(METTIX) Optimal Constant for Generalized Diagonal Update Method

Jeong-Hoon Ju (presenter), Young-Jin Kim and Hyun-Min Kim September 9, 2021

Pusan National University, Republic of Korea

This research was supported by the National Research Foundation of Korea grant funded by the Korea Government (NRF-2017R1A5A1015722)

- 1. Target Matrix Equation
- 2. Previous Methods
- 3. Generalized Diagonal Update Method
- 4. Numerical Experiments
- 5. Conclusion

Target Matrix Equation

Target Matrix Equation (1/3)

Original Target Matrix Equation

Consider the following quadratic matrix equation

$$Q_1(X) = AX^2 + BX + C = 0$$
 (1)

where

- $A \in \mathbb{R}^{n \times n}$ is a diagonal matrix with positive diagonal elements,
- $B \in \mathbb{R}^{n \times n}$ is a nonsingular *M*-matrix,
- $C \in \mathbb{R}^{n \times n}$ is an *M*-matrix such that $B^{-1}C \ge 0$.

(*) The inequality on the third condition is natural entrywise inequality. (**) (*Z*-matrix) $M \in \mathbb{R}^{n \times n}$ is called *Z*-matrix if all its off-diagonal elements are nonpositive, that is, $A = \alpha I - P$ for some $P \ge 0$. (* **) (*M*-matrix) $A = \alpha I - P$ for some $P \ge 0$ is called *M*-matrix if $\alpha \ge \rho(P)$, when $\rho(P)$ denotes the spectral radius of *P*.

Remark (Motivation) [1]

The assumed *M*-matrices on coefficient matrices are motivated by a **quadratic eigenvalue problem (QEP)** arising from an overdamped vibrating system [2, 3].

Simplified Target Matrix Equation

We consider the simplified equation

$$Q_2(X) = X^2 + BX + C = 0$$
 (2)

where

- $B \in \mathbb{R}^{n \times n}$ is a nonsingular *M*-matrix,
- $C \in \mathbb{R}^{n \times n}$ is an *M*-matrix such that $B^{-1}C \ge 0$.

Target Matrix Equation (3/3)

Question 1

What solution (solvent) do you want?

Question 1

What solution (solvent) do you want?

Answer. We will find primary solvent X^* which is the maximal nonpositive solvent of (2).

Target Matrix Equation (3/3)

Question 1

What solution (solvent) do you want?

Answer. We will find primary solvent X^* which is the maximal nonpositive solvent of (2).

Question 2

Why do you need the primary solvent?

Target Matrix Equation (3/3)

Question 1

What solution (solvent) do you want?

Answer. We will find primary solvent X^* which is the maximal nonpositive solvent of (2).

Question 2

Why do you need the primary solvent?

Answer. Guo and Lancaster [4] showed that the QEP in an overdamped vibrating system can be solved effectively by a solvent approach. In particular, the n largest nonpositive eigenvalues can be derived by the primary solvent [1].

Previous Methods

Method 1 - Yu (2011) [1]

- Condition: B C I is a nonsingular *M*-matrix
- Method:

$$\begin{cases} X_0 = 0 \in \mathbb{R}^{n \times n} \\ X_{k+1} = \mathcal{F}_i(X_k), \quad k = 0, 1, 2, \cdots \end{cases}$$

where

$$\mathcal{F}_1(X) = -(B+X)^{-1}C,$$

 $\mathcal{F}_2(X) = -B^{-1}(X^2+C).$

Previous Methods (2/6)

Method 2 - Kim (2016) [5]

- Condition: B C 2I is a nonsingular *M*-matrix
- Method:

$$\begin{cases} X_0 = 0 \in \mathbb{R}^{n \times n} \\ X_{k+1} = \mathcal{F}_i(X_k), \quad k = 0, 1, 2, \cdots \end{cases}$$

where

$$\mathcal{F}_{3}(X) = -(B + X - \delta_{X}I)^{-1}(C + \delta_{X}X),$$

$$\mathcal{F}_{4}(X) = -(B - 2\delta_{X}I)^{-1}(X^{2} + 2\delta_{X}X + C),$$

for $\delta_X = \min\{ 1, \min\{ |\operatorname{diag}(X)| \} \}.$

• Advantage: faster than the method 1.

