(METTIX) Optimal Constant for Generalized Diagonal Update Method

Jeong-Hoon Ju (presenter), Young-Jin Kim and Hyun-Min Kim
September 9, 2021
Pusan National University, Republic of Korea
This research was supported by the National Research Foundation of Korea grant funded by the Korea Government (NRF-2017R1A5A1015722)

Table of contents

1. Target Matrix Equation
2. Previous Methods
3. Generalized Diagonal Update Method
4. Numerical Experiments
5. Conclusion

Target Matrix Equation

Target Matrix Equation (1/3)

Original Target Matrix Equation

Consider the following quadratic matrix equation

$$
\begin{equation*}
Q_{1}(X)=A X^{2}+B X+C=0 \tag{1}
\end{equation*}
$$

where

- $A \in \mathbb{R}^{n \times n}$ is a diagonal matrix with positive diagonal elements,
- $B \in \mathbb{R}^{n \times n}$ is a nonsingular M-matrix,
- $C \in \mathbb{R}^{n \times n}$ is an M-matrix such that $B^{-1} C \geq 0$.
(*) The inequality on the third condition is natural entrywise inequality. (**) (Z-matrix) $M \in \mathbb{R}^{n \times n}$ is called Z-matrix if all its off-diagonal elements are nonpositive, that is, $A=\alpha I-P$ for some $P \geq 0$. (***) (M-matrix) $A=\alpha I-P$ for some $P \geq 0$ is called M-matrix if $\alpha \geq \rho(P)$, when $\rho(P)$ denotes the spectral radius of P.

Target Matrix Equation (2/3)

Remark (Motivation) [1]

The assumed M-matrices on coefficient matrices are motivated by a quadratic eigenvalue problem (QEP) arising from an overdamped vibrating system $[2,3]$.

Simplified Target Matrix Equation

We consider the simplified equation

$$
\begin{equation*}
Q_{2}(X)=X^{2}+B X+C=0 \tag{2}
\end{equation*}
$$

where

- $B \in \mathbb{R}^{n \times n}$ is a nonsingular M-matrix,
- $C \in \mathbb{R}^{n \times n}$ is an M-matrix such that $B^{-1} C \geq 0$.

Target Matrix Equation (3/3)

Question 1

What solution (solvent) do you want?

Target Matrix Equation (3/3)

Question 1

What solution (solvent) do you want?

Answer. We will find primary solvent X^{*} which is the maximal nonpositive solvent of (2).

Target Matrix Equation (3/3)

Question 1

What solution (solvent) do you want?

Answer. We will find primary solvent X^{*} which is the maximal nonpositive solvent of (2).

Question 2

Why do you need the primary solvent?

Target Matrix Equation (3/3)

Question 1

What solution (solvent) do you want?

Answer. We will find primary solvent X^{*} which is the maximal nonpositive solvent of (2).

Question 2

Why do you need the primary solvent?

Answer. Guo and Lancaster [4] showed that the QEP in an overdamped vibrating system can be solved effectively by a solvent approach. In particular, the n largest nonpositive eigenvalues can be derived by the primary solvent [1].

Previous Methods

Previous Methods (1/6)

Method 1 - Yu (2011) [1]

- Condition: $B-C-I$ is a nonsingular M-matrix
- Method:

$$
\left\{\begin{array}{l}
X_{0}=0 \in \mathbb{R}^{n \times n} \\
X_{k+1}=\mathcal{F}_{i}\left(X_{k}\right), \quad k=0,1,2, \cdots
\end{array}\right.
$$

where

$$
\begin{gathered}
\mathcal{F}_{1}(X)=-(B+X)^{-1} C \\
\mathcal{F}_{2}(X)=-B^{-1}\left(X^{2}+C\right) .
\end{gathered}
$$

Previous Methods (2/6)

Method 2 - Kim (2016) [5]

- Condition: $B-C-2 I$ is a nonsingular M-matrix
- Method:

$$
\left\{\begin{array}{l}
X_{0}=0 \in \mathbb{R}^{n \times n} \\
X_{k+1}=\mathcal{F}_{i}\left(X_{k}\right), \quad k=0,1,2, \cdots
\end{array}\right.
$$

where

$$
\begin{array}{r}
\mathcal{F}_{3}(X)=-\left(B+X-\delta_{X} I\right)^{-1}\left(C+\delta_{X} X\right) \\
\mathcal{F}_{4}(X)=-\left(B-2 \delta_{X} I\right)^{-1}\left(X^{2}+2 \delta_{X} X+C\right),
\end{array}
$$

for $\delta_{X}=\min \{1, \min \{|\operatorname{diag}(X)|\}\}$.

