scale sparse solvers for (2), like the ones described, e.g., in [2, 3, 10]. Together with a
reformulation of the overall iteration approach in [6], this leads to our new low-rank Riccati
iteration (LR-RI) method.

Implementations of this new approach are available in [4] for dense systems and in [9]
for the large-scale sparse case.
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