(*) This method is called diagonal update method.

Question 3

Note that there are much more examples which don't satisfy the condition that B - C - 2I is a nonsingular *M*-matrix. Can the condition be **weaken**, in order to use the idea of **the diagonal update method** for solving **more** examples faster?

Question 3

Note that there are much more examples which don't satisfy the condition that B - C - 2I is a nonsingular *M*-matrix. Can the condition be **weaken**, in order to use the idea of **the diagonal update method** for solving **more** examples faster?

Answer. Yes, we generalized the diagonal update method!

Previous Methods (4/6)

Example 1 A = I, -1020 -10 30 -10 -10 30 -10-10 \cdot \cdot \cdot $B = \epsilon$ ·. 30 -10-1020 *C* = · 15 –5 -5 15

(*) If $\epsilon \leq 0.9603$, then B - C - 2I is **not** a nonsingular *M*-matrix.

Remark (Controlling the Size of the Damping Term) [6]

The equation at Example 1 with the form

 $AX^2 + \epsilon BX + C = 0$

can be considered to solve a quadratic eigenvalue problem with real parameter ϵ which is introduced to control the size of the damping term *B*.

Example 2 [7]

(*) For all size *n* of these square matrices, B - C - I is a nonsingular *M*-matrix, but B - C - 2I is not.

Generalized Diagonal Update Method

Lemma [8]

For a *Z*-matrix *A*, the followings are equivalent:

- (i) A is a nonsingular M-matrix.
- (ii) A^{-1} is nonnegative.
- (iii) Av > 0 for some vector v > 0.
- (iv) All eigenvalues of A have positive real parts.

Remark (Optimal Constant)

The original condition that B - C - I is a nonsingular *M*-matrix derives a more general condition that

 $B - C - \gamma I$ is a nonsingular *M*-matrix

for some γ .

Indeed, we can take the optimal constant

 $\gamma^* = \min\{ \text{ real } (\text{eig } (B - C)), 2 \}.$

Generalized Diagonal Update Method (3/3)

Generalized Diagonal Update Method

- Condition: B C I is a nonsingular *M*-matrix
- Method: $X_0 = 0 \in \mathbb{R}^{n \times n}$,

(i) $X_{k+1} = \mathcal{G}_{\gamma}(X_k), \ k = 0, 1, 2, \cdots$, where

 $\mathcal{G}_{\gamma}(X) = -(B + X - (\gamma - 1)\delta_X I)^{-1}(C + (\gamma - 1)\delta_X X),$

(ii)
$$X_{k+1} = \mathcal{H}_{\gamma}(X_k), \ k = 0, 1, 2, \cdots$$
, where

$$\mathcal{H}_{\gamma}(X) = -(B - \gamma \delta_X I)^{-1} (X^2 + \gamma \delta_X X + C),$$

for $\delta_X = \min\{1, \min\{|\operatorname{diag}(X)|\}\}$ and $1 \le \gamma < \gamma^*$.

• Advantage: **faster** than method 1 and **more available** than method 2.