- Advantage: faster than the method 1.
(*) This method is called diagonal update method.

Previous Methods (3/6)

Question 3

Note that there are much more examples which don't satisfy the condition that $B-C-2 I$ is a nonsingular M-matrix. Can the condition be weaken, in order to use the idea of the diagonal update method for solving more examples faster?

Previous Methods (3/6)

Question 3

Note that there are much more examples which don't satisfy the condition that $B-C-2 I$ is a nonsingular M-matrix. Can the condition be weaken, in order to use the idea of the diagonal update method for solving more examples faster?

Answer. Yes, we generalized the diagonal update method!

Previous Methods (4/6)

Example 1

$$
\begin{aligned}
& A=I, \\
& B=\epsilon\left[\begin{array}{cccccc}
20 & -10 & & & & \\
-10 & 30 & -10 & & & \\
& -10 & 30 & -10 & & \\
& & -10 & \ddots & \ddots & \\
& & & \ddots & 30 & -10 \\
& & & & -10 & 20
\end{array}\right] \text {, } \\
& C=\left[\begin{array}{cccccc}
15 & -5 & & & & \\
-5 & 15 & -5 & & & \\
& -5 & 15 & -5 & & \\
& & -5 & \ddots & \ddots & \\
& & & \ddots & 15 & -5 \\
& & & & -5 & 15
\end{array}\right]
\end{aligned}
$$

(*) If $\epsilon \leq 0.9603$, then $B-C-2 I$ is not a nonsingular M-matrix.

Previous Methods (5/6)

Remark (Controlling the Size of the Damping Term) [6]

The equation at Example 1 with the form

$$
A X^{2}+\epsilon B X+C=0
$$

can be considered to solve a quadratic eigenvalue problem with real parameter ϵ which is introduced to control the size of the damping term B.

Previous Methods (6/6)

Example 2 [7]

$$
A=C=I, \quad B=\left[\begin{array}{cccccc}
4 & -1 & & & & \\
-1 & 4 & -1 & & & \\
& -1 & 4 & -1 & & \\
& & -1 & \ddots & \ddots & \\
& & & \ddots & 4 & -1 \\
& & & & -1 & 4
\end{array}\right]
$$

(*) For all size n of these square matrices, $B-C-I$ is a nonsingular M-matrix, but $B-C-2 I$ is not.

Generalized Diagonal Update Method

Generalized Diagonal Update Method (1/3)

Lemma [8]

For a Z-matrix A, the followings are equivalent:
(i) A is a nonsingular M-matrix.
(ii) A^{-1} is nonnegative.
(iii) $A v>0$ for some vector $v>0$.
(iv) All eigenvalues of A have positive real parts.

Generalized Diagonal Update Method (2/3)

Remark (Optimal Constant)

The original condition that $B-C-I$ is a nonsingular M-matrix derives a more general condition that

$$
B-C-\gamma I \text { is a nonsingular } M \text {-matrix }
$$

for some γ.
Indeed, we can take the optimal constant

$$
\gamma^{*}=\min \{\text { real }(\text { eig }(B-C)), 2\} .
$$

Generalized Diagonal Update Method (3/3)

Generalized Diagonal Update Method

- Condition: $B-C-I$ is a nonsingular M-matrix
- Method: $X_{0}=0 \in \mathbb{R}^{n \times n}$,
(i) $X_{k+1}=\mathcal{G}_{\gamma}\left(X_{k}\right), k=0,1,2, \cdots$, where

$$
\mathcal{G}_{\gamma}(X)=-\left(B+X-(\gamma-1) \delta_{X} I\right)^{-1}\left(C+(\gamma-1) \delta_{X} X\right),
$$

(ii) $X_{k+1}=\mathcal{H}_{\gamma}\left(X_{k}\right), k=0,1,2, \cdots$, where

$$
\mathcal{H}_{\gamma}(X)=-\left(B-\gamma \delta_{X} I\right)^{-1}\left(X^{2}+\gamma \delta_{X} X+C\right),
$$

for $\delta_{X}=\min \{1, \min \{|\operatorname{diag}(X)|\}\}$ and $1 \leq \gamma<\gamma^{*}$.

- Advantage: faster than method 1 and more available than method 2.

