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The Unilateral Quadratic Matrix Equation (UQME)

AX2 +BX + C = 0 (1)

is a rarely mentioned equation in numerical linear algebra. Only a few publications
and algorithms cover the solution of this equation. Beside a direct solved based on the
underlying quadratic eigenvalue problem, only the Bernoulli Iteration and Newton’s Method
are known [2, 3] for general matrices A, B, and C.

In our contribution, we develop an algorithm using the underlying eigenvalue problem
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]
, (2)

and the connection that if X is a solution of the UQME (1), it can be written as

X = Z21Z
−1
11 . (3)

Thereby, the matrices Z21 and Z11 originate from the generalized Schur decomposition of
the matrix pair (F,G):

(
QHFZ,QHGZ

)
=

([
T11 T12

T22

]
,

[
S11 S12

S22

])
= (T, S) (4)

with

Q =

[
Q11 Q12

Q21 Q22

]
and Z =

[
Z11 Z12

Z21 Z22

]
, (5)

where each block is of size m×m. Since there is no predefined order of the eigenvalues on
the diagonals of (T, S), a variety of solutions X exists. Typically, the minimal solution,
which corresponds to the m smallest eigenvalues, or the dominant solution, derived using
the deflating subspace related to the m largest eigenvalues, are of interest. Obtaining
these solutions with the computation of the generalized Schur decomposition (4) and a



subsequent eigenvalue reordering is a time-consuming procedure due to the complexity
and the behavior of the QZ algorithm. Obviously, it is sufficient to compute the block
decomposition as shown in Equation (4), without having (T11, S11) and (T22, S22) in (quasi)
upper triangular form. Only the zero block in the lower left of (4) needs to be of size
m ×m. Furthermore, if we assume that we want to compute the minimal solution, the
blocks of (T, S) have to fulfill the following condition:

|λ| < |µ| ∀λ ∈ Λ (T11, S11) , µ ∈ Λ (T22, S22) . (6)

Our Successive Divide and Conquer algorithm (SDC) computes a sequence of unitary
transformations (Qk, Zk) with

Q = Q1 · · ·Qp and Z = Z1 · · ·Zp (7)

until the block partitioning (4)/(5) fulfills the condition (6) and (T11, S11) are of size m×m.
Thereby, the sequence of transformation matrices (Qk, Zk) is computed from deflating
subspaces, which are computed with the help of the matrix disc function [1] and a dedicated
scaling technique [4]. In this way, the algorithm successively transforms the matrix pair
(F,G) as long as necessary.

If the UQME (1) is given with real data and the desired solution should be real as well,
a minimal solution does not exist if there a complex conjugate eigenvalue pair would be
split when computing the block decomposition (4). In order to overcome this issue, we
relax this to computing the quasi minimal solution, which differs from the minimal solution
in one missing real eigenvalue.

The numerical experiments show that our algorithm is a fast replacement for solving
the problem with the QZ algorithm. Even with a pure naive MATLAB implementation
of our algorithm, we obtain a speed up of 5.5 to 10 compared to the QZ algorithm.
The comparison to the Bernoulli iteration strongly depends on its convergence behavior.
Especially, if the gap between the spectra of (T11, S11) and (T22, S22) in (4) gets very small,
our algorithms comes up with a much faster solution. Here, we obtain a speed up of 1.25
with a naive MATLAB implementation of the SDC algorithm. Finally, we show an example
for the quasi minimal solution, where the Bernoulli iteration does not converge at all.
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