Numerical Experiments

Numerical Experiments (1/3)

Algorithms

We used following algorithms:

$$\begin{cases} X_{0} = 0, \ \delta_{X} = \min\{1, \min\{|\text{diag}(X)|\}\},\\ \gamma = \min\{\text{real}(\text{eig}(B - C)), 2\} - 0.0001\\ X_{i+1} = -(B + X_{i})^{-1}C, \quad (B11)\\ X_{i+1} = -(B + X_{i} - (\gamma - 1)\delta_{X_{i}}I)^{-1}(C + (\gamma - 1)\delta_{X_{i}}X_{i}). \quad (B11\text{-OC}) \end{cases}$$

$$\begin{cases} X_{0} = 0, \ \delta_{X} = \min\{1, \min\{|\text{diag}(X)|\}\},\\ \gamma = \min\{\text{real}(\text{eig}(B - C)), 2\} - 0.0001\\ X_{i+1} = -B^{-1}(X_{i}^{2} + C), \quad (B12)\\ X_{i+1} = -(B - \gamma\delta_{X_{i}}I)^{-1}(X_{i}^{2} + \gamma\delta_{X_{i}}X_{i} + C). \quad (B12\text{-OC}) \end{cases}$$

Numerical Experiments (2/3)

For Example 1,

Iteration methods $m =$: 30	m = 100		m = 500					
	Residual	Time	Residual	Time	Residual	Time				
BI1	9.73E-14	0.00528	9.30E-13	0.01326	9.31E-13	0.16213				
BI1-OC	1.26E-13	0.00151	1.25E-13	0.00882	2.32E-12	0.12486				
BI2	4.05E-13	0.00350	4.06E-13	0.01760	2.70E-12	0.27946				
BI2-OC	4.75E-14	0.00193	5.95E-13	0.00726	1.69E-13	0.16732				

TABLE 5.1. Numerical results for Example 5.1 with $\epsilon=0.95, \gamma=1.8683$

Numerical Experiments (3/3)

For Example 2,

Iteration methods	m = 30			m = 100		
	It(s)	Residual	Time	It(s)	Residual	Time
BI1	130	1.01E-13	0.01375	369	3.67E-13	0.12687
BI1-OC	130	9.33E-14	0.00853	369	3.65E-13	0.09148
BI2	240	1.97E-13	0.02851	702	7.46E-13	0.22766
BI2-OC	203	1.60E-13	0.01041	598	6.37E-13	0.20155

TABLE 5.2. Numerical results for Example 5.1

Conclusion

Strategy to Use (Generalized) Diagonal Update Method

Assume that B - C - I is a nonsingular *M*-matrix.

- If we don't know that B C 2I is not a nonsingular M-matrix or we have that B - C - 2I is not a nonsingular M-matrix, then use the generalized diagonal update method with γ*.
- (2) If we also have that B C 2I is a nonsingular *M*-matrix, then use the original diagonal update method.

 Bo Yu, Ning Dong, Qiong Tang, and Feng-Hua Wen.
 On iterative methods for the quadratic matrix equation with m-matrix.

Applied Mathematics and Computation, 218(7):3303–3310, 2011.

[2] Françoise Tisseur.

Backward error and condition of polynomial eigenvalue problems.

Linear Algebra and its Applications, 309(1-3):339–361, 2000.

[3] Françoise Tisseur and Karl Meerbergen. The quadratic eigenvalue problem. <u>SIAM review</u>, 43(2):235–286, 2001.

- [4] Chun-Hua Guo and Peter Lancaster.
 Algorithms for hyperbolic quadratic eigenvalue problems. Mathematics of Computation, 74(252):1777–1791, 2005.
- [5] Young-Jin Kim and Hyun-Min Kim.
 Diagonal update method for a quadratic matrix equation. <u>Applied Mathematics and Computation</u>, 283:208–215, 2016.
- [6] Pedro Freitas.

Quadratic matrix polynomials with hamiltonian spectrum and oscillatory damped systems.

Zeitschrift für angewandte Mathematik und Physik ZAMP, 50(1):64–81, 1999.

[7] Zhong-Zhi Bai and Yong-Hua Gao.

Modified bernoulli iteration methods for quadratic matrix equation.

Journal of Computational Mathematics, pages 498–511, 2007.

[8] George Poole and Thomas Boullion.

A survey on m-matrices.

SIAM review, 16(4):419–427, 1974.

Thank you!