Numerical Experiments

Numerical Experiments (1/3)

Algorithms

We used following algorithms:

$$
\begin{align*}
& \left\{\begin{array}{l}
X_{0}=0, \delta_{X}=\min \{1, \min \{|\operatorname{diag}(X)|\}\}, \\
\gamma=\min \{\operatorname{real}(\operatorname{eig}(B-C)), 2\}-0.0001 \\
X_{i+1}=-\left(B+X_{i}\right)^{-1} C, \\
X_{i+1}=-\left(B+X_{i}-(\gamma-1) \delta_{X_{i}} I\right)^{-1}\left(C+(\gamma-1) \delta_{X_{i}} X_{i}\right) .
\end{array}\right. \\
& \left\{\begin{array}{l}
X_{0}=0, \delta_{X}=\min \{1, \min \{\mid 1-\mathrm{OC}) \\
\gamma=\min \{\text { real }(\operatorname{eig}(B) \mid\}-C)), 2\}-0.0001 \\
X_{i+1}=-B^{-1}\left(X_{i}^{2}+C\right), \\
X_{i+1}=-\left(B-\gamma \delta_{X_{i}} I\right)^{-1}\left(X_{i}^{2}+\gamma \delta_{X_{i}} X_{i}+C\right) .
\end{array}\right. \\
& \text { (BI2) } \tag{Bl1}
\end{align*}
$$

Numerical Experiments (2/3)

For Example 1,

Table 5.1. Numerical results for Example 5.1 with $\epsilon=0.95, \gamma=1.8683$

Iteration methods	$m=30$		$m=100$		$m=500$	
	Residual	Time	Residual	Time	Residual	Time
BI1	$9.73 \mathrm{E}-14$	0.00528	$9.30 \mathrm{E}-13$	0.01326	$9.31 \mathrm{E}-13$	0.16213
BI1-OC	$1.26 \mathrm{E}-13$	0.00151	$1.25 \mathrm{E}-13$	0.00882	$2.32 \mathrm{E}-12$	0.12486
BI2	$4.05 \mathrm{E}-13$	0.00350	$4.06 \mathrm{E}-13$	0.01760	$2.70 \mathrm{E}-12$	0.27946
BI2-OC	$4.75 \mathrm{E}-14$	0.00193	$5.95 \mathrm{E}-13$	0.00726	$1.69 \mathrm{E}-13$	0.16732

Numerical Experiments (3/3)

For Example 2,
Table 5.2. Numerical results for Example 5.1

Iteration methods	$m=30$			$m=100$		
	It(s)	Residual	Time	It(s)	Residual	Time
BI1	130	$1.01 \mathrm{E}-13$	0.01375	369	$3.67 \mathrm{E}-13$	0.12687
BI1-OC	130	$9.33 \mathrm{E}-14$	0.00853	369	$3.65 \mathrm{E}-13$	0.09148
BI2	240	$1.97 \mathrm{E}-13$	0.02851	702	$7.46 \mathrm{E}-13$	0.22766
BI2-OC	203	$1.60 \mathrm{E}-13$	0.01041	598	$6.37 \mathrm{E}-13$	0.20155

Conclusion

Conclusion (1/1)

Strategy to Use (Generalized) Diagonal Update Method

Assume that $B-C-I$ is a nonsingular M-matrix.
(1) If we don't know that $B-C-2 I$ is not a nonsingular M-matrix or we have that $B-C-2 I$ is not a nonsingular M-matrix, then use the generalized diagonal update method with γ^{*}.
(2) If we also have that $B-C-2 I$ is a nonsingular M-matrix, then use the original diagonal update method.

References i

[1] Bo Yu, Ning Dong, Qiong Tang, and Feng-Hua Wen.
On iterative methods for the quadratic matrix equation with m-matrix.
Applied Mathematics and Computation, 218(7):3303-3310, 2011.
[2] Françoise Tisseur.
Backward error and condition of polynomial eigenvalue problems.
Linear Algebra and its Applications, 309(1-3):339-361, 2000.
[3] Françoise Tisseur and Karl Meerbergen.
The quadratic eigenvalue problem.
SIAM review, 43(2):235-286, 2001.

References ii

[4] Chun-Hua Guo and Peter Lancaster.
Algorithms for hyperbolic quadratic eigenvalue problems. Mathematics of Computation, 74(252):1777-1791, 2005.
[5] Young-Jin Kim and Hyun-Min Kim.
Diagonal update method for a quadratic matrix equation.
Applied Mathematics and Computation, 283:208-215, 2016.
[6] Pedro Freitas.
Quadratic matrix polynomials with hamiltonian spectrum and oscillatory damped systems.
Zeitschrift für angewandte Mathematik und Physik ZAMP,
50(1):64-81, 1999.

References iif

[7] Zhong-Zhi Bai and Yong-Hua Gao.
Modified bernoulli iteration methods for quadratic matrix equation.
Journal of Computational Mathematics, pages 498-511, 2007.
[8] George Poole and Thomas Boullion.
A survey on m-matrices.
SIAM review, 16(4):419-427, 1974.

Thank you!

