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Matrix functions, denoted by f(A), appear naturally in several applications, such as
the analysis of complex networks and control theory. The efficient evaluation of matrix
functions has been subject of a thourough study in recent years [1].

This concept extends extends quite naturally to the bivariate setting. Given two square
matrices A ∈ Cm×m, B ∈ Cn×n and a complex-valued function f(x, y), the bivariate matrix
function f{A,BT } [3] is a linear operator on Cm×n. As in the univariate case, the definition
of f{A,BT } can be given, equivalently, in terms of (bivariate) Hermite interpolation, power
series expansion and contour integration. In the latter formulation, let ΛA and ΛB be the
spectra of A and B, respectively, and let f(x, y) be analytic in an open neighborhood of
ΛA × ΛB; then, f{A,BT } is defined as

f{A,BT } : Cm×n −→ Cm×n

C −→ f{A,BT }(C) :=

∮
ΓA

∮
ΓB

f(x, y)(xI −A)−1C(yI −B)−1 dxdy,

with ΓA,ΓB closed contours enclosing ΛA and ΛB, respectively.
Several matrix equations and related numerical problems can be expressed as the

evaluation of bivariate matrix functions: solving a Sylvester equations corresponds to
evaluating 1/(x + y); computing the Frechét derivative of f(z) at A can be rephrased
as evaluating the divided difference at the matrices A and AT , applied to the desired
direction. Similarly, any matrix function of I ⊗A + BT ⊗ I can be recast as a bivariate
matrix function of the form f(x, y) = h(x + y).

For univariate matrix functions, the Schur-Parlett algorithm provides a robust tool
for evaluating f(A) for a generic function. The approach does not extend easily to the
bivariate setting.

We propose a numerically reliable method for computing f{A,BT }(C) for a general
function f(x, y) without requiring that A and/or B can be diagonalized with a well
conditioned similarity transformation. In complete analogy to the univariate scenario, our
procedure computes the Schur decompositions A = QATAQ

∗
A and B = QBTBQ

∗
B, so that

the task boils down to evaluate the bivariate function for triangular coefficients:

f{A,BT }(C) = QAf{TA, T
T
B }(C̃)Q∗

B, C̃ := Q∗
ACQB.



A generalized block recurrence is applied to retrieve f{TA, T
T
B }(C̃); the recursion requires

to compute f on pairs of diagonal blocks of TA and T T
B and to solve Sylvester equations

involving either diagonal blocks of TA or of TB. In view of the latter operation, we need to
reorder the Schur forms of A and B such that distinct diagonal blocks have sufficiently
separated eigenvalues. Finally, we evaluate f on the smallest diagonal blocks of TA and
T T
B , the so-called atomic blocks, via a truncated bivariate Taylor expansion or, in the

spirit of [2], with a randomized approximate diagonalization technique combined with
high precision arithmetic. The procedure can be interpreted as an implicit (recursive)
block-diagonalization strategy, where the eigenvectors matrices are not formed explicitly.
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